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ABSTRACT
Reviewing source code is a common practice in a modern and col-
laborative coding environment. In the past few years, the research
on modern code reviews has gained interest among practitioners
and researchers. The objective of our investigation is to observe
the evolution of research related to modern code reviews, identify
research gaps and serve as a basis for future research. We use a
systematic mapping approach to identify and classify 177 research
papers. As preliminary result of our investigation, we present in this
paper a classification scheme of the main contributions of modern
code review research between 2005 and 2018.
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1 INTRODUCTION
Code reviews have evolved from being rigorous and intensive to
lightweight and collaborative. Modern code reviews are conducted
to examine the changes made to a software system and to evaluate
its quality. In an open source or inner source project, people other
than the core team can make contributions to a software product.
Hence, reviewing the code before it is accepted and merged is
crucial; not necessarily to identify faults, but rather to improve
solutions, share knowledge and code ownership [2].
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Although modern code review has become a prevalent practice
in the software industry, there is no study that aggregates existing
associated literature and identifies gaps in the body of knowledge.
Therefore, the aim of our investigation is to conduct a mapping
study to aggregate existing literature in this area and identifying
gaps. In this paper, we present the preliminary results of our in-
vestigation. We followed the guidelines by Petersen et al. [57] to
conduct a systematic mapping study. The contributions of our map-
ping study are to provide a classification scheme of modern code
review research, evolution of research topics and identify research
gaps and potential future research areas.

The structure of the paper is as follows: Related work is described
in Section 2. The research design used to conduct systematic map-
ping study is described in Section 3. The preliminary results are
presented in Section 4. Finally, our conclusions and next steps in
our investigation are presented in Section 5.

2 RELATEDWORK
Nargis et. al [19] have published a systematic literature review
protocol, designed at identifying challenges and benefits of modern
code reviews. Our study has a broader scope, i.e. we intend to
map all research on modern code reviews without limitation on
outcome. Earlier reviews target traditional code inspections [73] or
peer assessment outside the software engineering domain [28]. To
the best of our knowledge, no systematic investigation on what we
know about modern code reviews has yet been conducted.

3 RESEARCH DESIGN
The guidelines by Petersen et al. [57] include the following steps:
(1) definition of review questions; (2) conduct search for primary
papers; (3) screening relevant papers; (4) keywording of abstracts;
(5) Data extraction and mapping of studies.

3.1 Goal and review questions
Goal: The main goal of this review is to provide an overview of the
existing research on modern code reviews. The overview consists of
the contributions of the different research articles and the research
approach used in the papers. The purpose of the review is to map
the frequencies of research published in the area of modern code
reviews to observe the evolution of the research topic. Based on
the goal of the review, we have formulated the following review
questions:

R1 What aspects/topics of modern code reviews are investi-
gated?
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Table 1: Search results from each database

Database Papers

Scopus 866
IEEE Explore 335
ACM Digital Library - Title 99
ACM Digital Library - Abstract 243
Total 1543
Total after removing duplicates 873

R1.1 How have the aspects/topic changed over time?
R1.2 How many articles cover the different aspects of modern

code reviews?
R2 How were the aspects in R1 investigated?
Note that the preliminary results presented in this paper only

address RQ1.

3.2 Search strategy
We employed the following search strategy:
Databases included: After defining the review questions, the next
step is to select databases to find the relevant papers. The following
databases were selected based on their coverage of papers: Scopus,
IEEE Explore, and ACM Digital Library.
Search string: In order to search for relevant papers in the three
databases, we used the following keywords: Code review, Modern
code review, Contemporary code review, Patch accept, Commit
review, Pull request, Modern code inspect. We used the keywords in
the search engines using the "OR" operator between each keyword
and the keywords were suffixed with a wildcard - "*". The result of
applying the search strings on the three databases is presented in
Table 1.

3.3 Inclusion-exclusion criteria
The 873 identified papers were reviewed based on a defined set
of inclusion and exclusion criteria. Before we started the review
process, we conducted a pilot study1 on 20 papers to ensure that
all the authors have the same interpretation of the criteria. After
the pilot study, the initial criteria were updated and new criteria
were added. We conducted a second pilot study on 20 additional
papers using the revised criteria. As a result, we achieved higher
consensus in our decision. The final formulation of the criteria is
as follows:

Inclusion criteria.

(1) Papers discussing source code (including test code) review
which is done on regular basis (modern code review done
on every pull request to either accept/reject them).

1In our first pilot study, we noticed a paper on test case review, we refined our inclusion
criteria 1 to add test code review as well. Some papers discussed approaches to support
the modern code review process to make it more efficient, for example, by selecting
a relevant reviewer. Therefore, we added inclusion criteria 2. We decided to exclude
papers that discuss modern code reviews in education. We modified exclusion criteria 1
to emphasize the subject of the investigation; we only include papers where the process
of modern code review is under investigation. We also came across papers that discuss
solutions that might benefit, among other things, the modern code reviews process,
without discussing the implications of the approach on the code review process itself
(e.g., defect prediction). As a result, we excluded such papers and added exclusion
criteria 2.

(2) Papers discussing aspects such as reviewer selection, what
code to review, etc. that support modern code review process.

(3) Papers discussing reviewer and/or developer perspective.
(4) Papers (peer reviewed and grey literature) related to modern

code reviews.
(5) Papers includingmodern code reviews from different aspects.

Examples - Benefits, outcomes, challenges, motivations, qual-
ity, usefulness and so on.

(6) Papers proposing solutions for modern code review.

Exclusion criteria.

(1) Papers not discussing modern code reviews or the subject of
investigation is not the modern code review process.

(2) Papers that do not discuss the implications of a solution on
modern code review process.

(3) Papers that discuss modern code review in education.
(4) Papers not in English and those that do not have full text

available.

3.4 Keywording of abstracts and meta-data
During the screening process, we looked at the abstracts to find
keywords and concepts that represent the contribution of the papers.
We collected the following data from the selected papers:

• Overview of the main contribution - The contribution could
be related to the different aspects of modern code review,
solutions for modern code review improvement or discussion
of modern code review process from reviewer/developer
perspective.

• Author - The authors of the papers.
• Publication type - Conference, journal or book.
• Year - Year of publication.

3.5 Data extraction
In addition to the data extracted during the keywording process, we
will extract research facet based on Wieringa’s [89] classification.
We will extract the information needed to evaluate the rigor and
relevance of the papers. Moreover, the data extracted through the
keywording process will be refined (if necessary) based on full-text
reading.

3.6 Validity threats
It is important to address the validity threats relevant to a mapping
study which are as follows:
Researcher bias in inclusion/exclusion - All three authors were in-
cluded in the screening process. We conducted two pilot studies
to ensure that all authors had the same interpretation of the inclu-
sion/ exclusion criteria. In case of doubts, we discussed the papers
together and revised the criteria to make them more explicit (see
Section 3.3).
Exclusion of relevant papers - We adopted an inclusive approach;
whenever we were in doubt regarding a paper, we included it for
further reading. We marked all excluded papers with the applicable
exclusion criteria to ensure transparency and traceability.
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Table 2: Studied aspects of modern code reviews

Aspects Sub-Aspects No.

Modern
code
review
process

Benefits of modern code review 3
Causes - acceptance/ rejection/ partial ac-
ceptance/ integration delays of pull requests

6

Motivations, expectations, challenges and/
or best practices

4

Characteristics / principles of modern code
review processes

8

Effectiveness and/or efficiency of modern
code review

3

Impact/outcome 35

Contributor
/Reviewer

Perception on modern code review 3
Characteristics such as skills, behaviour
and/or participation

15

Reviewer selection 23
Solution Tool support 39
Source
code

Code characteristics 5
Identification of code to review 15

Review
comments

Classification of comments 3
Assessment of comments 3
Usefulness of the comments 5

Other 7

4 REVIEW RESULTS
In this section, we present our preliminary results, i.e. answers
to R1. In total, we have included 177 papers after screening the
abstracts2.

Table 2 presents the aspects (R1) and the number of papers that
cover the different aspects of modern code reviews (R1.2). The most
investigated topics are "solutions", "impact/outcome", and "reviewer
identification". We elaborate on these topics in Sections 4.1, 4.2
and 4.3 respectively. To investigate how the research topics evolved
over time (R1.1), we first split all the papers by the year in which
theywere published. Figure 1 shows the number of papers published
per year (2005-2018). In the last five years, the number of papers
has increased drastically compared to previous years.

4.1 Papers proposing solution to improve
modern code review process

We have identified 39 solution papers in our mapping study. A few
papers proposed solution for the same purpose: support for collab-
orative modern code review [27, 47, 58, 67], identifying behavior-
modifying changes [1, 22], motivation enhancement [85, 86], use of
static analysis to reduce modern code review effort [3, 68], and the
information needs of modern code review [55]. Table 3 provides a
list of solutions addressing different purposes.

4.2 Impact and/or outcome
The impact of modern code reviews is one of the frequently in-
vestigated topics. The topics investigated are impact on software

2We did not include the 21 papers selected in the pilot study and 46 tentatively accepted
papers in this paper due to the space constraints. We will include them in our extended
paper
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Figure 1: Number of papers published per year
Table 3: Proposed solutions

Purpose Ref.
Improve the skills of newcomer developers [50]
Measure the performance of modern code review and a
method to study linux-style reviews

[34]

Address challenges in modern code review process when
conducted by third-part organization

[32]

Allow developers to explain their code using voice and video [26]
Remove stagnation from modern code review [87]
Analyse how code changes affect test code [52]
Assist mining modern code review data by enabling better
understand of dataset context and identifying abnormalities

[75]

Automatically identify factors that confuse reviewers [18]
Automatically partition composite changes and then facili-
tate modern code reviews

[72]

Cleaner modern code review [41]
Modern code review driven by software quality concerns [81]
Collect modern code review data, generate metrics and
provide ways to access the metrics and data

[10]

Community-based modern code review [98]
Determine how code changes should be ordered to facilitate
modern code reviews (increase cognitive support)

[6]

Estimate modern code review effort based on patch size and
complexity

[45]

Explore the need for a new generation tool of modern code
review tools

[4]

Focus on design quality concerns [82]
Choose pre- or post-commit modern code reviews [5]
Identify problems with modern code review processes [24]
Identify security problems with web-based systems [14]
Improve modern code review process within organization [15]
Peer modern code review [31]
Retrieve modern code review data [23]
Summarize similar changes and detect missing or inconsis-
tent edits

[97]

Support the modern code review of visual programming
languages

[60]

Track modern code review performance [33]
Use of mobile to review source code [21]
Use of social networks for frequent modern code reviews [17]
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Table 4: Relationship between different factors investigated

Impact of Impact on Ref.
Code ownership and re-
viewer expertise

Software quality [78]

Reviewer age and efficiency Software quality [? ]
Reviewers disagreement Software quality [30]
Modern code reviews feed-
back

Motivation to contribute in
OSS projects

[49]

Continuous code review
process

Understandability and col-
lective ownership of the
code base

[9]

Reviewers’ reviews and per-
sonal and social factors

Review quality [38]

Peer-Based Software Re-
views

Team Performance [65]

Socio-Technical modern
code review metrics

Identification of
bugs/warning/vulnerabilities

[44]

Reviewers’ path develop-
ment experience

Identification of
bugs/warning/vulnerabilities

[79]

Feedback Developers’ sentiment [64]

quality [7, 43, 46, 66, 76], human memory [39, 70], chances in in-
ducing bug fixes [7], if-statements and change requests [59, 83, 84],
and the identification of bugs/warning/vulnerabilities [12, 54].

While the impact of modern code reviews on several factors
was investigated as mentioned above, the impact of several factors
on modern code reviews has also been investigated: the impact of
continuous integration [99], developer reputation [11], geograph-
ical location [62], pair programming [51], patch voting [29], and
technical and non-technical factors [? ] on modern code reviews.

The relationship between specific characteristics of modern code
reviews and their respective impact on different aspects of software
development has also been investigated (Table 4).

The impact of non-technical factors (different patch size, patch
priority, component, reviewer load, reviewer activity, and patch
writer experience) was investigated in [8]. The outcome of mod-
ern code reviews in terms on detection of code smells [48] and
defects [13], ability to identify information on design decisions [88]
and design rational [71] and ability to discover misunderstandings
about object oriented principles [80] have also been investigated.

4.3 Reviewer identification
Papers proposing solutions to recommend modern code reviewers
based on different selection criteria are presented in Table 5.

A solution recommending the role (managerial or technical) of
the review was proposed in [92]. The motivation of invited review-
ers was investigated and led to proposing guidelines for inviting
reviewers [63]. The factors that influence reviewer assignment was
investigated in [69]. The use of reviewer recommendation was
investigated in [40] and [56].

The results indicate that, even though reviewer selection is per-
ceived to be relevant and effort saving, it rarely adds additional
value and creates an unbalanced work load.

5 CONCLUSIONS AND NEXT STEPS
In this paper we presented the preliminary results of a systematic
mapping study on code reviews. We have included 177 papers and

Table 5: Reviewer selection criteria

Reviewer selection criteria Ref.
Previously reviewed file path [74, 77]
Reviewers expertise/experience [3, 25, 53, 61]
Reviewer comment networks [95]
Modern code reviewer profiles [20]
Participation in the core team [16]
Reviewers’ activeness [36, 91]
Social network analysis [94]
Text and file location [90]
Topic modelling of historic source code
changes and reviews

[37]

File change history, relationships between
contributors and activity

[35]

Developer expertise, text similarity and so-
cial relations

[93]

Code contributions [96]
Collaborators [42, 53]

extracted data from their abstracts to answer our RQ1 research
question. We identified a steady upward trend regarding publica-
tions related to modern code review starting in 2011. Moreover, the
main aspects addressed by existing research are related to: modern
code review process, reviewer selection, tool support, identification
of code to be reviewed, and analysis of the review comments.

The following are the next steps in our investigation: i) describe
all the aspects of modern code review in Table 2 in detail (e.g., the
techniques used to propose solutions). This will give an overview on
how the solutions have been designed and what are the limitations,
gaps, and potential future works; ii) measure the rigor and relevance
of the included studies. Such analysis can determine the strength
of the results; iii) extract additional data from the papers’ full text
(e.g., research facet) and verify the classification of the aspects that
was extracted from the abstracts; iv) include a detailed discussion
of the results.
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