
Modern code reviews - Preliminary results of a systematic
mapping study

Deepika Badampudi
Blekinge Institute of Technology

Software Engineering Research Lab
Karlskrona, Sweden

deepika.badampudi@bth.se

Ricardo Britto
Ericsson AB

Blekinge Institute of Technology
Software Engineering Research Lab

Karlskrona, Sweden
ricardo.britto@[ericsson.com,bth.se]

Michael Unterkalmsteiner
Blekinge Institute of Technology

Software Engineering Research Lab
Karlskrona, Sweden

michael.unterkalmsteiner@bth.se

ABSTRACT
Reviewing source code is a common practice in a modern and col-
laborative coding environment. In the past few years, the research
on modern code reviews has gained interest among practitioners
and researchers. The objective of our investigation is to observe
the evolution of research related to modern code reviews, identify
research gaps and serve as a basis for future research. We use a
systematic mapping approach to identify and classify 177 research
papers. As preliminary result of our investigation, we present in this
paper a classification scheme of the main contributions of modern
code review research between 2005 and 2018.

CCS CONCEPTS
• Software and its engineering → Software design techniques;

KEYWORDS
Modern code reviews, Source code review, Contemporary code
review

ACM Reference Format:
Deepika Badampudi, Ricardo Britto, and Michael Unterkalmsteiner. 2019.
Modern code reviews - Preliminary results of a systematic mapping study.
In Evaluation and Assessment in Software Engineering (EASE ’19), April
15–17, 2019, Copenhagen, Denmark. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3319008.3319354

1 INTRODUCTION
Code reviews have evolved from being rigorous and intensive to
lightweight and collaborative. Modern code reviews are conducted
to examine the changes made to a software system and to evaluate
its quality. In an open source or inner source project, people other
than the core team can make contributions to a software product.
Hence, reviewing the code before it is accepted and merged is
crucial; not necessarily to identify faults, but rather to improve
solutions, share knowledge and code ownership [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE ’19, April 15–17, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7145-2/19/04. . . $15.00
https://doi.org/10.1145/3319008.3319354

Although modern code review has become a prevalent practice
in the software industry, there is no study that aggregates existing
associated literature and identifies gaps in the body of knowledge.
Therefore, the aim of our investigation is to conduct a mapping
study to aggregate existing literature in this area and identifying
gaps. In this paper, we present the preliminary results of our in-
vestigation. We followed the guidelines by Petersen et al. [57] to
conduct a systematic mapping study. The contributions of our map-
ping study are to provide a classification scheme of modern code
review research, evolution of research topics and identify research
gaps and potential future research areas.

The structure of the paper is as follows: Related work is described
in Section 2. The research design used to conduct systematic map-
ping study is described in Section 3. The preliminary results are
presented in Section 4. Finally, our conclusions and next steps in
our investigation are presented in Section 5.

2 RELATEDWORK
Nargis et. al [19] have published a systematic literature review
protocol, designed at identifying challenges and benefits of modern
code reviews. Our study has a broader scope, i.e. we intend to
map all research on modern code reviews without limitation on
outcome. Earlier reviews target traditional code inspections [73] or
peer assessment outside the software engineering domain [28]. To
the best of our knowledge, no systematic investigation on what we
know about modern code reviews has yet been conducted.

3 RESEARCH DESIGN
The guidelines by Petersen et al. [57] include the following steps:
(1) definition of review questions; (2) conduct search for primary
papers; (3) screening relevant papers; (4) keywording of abstracts;
(5) Data extraction and mapping of studies.

3.1 Goal and review questions
Goal: The main goal of this review is to provide an overview of the
existing research on modern code reviews. The overview consists of
the contributions of the different research articles and the research
approach used in the papers. The purpose of the review is to map
the frequencies of research published in the area of modern code
reviews to observe the evolution of the research topic. Based on
the goal of the review, we have formulated the following review
questions:

R1 What aspects/topics of modern code reviews are investi-
gated?

ar
X

iv
:2

31
0.

01
52

6v
1

 [
cs

.S
E

]
 2

 O
ct

 2
02

3

https://doi.org/10.1145/3319008.3319354
https://doi.org/10.1145/3319008.3319354

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Deepika Badampudi, Ricardo Britto, and Michael Unterkalmsteiner
Table 1: Search results from each database

Database Papers

Scopus 866
IEEE Explore 335
ACM Digital Library - Title 99
ACM Digital Library - Abstract 243
Total 1543
Total after removing duplicates 873

R1.1 How have the aspects/topic changed over time?
R1.2 How many articles cover the different aspects of modern

code reviews?
R2 How were the aspects in R1 investigated?
Note that the preliminary results presented in this paper only

address RQ1.

3.2 Search strategy
We employed the following search strategy:
Databases included: After defining the review questions, the next
step is to select databases to find the relevant papers. The following
databases were selected based on their coverage of papers: Scopus,
IEEE Explore, and ACM Digital Library.
Search string: In order to search for relevant papers in the three
databases, we used the following keywords: Code review, Modern
code review, Contemporary code review, Patch accept, Commit
review, Pull request, Modern code inspect. We used the keywords in
the search engines using the "OR" operator between each keyword
and the keywords were suffixed with a wildcard - "*". The result of
applying the search strings on the three databases is presented in
Table 1.

3.3 Inclusion-exclusion criteria
The 873 identified papers were reviewed based on a defined set
of inclusion and exclusion criteria. Before we started the review
process, we conducted a pilot study1 on 20 papers to ensure that
all the authors have the same interpretation of the criteria. After
the pilot study, the initial criteria were updated and new criteria
were added. We conducted a second pilot study on 20 additional
papers using the revised criteria. As a result, we achieved higher
consensus in our decision. The final formulation of the criteria is
as follows:

Inclusion criteria.

(1) Papers discussing source code (including test code) review
which is done on regular basis (modern code review done
on every pull request to either accept/reject them).

1In our first pilot study, we noticed a paper on test case review, we refined our inclusion
criteria 1 to add test code review as well. Some papers discussed approaches to support
the modern code review process to make it more efficient, for example, by selecting
a relevant reviewer. Therefore, we added inclusion criteria 2. We decided to exclude
papers that discuss modern code reviews in education. We modified exclusion criteria 1
to emphasize the subject of the investigation; we only include papers where the process
of modern code review is under investigation. We also came across papers that discuss
solutions that might benefit, among other things, the modern code reviews process,
without discussing the implications of the approach on the code review process itself
(e.g., defect prediction). As a result, we excluded such papers and added exclusion
criteria 2.

(2) Papers discussing aspects such as reviewer selection, what
code to review, etc. that support modern code review process.

(3) Papers discussing reviewer and/or developer perspective.
(4) Papers (peer reviewed and grey literature) related to modern

code reviews.
(5) Papers includingmodern code reviews from different aspects.

Examples - Benefits, outcomes, challenges, motivations, qual-
ity, usefulness and so on.

(6) Papers proposing solutions for modern code review.

Exclusion criteria.

(1) Papers not discussing modern code reviews or the subject of
investigation is not the modern code review process.

(2) Papers that do not discuss the implications of a solution on
modern code review process.

(3) Papers that discuss modern code review in education.
(4) Papers not in English and those that do not have full text

available.

3.4 Keywording of abstracts and meta-data
During the screening process, we looked at the abstracts to find
keywords and concepts that represent the contribution of the papers.
We collected the following data from the selected papers:

• Overview of the main contribution - The contribution could
be related to the different aspects of modern code review,
solutions for modern code review improvement or discussion
of modern code review process from reviewer/developer
perspective.

• Author - The authors of the papers.
• Publication type - Conference, journal or book.
• Year - Year of publication.

3.5 Data extraction
In addition to the data extracted during the keywording process, we
will extract research facet based on Wieringa’s [89] classification.
We will extract the information needed to evaluate the rigor and
relevance of the papers. Moreover, the data extracted through the
keywording process will be refined (if necessary) based on full-text
reading.

3.6 Validity threats
It is important to address the validity threats relevant to a mapping
study which are as follows:
Researcher bias in inclusion/exclusion - All three authors were in-
cluded in the screening process. We conducted two pilot studies
to ensure that all authors had the same interpretation of the inclu-
sion/ exclusion criteria. In case of doubts, we discussed the papers
together and revised the criteria to make them more explicit (see
Section 3.3).
Exclusion of relevant papers - We adopted an inclusive approach;
whenever we were in doubt regarding a paper, we included it for
further reading. We marked all excluded papers with the applicable
exclusion criteria to ensure transparency and traceability.

Modern code reviews - Preliminary results of a systematic mapping study EASE ’19, April 15–17, 2019, Copenhagen, Denmark
Table 2: Studied aspects of modern code reviews

Aspects Sub-Aspects No.

Modern
code
review
process

Benefits of modern code review 3
Causes - acceptance/ rejection/ partial ac-
ceptance/ integration delays of pull requests

6

Motivations, expectations, challenges and/
or best practices

4

Characteristics / principles of modern code
review processes

8

Effectiveness and/or efficiency of modern
code review

3

Impact/outcome 35

Contributor
/Reviewer

Perception on modern code review 3
Characteristics such as skills, behaviour
and/or participation

15

Reviewer selection 23
Solution Tool support 39
Source
code

Code characteristics 5
Identification of code to review 15

Review
comments

Classification of comments 3
Assessment of comments 3
Usefulness of the comments 5

Other 7

4 REVIEW RESULTS
In this section, we present our preliminary results, i.e. answers
to R1. In total, we have included 177 papers after screening the
abstracts2.

Table 2 presents the aspects (R1) and the number of papers that
cover the different aspects of modern code reviews (R1.2). The most
investigated topics are "solutions", "impact/outcome", and "reviewer
identification". We elaborate on these topics in Sections 4.1, 4.2
and 4.3 respectively. To investigate how the research topics evolved
over time (R1.1), we first split all the papers by the year in which
theywere published. Figure 1 shows the number of papers published
per year (2005-2018). In the last five years, the number of papers
has increased drastically compared to previous years.

4.1 Papers proposing solution to improve
modern code review process

We have identified 39 solution papers in our mapping study. A few
papers proposed solution for the same purpose: support for collab-
orative modern code review [27, 47, 58, 67], identifying behavior-
modifying changes [1, 22], motivation enhancement [85, 86], use of
static analysis to reduce modern code review effort [3, 68], and the
information needs of modern code review [55]. Table 3 provides a
list of solutions addressing different purposes.

4.2 Impact and/or outcome
The impact of modern code reviews is one of the frequently in-
vestigated topics. The topics investigated are impact on software

2We did not include the 21 papers selected in the pilot study and 46 tentatively accepted
papers in this paper due to the space constraints. We will include them in our extended
paper

0

2

4

6

8

10

12

14

2005 2007 2009 2011 2013 2015 2017

Topics addressed over time

Process Contributor or Reviewer Solution Source code Comments Other

Figure 1: Number of papers published per year
Table 3: Proposed solutions

Purpose Ref.
Improve the skills of newcomer developers [50]
Measure the performance of modern code review and a
method to study linux-style reviews

[34]

Address challenges in modern code review process when
conducted by third-part organization

[32]

Allow developers to explain their code using voice and video [26]
Remove stagnation from modern code review [87]
Analyse how code changes affect test code [52]
Assist mining modern code review data by enabling better
understand of dataset context and identifying abnormalities

[75]

Automatically identify factors that confuse reviewers [18]
Automatically partition composite changes and then facili-
tate modern code reviews

[72]

Cleaner modern code review [41]
Modern code review driven by software quality concerns [81]
Collect modern code review data, generate metrics and
provide ways to access the metrics and data

[10]

Community-based modern code review [98]
Determine how code changes should be ordered to facilitate
modern code reviews (increase cognitive support)

[6]

Estimate modern code review effort based on patch size and
complexity

[45]

Explore the need for a new generation tool of modern code
review tools

[4]

Focus on design quality concerns [82]
Choose pre- or post-commit modern code reviews [5]
Identify problems with modern code review processes [24]
Identify security problems with web-based systems [14]
Improve modern code review process within organization [15]
Peer modern code review [31]
Retrieve modern code review data [23]
Summarize similar changes and detect missing or inconsis-
tent edits

[97]

Support the modern code review of visual programming
languages

[60]

Track modern code review performance [33]
Use of mobile to review source code [21]
Use of social networks for frequent modern code reviews [17]

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Deepika Badampudi, Ricardo Britto, and Michael Unterkalmsteiner
Table 4: Relationship between different factors investigated

Impact of Impact on Ref.
Code ownership and re-
viewer expertise

Software quality [78]

Reviewer age and efficiency Software quality [?]
Reviewers disagreement Software quality [30]
Modern code reviews feed-
back

Motivation to contribute in
OSS projects

[49]

Continuous code review
process

Understandability and col-
lective ownership of the
code base

[9]

Reviewers’ reviews and per-
sonal and social factors

Review quality [38]

Peer-Based Software Re-
views

Team Performance [65]

Socio-Technical modern
code review metrics

Identification of
bugs/warning/vulnerabilities

[44]

Reviewers’ path develop-
ment experience

Identification of
bugs/warning/vulnerabilities

[79]

Feedback Developers’ sentiment [64]

quality [7, 43, 46, 66, 76], human memory [39, 70], chances in in-
ducing bug fixes [7], if-statements and change requests [59, 83, 84],
and the identification of bugs/warning/vulnerabilities [12, 54].

While the impact of modern code reviews on several factors
was investigated as mentioned above, the impact of several factors
on modern code reviews has also been investigated: the impact of
continuous integration [99], developer reputation [11], geograph-
ical location [62], pair programming [51], patch voting [29], and
technical and non-technical factors [?] on modern code reviews.

The relationship between specific characteristics of modern code
reviews and their respective impact on different aspects of software
development has also been investigated (Table 4).

The impact of non-technical factors (different patch size, patch
priority, component, reviewer load, reviewer activity, and patch
writer experience) was investigated in [8]. The outcome of mod-
ern code reviews in terms on detection of code smells [48] and
defects [13], ability to identify information on design decisions [88]
and design rational [71] and ability to discover misunderstandings
about object oriented principles [80] have also been investigated.

4.3 Reviewer identification
Papers proposing solutions to recommend modern code reviewers
based on different selection criteria are presented in Table 5.

A solution recommending the role (managerial or technical) of
the review was proposed in [92]. The motivation of invited review-
ers was investigated and led to proposing guidelines for inviting
reviewers [63]. The factors that influence reviewer assignment was
investigated in [69]. The use of reviewer recommendation was
investigated in [40] and [56].

The results indicate that, even though reviewer selection is per-
ceived to be relevant and effort saving, it rarely adds additional
value and creates an unbalanced work load.

5 CONCLUSIONS AND NEXT STEPS
In this paper we presented the preliminary results of a systematic
mapping study on code reviews. We have included 177 papers and

Table 5: Reviewer selection criteria

Reviewer selection criteria Ref.
Previously reviewed file path [74, 77]
Reviewers expertise/experience [3, 25, 53, 61]
Reviewer comment networks [95]
Modern code reviewer profiles [20]
Participation in the core team [16]
Reviewers’ activeness [36, 91]
Social network analysis [94]
Text and file location [90]
Topic modelling of historic source code
changes and reviews

[37]

File change history, relationships between
contributors and activity

[35]

Developer expertise, text similarity and so-
cial relations

[93]

Code contributions [96]
Collaborators [42, 53]

extracted data from their abstracts to answer our RQ1 research
question. We identified a steady upward trend regarding publica-
tions related to modern code review starting in 2011. Moreover, the
main aspects addressed by existing research are related to: modern
code review process, reviewer selection, tool support, identification
of code to be reviewed, and analysis of the review comments.

The following are the next steps in our investigation: i) describe
all the aspects of modern code review in Table 2 in detail (e.g., the
techniques used to propose solutions). This will give an overview on
how the solutions have been designed and what are the limitations,
gaps, and potential future works; ii) measure the rigor and relevance
of the included studies. Such analysis can determine the strength
of the results; iii) extract additional data from the papers’ full text
(e.g., research facet) and verify the classification of the aspects that
was extracted from the abstracts; iv) include a detailed discussion
of the results.

REFERENCES
[1] E. L. Alves, M. Song, and M. Kim. Refdistiller: a refactoring aware code review

tool for inspecting manual refactoring edits. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
751–754. ACM, 2014.

[2] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code
review. In Proceedings International Conference on Software Engineering, ICSE,
pages 712–721. IEEE, 2013. ISBN 978-1-4673-3076-3.

[3] V. Balachandran. Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation. In Pro-
ceedings International Conference on Software Engineering, pages 931–940. IEEE
Press, 2013.

[4] T. Baum and K. Schneider. On the need for a new generation of code review tools.
In International Conference on Product-Focused Software Process Improvement,
pages 301–308. Springer, 2016.

[5] T. Baum, F. Kortum, K. Schneider, A. Brack, and J. Schauder. Comparing pre-
commit reviews and post-commit reviews using process simulation. Journal of
Software: Evolution and Process, 29(11):e1865, 2017.

[6] T. Baum, K. Schneider, and A. Bacchelli. On the optimal order of reading source
code changes for review. In Software Maintenance and Evolution (ICSME), 2017
IEEE International Conference on, pages 329–340. IEEE, 2017.

[7] G. Bavota and B. Russo. Four eyes are better than two: On the impact of code
reviews on software quality. In International Conference on Software Maintenance
and Evolution (ICSME), pages 81–90. IEEE, 2015.

[8] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey. The influence of
non-technical factors on code review. In 20th Working Conference on Reverse
Engineering (WCRE), pages 122–131. IEEE, 2013.

[9] M. Bernhart and T. Grechenig. On the understanding of programs with continu-
ous code reviews. In 21st International Conference on Program Comprehension

Modern code reviews - Preliminary results of a systematic mapping study EASE ’19, April 15–17, 2019, Copenhagen, Denmark

(ICPC), pages 192–198. IEEE, 2013.
[10] C. Bird, T. Carnahan, andM. Greiler. Lessons learned from building and deploying

a code review analytics platform. In Proceedings of the 12th Working Conference
on Mining Software Repositories, pages 191–201. IEEE Press, 2015.

[11] A. Bosu and J. C. Carver. Impact of developer reputation on code review out-
comes in oss projects: an empirical investigation. In Proceedings 8th international
symposium on empirical software engineering and measurement, page 33. ACM,
2014.

[12] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni. Identifying the charac-
teristics of vulnerable code changes: An empirical study. In Proceedings 22nd
International Symposium on Foundations of Software Engineering, pages 257–268.
ACM, 2014.

[13] R. Britto, D. Smite, and L.-O. Damm. Software architects in large-scale distributed
projects: An ericsson case study. IEEE Software, 33(6):48–55, 2016.

[14] C. H. Cap and B. Leiding. Ensuring resource trust and integrity in web browsers
using blockchain technology. In International Conference on Advanced Information
Systems Engineering, pages 115–125. Springer, 2018.

[15] J. Czerwonka, M. Greiler, C. Bird, L. Panjer, and T. Coatta. Codeflow: Improving
the code review process at microsoft. Queue, 16(5):20, 2018.

[16] M. L. de Lima Júnior, D. M. Soares, A. Plastino, and L. Murta. Developers assign-
ment for analyzing pull requests. In Proceedings 30th Annual ACM Symposium
on Applied Computing, pages 1567–1572. ACM, 2015.

[17] T. Dürschmid. Continuous code reviews: A social coding tool for code reviews
inside the ide. In Companion to the first International Conference on the Art, Science
and Engineering of Programming, page 41. ACM, 2017.

[18] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. Confusion detection in code
reviews. In Software Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on, pages 549–553. IEEE, 2017.

[19] N. F., S. C., and S. N. Challenges and benefits of modern code review-systematic
literature review protocol. In International Conference on Smart Computing and
Electronic Enterprise (ICSCEE), pages 1–5. IEEE, 2018.

[20] M. Fejzer, P. Przymus, and K. Stencel. Profile based recommendation of code
reviewers. Journal of Intelligent Information Systems, 50(3):597–619, 2018.

[21] W. Frącz and J. Dajda. Experimental validation of source code reviews on mobile
devices. In International Conference on Computational Science and Its Applications,
pages 533–547. Springer, 2017.

[22] X. Ge, S. Sarkar, and E. Murphy-Hill. Towards refactoring-aware code review. In
Proceedings of the 7th International Workshop on Cooperative and Human Aspects
of Software Engineering, pages 99–102. ACM, 2014.

[23] J. M. Gonzalez-Barahona, D. Izquierdo-Cortazar, G. Robles, and A. del Castillo.
Analyzing gerrit code review parameters with bicho. Electronic Communications
of the EASST, 2014.

[24] J. M. González-Barahona, D. Izquierdo-Cortázar, G. Robles, and M. Gallegos. Code
review analytics:Webkit as case study. In L. Corral, A. Sillitti, G. Succi, J. Vlasenko,
and A. I. Wasserman, editors, Open Source Software: Mobile Open Source Tech-
nologies, pages 1–10, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN
978-3-642-55128-4.

[25] C. Hannebauer, M. Patalas, S. Stünkel, and V. Gruhn. Automatically recom-
mending code reviewers based on their expertise: An empirical comparison. In
Proceedings 31st International Conference on Automated Software Engineering,
pages 99–110. ACM, 2016.

[26] Y. Hao, G. Li, L. Mou, L. Zhang, and Z. Jin. Mct: A tool for commenting programs
by multimedia comments. In Proceedings of the 2013 International Conference on
Software Engineering, pages 1339–1342. IEEE Press, 2013.

[27] A. Z. Henley, K. Muçlu, M. Christakis, S. D. Fleming, and C. Bird. Cfar: A tool
to increase communication, productivity, and review quality in collaborative
code reviews. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, page 157. ACM, 2018.

[28] E. M. Hernandes, A. Belgamo, and S. Fabbri. An overview of experimental
studies on software inspection process. In International Conference on Enterprise
Information Systems, pages 118–134. Springer, 2013.

[29] T. Hirao, A. Ihara, and K.-i. Matsumoto. Pilot study of collective decision-making
in the code review process. In Proceedings 25th Annual International Conference
on Computer Science and Software Engineering, pages 248–251. IBM, 2015.

[30] T. Hirao, A. Ihara, Y. Ueda, P. Phannachitta, and K.-i. Matsumoto. The impact
of a low level of agreement among reviewers in a code review process. In IFIP
International Conference on Open Source Systems, pages 97–110. Springer, 2016.

[31] G. J. Holzmann. Scrub: a tool for code reviews. Innovations in Systems and
Software Engineering, 6(4):311–318, 2010.

[32] N. Ishida, T. Ishio, Y. Nakamura, S. Kawaguchi, T. Kanda, and K. Inoue. Visualiza-
tion of inter-module dataflow through global variables for source code review.
IEICE TRANSACTIONS on Information and Systems, 101(12):3238–3241, 2018.

[33] D. Izquierdo, J. Gonzalez-Barahona, L. Kurth, and G. Robles. Software develop-
ment analytics for xen: Why and how. IEEE Software, 2018.

[34] D. Izquierdo-Cortazar, N. Sekitoleko, J. M. Gonzalez-Barahona, and L. Kurth.
Using metrics to track code review performance. In Proceedings of the 21st
International Conference on Evaluation and Assessment in Software Engineering,
pages 214–223. ACM, 2017.

[35] J. Jiang, J.-H. He, and X.-Y. Chen. Coredevrec: Automatic core member recommen-
dation for contribution evaluation. Journal of Computer Science and Technology,
30(5):998–1016, 2015.

[36] J. Jiang, Y. Yang, J. He, X. Blanc, and L. Zhang. Who should comment on this pull
request? analyzing attributes for more accurate commenter recommendation in
pull-based development. Information and Software Technology, 84:48–62, 2017.

[37] J. Kim and E. Lee. Understanding review expertise of developers: A reviewer
recommendation approach based on latent dirichlet allocation. Symmetry, 10(4):
114, 2018.

[38] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey. Investigat-
ing code review quality: Do people and participation matter? In International
Conference on Software Maintenance and Evolution (ICSME), pages 111–120. IEEE,
2015.

[39] A. G. Koru, A. A. Ozok, and A. F. Norcio. The effect of human memory organiza-
tion on code reviews under different single and pair code reviewing scenarios. In
Proceedings of the 2005 Workshop on Human and Social Factors of Software Engi-
neering, HSSE ’05, pages 1–3, New York, NY, USA, 2005. ACM. ISBN 1-59593-120-1.
doi: 10.1145/1082983.1083114.

[40] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and A. Bacchelli. Does reviewer
recommendation help developers? IEEE Transactions on Software Engineering,
2018.

[41] H. Lal and G. Pahwa. Code review analysis of software system using machine
learning techniques. In Intelligent Systems and Control (ISCO), 2017 11th Interna-
tional Conference on, pages 8–13. IEEE, 2017.

[42] Z. Liao, Y. Li, D. He, J. Wu, Y. Zhang, and X. Fan. Topic-based integrator matching
for pull request. In Global Communications Conference, pages 1–6. IEEE, 2017.

[43] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study of the
impact of modern code review practices on software quality. Empirical Software
Engineering, 21(5):2146–2189, 2016.

[44] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D. Neuberger, K. Whitlock,
C. Ketant, and K. Davis. An empirical investigation of socio-technical code review
metrics and security vulnerabilities. In Proceedings 6th International Workshop
on Social Software Engineering, pages 37–44. ACM, 2014.

[45] R. Mishra and A. Sureka. Mining peer code review system for computing effort
and contribution metrics for patch reviewers. In 2014 IEEE 4th Workshop on
Mining Unstructured Data (MUD), pages 11–15. IEEE, 2014.

[46] R. Morales, S. McIntosh, and F. Khomh. Do code review practices impact design
quality? a case study of the qt, vtk, and itk projects. In 22nd International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
171–180. IEEE, 2015.

[47] S. Müller, M. Würsch, T. Fritz, and H. C. Gall. An approach for collaborative code
reviews using multi-touch technology. In Proceedings of the 5th International
Workshop on Co-operative and Human Aspects of Software Engineering, pages
93–99. IEEE Press, 2012.

[48] A. Nanthaamornphong and A. Chaisutanon. Empirical evaluation of code smells
in open source projects: preliminary results. In Proceedings 1st International
Workshop on Software Refactoring, pages 5–8. ACM, 2016.

[49] T. Norikane, A. Ihara, and K. Matsumoto. Do review feedbacks influence to a
contributor’s time spent on oss projects? In International Conference on Big Data,
Cloud Computing, Data Science & Engineering (BCD), pages 109–113. IEEE, 2018.

[50] S. Oeda and H. Kosaku. Development of a check sheet for code-review towards
improvement of skill level of novice programmers. Procedia Computer Science,
126:841–849, 2018.

[51] R. Oliveira, B. Estácio, A. Garcia, S. Marczak, R. Prikladnicki, M. Kalinowski, and
C. Lucena. Identifying code smells with collaborative practices: A controlled
experiment. In Brazilian Symposium on Software Components, Architectures and
Reuse (SBCARS), pages 61–70. IEEE, 2016.

[52] S. Oosterwaal, A. v. Deursen, R. Coelho, A. A. Sawant, and A. Bacchelli. Visualiz-
ing code and coverage changes for code review. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 1038–1041. ACM, 2016.

[53] A. Ouni, R. G. Kula, and K. Inoue. Search-based peer reviewers recommendation
in modern code review. In Proceedings International Conference on Software
Maintenance and Evolution (ICSME), pages 367–377. IEEE, 2016.

[54] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol. Would static analysis
tools help developers with code reviews? In 22nd International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 161–170. IEEE,
2015.

[55] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli. Information
needs in contemporary code review. Proceedings of the ACM on Human-Computer
Interaction, 2(CSCW):135, 2018.

[56] Z. Peng, J. Yoo, M. Xia, S. Kim, and X. Ma. Exploring how software developers
work with mention bot in github. In Proceedings 6th International Symposium of
Chinese CHI, pages 152–155. ACM, 2018.

[57] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software
Technology, 64:1 – 18, 2015.

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Deepika Badampudi, Ricardo Britto, and Michael Unterkalmsteiner

[58] F. Raab. Collaborative code reviews on interactive surfaces. In Proceedings of the
29th Annual European Conference on Cognitive Ergonomics, pages 263–264. ACM,
2011.

[59] J. Raghunathan, L. Liu, and H. H. Kagdi. Feedback topics in modern code review:
Automatic identification and impact on changes. 2018.

[60] G. Ragusa and H. Henriques. Code review tool for visual programming languages.
In 2018 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 287–288. IEEE, 2018.

[61] M. M. Rahman, C. K. Roy, and J. A. Collins. Correct: code reviewer recommenda-
tion in github based on cross-project and technology experience. In Proceedings
International Conference on Software Engineering Companion (ICSE-C), pages
222–231. IEEE, 2016.

[62] A. Rastogi. Do biases related to geographical location influence work-related
decisions in github? In Proceedings 38th International Conference on Software
Engineering Companion, pages 665–667. ACM, 2016.

[63] S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto. The impact of
human factors on the participation decision of reviewers in modern code review.
Empirical Software Engineering, pages 1–44, 2018.

[64] M. Santos, J. Caetano, J. Oliveira, andH. T. Marques-Neto. Analyzing the impact of
feedback in github on the software developer’s mood. In International Conference
on Software Engineering & Knowledge Engineering. ACM, 2018.

[65] C. T. Schmidt, K. Spohrer, T. Kude, and A. Heinzl. The impact of peer-based
software reviews on team performance: The role of feedback and transactive
memory systems. 2012.

[66] J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and N. Ubayashi. A study
of the quality-impacting practices of modern code review at sony mobile. In
International Conference on Software Engineering Companion (ICSE-C), pages
212–221. IEEE, 2016.

[67] M. Shochat, O. Raz, and E. Farchi. Seecode–a code review plug-in for eclipse. In
Haifa Verification Conference, pages 205–209. Springer, 2008.

[68] D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson. Evaluating how static analysis
tools can reduce code review effort. In Visual Languages and Human-Centric
Computing (VL/HCC), 2017 IEEE Symposium on, pages 101–105. IEEE, 2017.

[69] D. M. Soares, M. L. de Lima Júnior, A. Plastino, and L. Murta. What factors
influence the reviewer assignment to pull requests? Information and Software
Technology, 98:32 – 43, 2018.

[70] K. Spohrer, T. Kude, A. Heinzl, and C. T. Schmidt. Peer-based quality assurance
in information systems and development: A transactive memory perspective. In
Proceedings 34th International Conference on Information Systems. AISeL, 2013.

[71] A. Sutherland and G. Venolia. Can peer code reviews be exploited for later
information needs? In 31st International Conference on Software Engineering-
Companion, pages 259–262. IEEE, 2009.

[72] Y. Tao and S. Kim. Partitioning composite code changes to facilitate code review.
In Proceedings of the 12th Working Conference on Mining Software Repositories,
pages 180–190. IEEE Press, 2015.

[73] T. Tenório, I. I. Bittencourt, S. Isotani, and A. P. Silva. Does peer assessment
in on-line learning environments work? a systematic review of the literature.
Computers in Human Behavior, 64:94–107, 2016.

[74] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida. Improving
code review effectiveness through reviewer recommendations. In Proceedings 7th
InternationalWorkshop on Cooperative and HumanAspects of Software Engineering,
pages 119–122. ACM, 2014.

[75] P. Thongtanunam, X. Yang, N. Yoshida, R. G. Kula, A. E. C. Cruz, K. Fujiwara, and
H. Iida. Reda: A web-based visualization tool for analyzing modern code review
dataset. In Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on, pages 605–608. IEEE, 2014.

[76] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Investigating code
review practices in defective files: An empirical study of the qt system. In
Proceedings 12th Working Conference on Mining Software Repositories, pages 168–
179. IEEE, 2015.

[77] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i.
Matsumoto. Who should review my code? a file location-based code-reviewer
recommendation approach for modern code review. In Proceedings International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
141–150. IEEE, 2015.

[78] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Revisiting code owner-
ship and its relationship with software quality in the scope of modern code review.
In Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 1039–1050, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3900-1.
doi: 10.1145/2884781.2884852.

[79] K. Toda, Y. Kamei, K. Hamasaki, and N. Yoshida. Effect of review and patch
development experience in the chromium project’s patch review time. Computer
Software, 32(1):227–233, 2015.

[80] S. A. Turner, R. Quintana-Castillo, M. A. Pérez-Quiñones, and S. H. Edwards.
Misunderstandings about object-oriented design: experiences using code reviews.
In ACM SIGCSE Bulletin, volume 40, pages 97–101. ACM, 2008.

[81] Y. Tymchuk. Treating software quality as a first-class entity. In 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pages

594–597. IEEE, 2015.
[82] Y. Tymchuk, A. Mocci, and M. Lanza. Vidi: The visual design inspector. In 37th

IEEE International Conference on Software Engineering (ICSE), volume 2, pages
653–656. IEEE, 2015.

[83] Y. Ueda, A. Ihara, T. Hirao, T. Ishio, and K. Matsumoto. How is if statement fixed
through code review? a case study of qt project. In International Symposium on
Software Reliability Engineering Workshops (ISSREW), pages 207–213. IEEE, 2017.

[84] Y. Ueda, A. Ihara, T. Ishio, T. Hirao, and K. Matsumoto. How are if-conditional
statements fixed through peer codereview? IEICE TRANSACTIONS on Information
and Systems, 101(11):2720–2729, 2018.

[85] N. Unkelos-Shpigel and I. Hadar. Gamifying software engineering tasks based on
cognitive principles: The case of code review. In 8th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), pages 119–120.
IEEE, 2015.

[86] N. Unkelos-Shpigel and I. Hadar. Lets make it fun: Gamifying and formalizing
code review. In Proceedings of the 11th International Conference on Evaluation of
Novel Software Approaches to Software Engineering, pages 391–395. SCITEPRESS-
Science and Technology Publications, Lda, 2016.

[87] G. Viviani and G. C. Murphy. Removing stagnation from modern code review.
In Companion Proceedings of the 2016 ACM SIGPLAN International Conference
on Systems, Programming, Languages and Applications: Software for Humanity,
pages 43–44. ACM, 2016.

[88] G. Viviani, C. Janik-Jones, M. Famelis, andG. C.Murphy. The structure of software
design discussions. In Proceedings 11th International Workshop on Cooperative
and Human Aspects of Software Engineering, CHASE ’18, pages 104–107. ACM,
2018. ISBN 978-1-4503-5725-8. doi: 10.1145/3195836.3195841.

[89] R. Wieringa, N. Maiden, N. Mead, and C. Rolland. Requirements engineering
paper classification and evaluation criteria: A proposal and a discussion. Requir.
Eng., 11(1):102–107, Dec. 2005. ISSN 0947-3602.

[90] X. Xia, D. Lo, X. Wang, and X. Yang. Who should review this change?: Putting
text and file location analyses together for more accurate recommendations.
In Proceedings International Conference on Software Maintenance and Evolution
(ICSME), pages 261–270. IEEE, 2015.

[91] C. Yang, X. Zhang, L. Zeng, Q. Fan, G. Yin, and H. Wang. An empirical study of
reviewer recommendation in pull-based development model. In Proceedings 9th
Asia-Pacific Symposium on Internetware, page 14. ACM, 2017.

[92] C. Yang, X.-h. Zhang, L.-b. Zeng, Q. Fan, T. Wang, Y. Yu, G. Yin, and H.-m.
Wang. Revrec: A two-layer reviewer recommendation algorithm in pull-based
development model. Journal of Central South University, 25(5):1129–1143, 2018.

[93] H. Ying, L. Chen, T. Liang, and J. Wu. Earec: leveraging expertise and authority for
pull-request reviewer recommendation in github. In Proceedings 3rd International
Workshop on CrowdSourcing in Software Engineering, pages 29–35. ACM, 2016.

[94] Y. Yu, H. Wang, G. Yin, and C. X. Ling. Reviewer recommender of pull-requests
in github. In Proceedings International Conference on Software Maintenance and
Evolution (ICSME), pages 609–612. IEEE, 2014.

[95] Y. Yu, H. Wang, G. Yin, and C. X. Ling. Who should review this pull-request:
Reviewer recommendation to expedite crowd collaboration. In Proceedings 21st
Asia-Pacific Software Engineering Conference (APSEC), volume 1, pages 335–342.
IEEE, 2014.

[96] M. B. Zanjani, H. Kagdi, and C. Bird. Automatically recommending peer reviewers
in modern code review. IEEE Transactions on Software Engineering, 42(6):530–543,
2016.

[97] T. Zhang, M. Song, and M. Kim. Critics: An interactive code review tool for
searching and inspecting systematic changes. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
755–758. ACM, 2014.

[98] X. Zhang, B. Dorn, W. Jester, J. Van Pelt, G. Gaeta, and D. Firpo. Design and
implementation of java sniper: A community-based software code review web
solution. In 2011 44th Hawaii International Conference on System Sciences, pages
1–10. IEEE, 2011.

[99] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact of
continuous integration on other software development practices: a large-scale
empirical study. In Proceedings 32nd International Conference on Automated
Software Engineering, pages 60–71. IEEE, 2017.

	Abstract
	1 Introduction
	2 Related work
	3 Research design
	3.1 Goal and review questions
	3.2 Search strategy
	3.3 Inclusion-exclusion criteria
	3.4 Keywording of abstracts and meta-data
	3.5 Data extraction
	3.6 Validity threats

	4 Review results
	4.1 Papers proposing solution to improve modern code review process
	4.2 Impact and/or outcome
	4.3 Reviewer identification

	5 Conclusions and next steps
	References

