
Interactive Tuning of Robot Program Parameters
via Expected Divergence Maximization

Mattia Racca
Aalto University
Espoo, Finland

mattia.racca@aalto.fi

Ville Kyrki
Aalto University
Espoo, Finland

ville.kyrki@aalto.fi

Maya Cakmak
University of Washington
Seattle, Washington, USA

mcakmak@cs.washington.edu

ABSTRACT
Enabling diverse users to program robots for different applications
is critical for robots to be widely adopted. Most of the new col-
laborative robot manipulators come with intuitive programming
interfaces that allow novice users to compose robot programs and
tune their parameters. However, parameters like motion speeds or
exerted forces cannot be easily demonstrated and often require man-
ual tuning, resulting in a tedious trial-and-error process. To address
this problem, we formulate tuning of one-dimensional parameters
as an Active Learning problem where the learner iteratively refines
its estimate of the feasible range of parameter values, by selecting
informative queries. By executing the parametrized actions, the
learner gathers the user’s feedback, in the form of directional an-
swers (“higher,” “lower,” or “fine”), and integrates it in the estimate.
We propose an Active Learning approach based on Expected Di-
vergence Maximization for this setting and compare it against two
baselines with synthetic data. We further compare the approaches
on a real-robot dataset obtained from programs written with a
simple Domain-Specific Language for a robot arm and manually
tuned by expert users (N=8) to perform four manipulation tasks. We
evaluate the effectiveness and usability of our interactive tuning ap-
proach against manual tuning with a user study where novice users
(N=8) tuned parameters of a human-robot hand-over program.

CCS CONCEPTS
• Computing methodologies → Active learning settings; •
Human-centered computing → User centered design; • Com-
puter systems organization → External interfaces for robotics.

KEYWORDS
Active Learning; End-User Programming; Human-Robot Interaction

ACM Reference Format:
Mattia Racca, Ville Kyrki, and Maya Cakmak. 2020. Interactive Tuning
of Robot Program Parameters via Expected Divergence Maximization. In
Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot
Interaction (HRI ’20), March 23–26, 2020, Cambridge, United Kingdom. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3319502.3374784

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HRI ’20, March 23–26, 2020, Cambridge, United Kingdom
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6746-2/20/03. . . $15.00
https://doi.org/10.1145/3319502.3374784

1 INTRODUCTION
Programmability is the key advantage of robots over traditional
manufacturing [44]. However, for robots to be widely adopted
across industries and beyond structured manufacturing environ-
ments, it is critical for them to be programmable by a wide range
of users with as little effort as possible. Growing research on End
User Programming (EUP) for robotics aims to address this problem
with novel user interfaces, programming languages, and techniques
to aid or fully automate robot programming. Many of these ap-
proaches have been adopted by industrial robotics companies, such
as Franka Emika or Rethink Robotics, whose robots come with
intuitive programming interfaces.

Prior efforts have led to great solutions for end users to com-
pose programs by combining discrete actions (e.g., [36, 47, 65, 66]),
but tuning the parameters of those actions remains a tedious task.
For example, consider a retail store robot that can be programmed
to stock different items on shelves. Existing tools allow for the
user to physically demonstrate this task or create programs from
a sequence of actions like move arm to target or close gripper via
visual programming interfaces. However, the parameters of these
actions, such as how fast the arm should move or how much force
the gripper should apply, cannot be easily demonstrated and need
to be manually specified by the user. Specifying such parameters
often requires the user to adopt a trial-and-error strategy, executing
each action or the whole program a number of times while varying
parameter values. This iterative and incremental process is needed
for two reasons: first, to understand the impact of the parameter
on the action execution, since a change of 0.01 meters per second
or 1 Newton might not be instinctively meaningful, and second,
to actually find an acceptable parameter value that satisfies the
task’s requirements. Moreover, finding a single parameter value
that works is often not sufficient. Rather, users may want to identify
a range of acceptable parameters to maintain flexibility in the pro-
gram, in order to e.g., let the robot autonomously select an optimal
value within the range based on the current external conditions.

Our work aims to address this challenge of tedious manual pa-
rameter tuning for robot programs. To this end, we propose an
interactive tuning approach whereby the robot iteratively proposes
parameter values and gathers the user’s feedback to find a range
of feasible values for one dimensional continuous parameters. We
formulate this as an Active Learning (AL) [61] problem in which
the learner iteratively refines its estimate of the feasible range as
quickly and economically as possible by selecting informative query
values, executing the parametrized actions with those values, and
integrating the user feedback, in the form of directional answers
(“higher”, “lower”, or “fine”), in its estimate. We adopt a Bayesian

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

629

https://doi.org/10.1145/3319502.3374784
https://doi.org/10.1145/3319502.3374784
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3319502.3374784&domain=pdf&date_stamp=2020-03-09

approach for this setting combined with Expected Divergence Max-
imization (an expected error reduction technique [58]) and compare
it against two baseline algorithms both on synthetic and real-robot
datasets. The real-robot dataset is obtained from expert program-
mers (N=8) using a simple Domain-Specific Language (DSL) for a
robot arm (Franka Emika’s Panda), manually tuning the program’s
parameters to perform four manipulation tasks. Finally, we evaluate
the effectiveness and usability of our interactive tuning approach
against manual tuning through a user study where novice users
(N=8) tuned a hand-over program specified in our DSL.

2 RELATEDWORK
Our work shares the goal of EUP for robots, which is to enable
people with little or no programming background to be able to
program robots with as little effort as possible. Work in this area
has produced tools that allow novice users to combine robot primi-
tives or actions to create complex programs, with input modalities
ranging from visual programming [8, 31, 35, 36, 45, 46, 64, 65],
kinesthetic teaching [1, 2, 60, 66], and natural language commands
[13, 26, 33]. The robot actions available to compose programs are
often parametrized, with number and complexity of the parameters
depending on the level of abstraction adopted in the action design.
While for certain parameters intuitive ways of specifying them have
been proposed (e.g., specifying the goal pose of a robot motion with
kinesthetic teaching), other parameters have to be either manually
tuned via Graphical User Interfaces (GUIs) or simply set to default
values. Our work addresses the problem of efficiently tuning param-
eters that are hard to demonstrate and therefore require the user to
manually specify and refine them through trial-and-error. Along
the same line, recent work in robot EUP aims to partially automate
robot programming through program verification [37, 51, 56] and
synthesis [39, 40, 50] to reduce the burden on the programmer.

One way that low-level motor skills can be programmed on a ro-
bot is through Learning from Demonstration (LfD) [5]. In contrast to
high-level end-user programs, skills created through LfD are often
not intended to be comprehended, modified or re-parametrized by
end-users. Instead, LfD techniques require multiple demonstrations
of the skill to learn a flexible model that works in different envi-
ronments, either by modelling uncertainty over the demonstrated
trajectories (e.g., [20, 21]) or by finding invariants in the demon-
strations (e.g., [27, 48]). Similarly, our tuning framework addresses
the problem of finding feasible ranges of parameters to allow for
flexible programs, rather than simply finding a single parameter
value that works. However, unlike LfD, our approach does not re-
quire the user to give multiple demonstrations but to provide sparse
feedback on informative action executions.

Themethod developed in this work is an example of Active Learn-
ing (AL)–a machine learning paradigm in which the learner actively
chooses its training data [4, 23, 61]. While passive supervised learn-
ing uses previously labeled data, active learners obtain labels from
the user only for selected unlabeled samples. By selecting informa-
tive queries, active learners can reach desired performance levels
more efficiently. This is particularly important for problems where
collecting labels is costly, as in robotics and HRI where AL has
seen growing interest. AL techniques have been used to economi-
cally learn robot policies [21, 22, 55, 62] and task representations

[25, 34, 41, 53], to guide efficient information gathering [17], and
to learn reward functions by querying the user with different type
of queries [9, 10, 24, 59]. Another line of research has instead con-
centrated on the interactive nature of AL, with work investigating
the design of active robot learners [18, 19], the ability of users to
answer the robot’s questions [32, 57] and the development of AL
strategies that take into account the user in their query selection
[11, 38, 54]. New types of queries, different from asking for a posi-
tive or negative label, have been adopted or developed through this
line of research, including demonstration queries [16, 19], feature
queries [10, 16, 19], and comparison queries [12, 59]. The approach
we contribute makes use of a new type of query where the user,
after evaluating a parametrized action execution, can either af-
firm the queried parameter value (“fine”) or give feedback about
the direction towards which the value should change (“higher” or
“lower”).

3 ACTIVE PARAMETER TUNING
In robot programming, parameter tuning is the process of searching
for a value or a range of values of an action’s parameter to make the
action work as desired. For example, consider a robot arm picking
an object from a retail store shelf. The amount of force exerted by
the gripper, chosen to not harm packaging or crush its contents
while still allowing its safe transport, depends on the specific item. It
is unrealistic to expect programmers to tune such force value of the
grasping action correctly without executing the action itself. Instead,
programmers start out with a guess, test it, and possibly change
value based on their observation. For example, if they observe that
the robot’s grasp crushes the packaging they can reduce the exerted
force, whereas if it is too weak to lift the object they can increase it.

In this work, we assume that a parameter has a closed range
of feasible values that allow the action to be successful or to meet
the user’s preferences in a specific context. Let R = [L,U], with
L,U ∈ R, be the full range of possible values that a parameterv can
assume.We define F = [l ,u] ⊆ R to be the range of feasible values. In
some cases, finding a single feasible value that is within the feasible
range (i.e. a value that makes the action succeed) might be sufficient.
We are instead interested in identifying the full range of feasible
parameter values i.e. estimating its lower and upper bounds, l and
u. This allows programmers to create flexible programs that can
autonomously adapt based on the specific situation. For example, a
robot arm could select the speed of its motions inside the provided
range based on the presence of people in its surroundings. The
feasible range could also act as a pool of safe values for explorative
techniques like Reinforcement Learning. Multiple versions of the
same action can also be generated by sampling the feasible range,
to increase the natural behaviour of social robots [30].

3.1 Bayesian estimation of parameter ranges
Given the incremental nature of parameter tuning process, we
adopt a Bayesian approach. We model the prior probability of a
parameter’s value v to be correct independently of any particular
task or user’s preferences, as p (v = x) ∼ fv (x), where fv (x) is a
distribution suiting the nature of the parameter. This distribution
can reflect available data on how the parameter is tuned in different
contexts or incorporate prior knowledge such as safety indications

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

630

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n = 2

n = 4

n = 8

Translation Speed [m/s]

Li
ke
lih

oo
d

fv (x)
fmin (x)

Figure 1: Comparison between fv (x), extracted from expert
tuning for theTranslation Speed parameter of the LinearMo-
tion action, and three fmin (x), with different value of n.

(e.g., the robot should rarely go faster than a certain speed or exert
more than a certain amount of force). In absence of any useful
information, an uninformative prior (where all possible outcomes
have the same probability) can be used.

To estimate the bounds of the feasible range, we need p (l = x)
and p (u = x), i.e. the probability of the lower bound and of the
upper bound respectively to have value x . Using fv (x), we model
these probabilities with the distribution of the sample minimum
fmin (x) and of the sample maximum fmax (x) [49, 67] as

p (l = x) ∼ fmin (x) = n(1 − Fv (x))n−1 fv (x),
p (u = x) ∼ fmax (x) = nFv (x)

n−1 fv (x),
(1)

where Fv (x) is the cumulative distribution function of fv (x). Pa-
rameter n is the number of random variables sampled from fv (x)
to estimate the sample minimum (or maximum). Figure 1 shows
examples of fmin (x) with respect to a fv (x), with increasing values
of n: as n increases, the probability mass moves towards L. For our
estimation problem, n expresses how strongly we assume fv (x) to
inform us about the distribution of l and u.

The computation of fmin (x) and fmax (x) may not be available
in closed form for a generic fv (x). In this work, we approximate
fv (x) and related distributions by discretization with their k-binned
density histogram,making the problem tractable for any prior shape
at the expense of extra computational load. Furthermore, we also
discretize the parameter range R in k values, forming what will be
the query pool Q for the AL method.

With fmin (x) and fmax (x) acting as prior distributions for l and
u, we can adopt the active approach summarized in Algorithm 1.
With query budget B being the available number of questions, the
learning agent evaluates each value v ∈ Q and selects the value to
be queried q∗. Section 3.2.3 presents the selection process. Once q∗
receives an answer a from the user, the learner computes the pos-
teriors of both fmin (x) and fmax (x) (as presented in Section 3.2.2).
Once the query budget is spent, the bounds l̂ and û are computed
as the mode of fmin (x) and fmax (x) respectively.

3.2 Active learning approach
In this section we present our design of queries and answers for the
parameter range tuning problem and explain how information from
a query and answer pair is integrated in the model. We then present
our query selection strategy, along with two baseline strategies.

Algorithm 1 Active Feasible Range Learning
Input: Query pool Q, fmin (x) and fmax (x), Query budget B
Output: Estimated feasible range F̂ = [l̂ , û]

1: while B > 0 do
2: for all values v ∈ Q do
3: Sv ← compute query score [see Section 3.2.3]
4: end for
5: q∗ ← select query based on Sv [see Equation 6]
6: a ← make selected query q∗ and wait for answer
7: update fmin (x), fmax (x) given q∗ and a [see Equation 3]
8: B ← B − 1
9: end while
10: F̂ ← [argmaxx fmin (x), argmaxx fmax (x)]

3.2.1 Queries and answers. We define a query as the execution of
a particular action, parametrized with a parameter’s value set to q∗.
Based on the action execution, the user evaluates the queried value
q∗ and gives an answer a. Given that, for the addressed parameters,
the range of possible values R is a subset of R, our method expects
three possible directional answers:
• The parameter value q∗ is fine,
• The parameter value q∗ must be lower,
• The parameter value q∗ must be higher.

These directional answers require the user to evaluate the parame-
ter, either by accepting it or by indicating if such value should be
increased or decreased, avoiding the use of any numerical value by
the user.

3.2.2 Model update. Once the answer a to query q∗ is available, its
information is integrated in the current model. We do so by com-
puting the posterior distributions fmin (x |q∗,a) and fmax (x |q∗,a).
Thanks to the discretized representation adopted, we can design
filter functions as in [53] that modify the current priors by integrat-
ing the information coming from the question-answer pair. Suiting
our directional queries, we use logistic functions λ±ϕ,x0 (x) as filters,
defined as

λ±ϕ,x0 (x) =
1

1 + e±ϕ (x0−x)
, (2)

with x0 being the midpoint of the function (where λ±ϕ,x0 (x) = 0.5)
and ϕ dictating the steepness of the curve at x0. The λ+ϕ,x0 (x) goes
from 0 to 1 as x grows; vice versa for λ−ϕ,x0 (x). Parameter ϕ can
model the uncertainty of answers in the case of non-oracles, i.e.
noisy users: for small values of ϕ, the filter function produces a less
sharp update, retaining some probability mass for values close to q∗
that were excluded by a possibly noisy answer. Unlike the method
presented in [10], our approach does not however handle I don’t
know answers and requires the user to at least give a noisy answer
to each query.

While there are three possible answers, a fine answer is equiva-
lent to lower when updating fmin (x): if q∗ is an acceptable value,
then the lowerbound l must be lower. Similarly, a fine answer is
equivalent to higher when updating fmax (x). Aside from this dif-
ference, query-answer pairs update fmin (x) and fmax (x) through

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

631

0.0 0.2 0.4 q∗ 0.6 0.8 1.0

Parameter value

Li
ke
lih

oo
d

q∗

λ−ϕ,q∗ (x)
fmin (x)
fmin (x |q∗, a)

Figure 2: The posterior distribution fmin (x |q∗,a) is obtained
with Equation 3 by updating the prior fmin (x) through
λ−ϕ,x0 (x), after query q∗ and answer a = lower.

the filter function as

f · (x |q∗,a) =

λ+ϕ,q∗ (x) f · (x) if a is higher (or fine if fmax (x))
λ−ϕ,q∗ (x) f · (x) if a is lower (or fine if fmin (x))

(3)
with f · (x) being either fmin (x) or fmax (x). After computation, the
posterior is normalized and becomes the prior for successive queries.
Figure 2 shows how posterior fmin (x |q∗,a) is computed by updat-
ing the fmin (x) prior after an answer a = lower: the filter λ−ϕ,x0 (x)
penalizes values greater then q∗, moving the probability mass ac-
cording to the answer.

3.2.3 Query selection. To estimate the feasible parameter range
F̂ , our learning approach iteratively selects parameter values from
the query pool Q and integrates the related answers in the model.
However, making queries in our scenario is costly: the robot needs
to execute the action for each parameter value q∗ to be queried,
consuming valuable resources like the user’s time and patience.
Instance-based AL addresses this problem [29, 61]: the best query is
chosen by estimating the queries’ informativeness given the current
model, consequently speeding up the learning.

For this work, we use an Expected Divergence Maximization strat-
egy (ExpDiv): query informativeness is operationalized by measur-
ing the distance between the prior model and the posterior resulting
from a given query-answer pair. This AL strategy belongs to the
broad family of expected error reduction techniques [58, 61].

In detail, for each parameter value v ∈ Q, we compute, for both
distributions fmin (x) and fmax (x), the expected divergence between
the prior distribution and the posterior distribution if v is queried:
the more different the two distributions, the higher the divergence
and, consequently, the information carried by the query. For each
value v ∈ Q, two scores, Smin

v and Smax
v , are computed as

S ·v = Ea [JS(
post query

f · (x |v,a),
pre query

f · (x))]

=
∑
a

p (a |v, f · (x))JS(f · (x |v,a), f · (x))
(4)

where JS denotes the Jensen-Shannon Divergence [43]. The diver-
gence is expected because, at the time of the query selection, the
answer a is not yet known: therefore the score is averaged over all
possible answers. We estimate the probability of answer a given

the queried value v and current model p (a |v, f · (x)) as
p (lower|v, f · (x)) =

∑
L≤x ≤v

f · (x),

p (higher|v, f · (x)) = 1 − p (lower|v, f · (x)).
(5)

Computing S ·v has complexity O (k2), where k = |Q|. With the
scores computed, the learner selects the query q∗ as

q∗ = argmax
v

{Smin
v , Smax

v }, (6)

i.e. the value q∗ that is expected to bring the most information
to either posterior distribution. While other scores can be used
(e.g., product of Smin

v and Smax
v or directly reasoning on the range

distribution [49]), Equation 6 represent a simple yet effective option.
To evaluate the ExpDiv strategy, we adopt two strategies as

baselines: a random strategy (Random) and a split strategy (Split).
The former randomly selects its queries (complexity O (1)). The lat-
ter instead finds the value q∗ that splits the prior distribution in two
halves with similar probability mass (complexity O (k)). Strategy
Split alternates between fmin (x) and fmax (x) and selects the value
q∗ as

q∗ = argmin
v

���
∑
x |L≤x ≤v f · (x) −∑x |v≤x ≤U f · (x)��� , (7)

where f · (x) is either fmin (x) or fmax (x). Strategy Split essentially
acts as a weighted version of a binary search or, in AL terms, as an
uncertainty sampling technique [42], since it queries the value v
for which the answer is most uncertain, without considering the
effects of the answer on the current model.

3.2.4 Cautious query selection. The three presented strategies do
not directly take into account the likelihood of the queried value
fv (q∗) in their selection process. When an informative prior is avail-
able (as in Experiment 2 of Section 4.2), a low likelihood fv (v) of
parameter value v can be interpreted as v being unsafe (e.g., high
grasping forces) or useless (e.g., very slow translation speeds). For
obvious reasons, informative but unsafe queries should be avoided.
Querying useless values should also be avoided, as previous re-
search has shown how they can hinder the interaction and the
usability of AL approaches [18, 54]. In line with recent work on
risk-aware [15] and teacher-aware AL [11, 38, 54], we propose a
cautious version of each presented strategy. Given a parameter τ ,
these cautious strategies constrain their choice to parameter values
v ∈ Q that belong to the τ% most likely values of fv (x), therefore
avoiding unlikely values. For example, with fv (x) being a Normal
distribution N (µ,σ) and τ parameter being 95.4%, the cautious
strategies would only query values that are within 2σ from µ.

4 EXPERIMENTS
We evaluate the proposed approach in three experiments. First, we
compare the presented selection strategies based on a synthetic
dataset of prior distributions fv (x). Second, we present a DSL for a
compliant robot manipulator, consisting of 5 parametrized actions,
and obtain priors from expert users (N=8). We evaluate our ap-
proach in this domain with an expert oracle. We finally investigate
the usability of an active tuning interface against a passive interface
in a study where novice users (N=8) tuned the feasible parameter
ranges for a program specified in the proposed DSL.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

632

1 2 3 4 5 6 7 8
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Number of queries

J
(F̂
,
F
)

(a) Synthetic priors

1 2 3 4 5 6 7 8
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Number of queries

(b) Real priors

ExpDiv
c-ExpDiv
Split
c-Split
Random
c-Random

Figure 3: Mean Jaccard index J (F̂ , F) for proposed strategies and their cautious versions, averaged on (a) the synthetic dataset
of 200 learning problems of Experiment 1 and on (b) the 44 learning problems of Experiment 2, with priors and ground truth
ranges extracted from expert users’ programs.

4.1 Experiment 1: Comparison with synthetic
priors

To evaluate the proposed ExpDiv query selection strategy against
the baselines and the cautious version of each strategy, we simulated
the learning of feasible ranges F for a parameter v ∈ [0, 1]. We
generated a dataset of 200 parameter value distributions fv (x),
each with its own feasible range F acting as ground truth. Each
distribution fv (x) consisted of a mixture of 4 Beta distributions
B (α , β). Each distribution’s parameters α and β were sampled from
a uniform distribution U (1, 20). Mixture weights were sampled
from an uninformative Dirichlet distribution. Each fv (x) was then
discretized, with k = 100 bins. The prior synthesis was designed
to obtain multimodal priors and create a challenging benchmark.
For each fv (x), we generated a true feasible range F = [l ,u] by
sampling two values and assigning the lowest to l and the other
to u. We refer to each pair of prior fv (x) and ground truth F as a
learning problem.

We compared 6 learning strategies: ExpDiv, Split and Ran-
dom presented in Section 3.2.3 and their cautious counterparts,
c-ExpDiv, c-Split and c-Random. Each strategy had a budget B
of 8 queries, with Equation 1’s n set to 2, producing fmin (x) and
fmax (x) distributions that do not heavily rely on fv (x). The answers
were given by an oracle knowing the ground truth F . Parameters ϕ
and τ were experimentally set to 200 and 85% respectively.

Results. To evaluate the strategies, we compute the Jaccard index
after each question and related update as

J (F̂ , F) =
|F̂ ∩ F |
|F̂ ∪ F | , (8)

measuring the overlap between the estimated range F̂ and the
ground truth F . Figure 3a shows the mean index for each strategy
over the synthetic dataset. We run Friedman tests between the
strategies’ Jaccard indexes for each query number, paired by learn-
ing problem, finding significant differences already after 2 queries
made (p<.01∗∗). We therefore run pair-wise comparisons (Wilcoxon
signed-rank test) on these indexes. While both strategies ExpDiv
and Split perform better than Random (Wilcoxon signed-rank
tests, all with p<.01∗∗except after only one query), ExpDiv has a

slightly higher mean J (F̂ , F) than Split, with statistically signifi-
cant differences only after the second and third queries (Wilcoxon
signed-rank, p<.05∗). After more than four queries asked, strategy
Split’s performance becomes comparable to ExpDiv’s one.

ExpDiv’s higher performance comes however at a computa-
tional cost: ExpDiv and c-ExpDiv need on average 0.9 s to select
a query, while the other strategies need less than a millisecond.
While considerable in simulation, this difference in selection time is
however negligible for our application, where lengthy robot actions
are executed between query selections.

We can further observe how strategies c-ExpDiv and c-Split
yield similar results to their incautious counterpart for the first 4
queries. After that, these strategies however converge to a lower
mean index compared to strategies ExpDiv and Split. This is un-
derstandable, considering how their choice was constrained. To
put their carefulness in context, 57% of Random’s queries, 17% of
ExpDiv’s and 12% of Split’s belonged to the unlikely pool avoided
by the cautious strategies.

Summarizing, results in simulation show how both strategies Ex-
pDiv and Split can learn feasible parameter ranges in few queries
and how their cautious versions differ from them for higher number
of queries, sacrificing accuracy of the end results for safer queries.

4.2 Experiment 2: Comparison with real priors
In this section, we first present a simple DSL for programming a
compliant robot arm. We then show how programs authored by
expert users can be used to obtain priors fv (x) for each action’s
parameter and repeat the method comparison of Section 4.1 with
such priors.

Proposed robot language. We designed a DSL for a compliant robot
arm [52], with the 5 parametrized actions summarized in Table 1.
Our robot arm of choice was a Franka Emika Panda (Figure 4a). Our
DSL design closely follows the one of Desk, Franka Emika’s pro-
prietary EUP environment [28], abstracting the robot capabilities
while ensuring a robust implementation and their intuitiveness for
novice users. As in the Desk environment, programs are sequences
of actions, with no branching nor looping. The programmer can
add actions to the current program via a GUI. Action parameters
can be instantiated by either kinesthetically moving the robot arm

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

633

Table 1: Proposed robot actions and relative parameters, with parameters used in Experiments 2 and 3 highlighted.

Action Description Parameters and their range of values

Linear Motion The robot’s end-effector (EE) moves∗ from the current pose to
a goal pose with certain translation speed.

goal pose: SE(3)
translation speed: [0.01, 0.35] m/s

Push Motion The robot’s EE moves∗ towards a goal pose with certain
translation speed until it senses a contact force higher than
a force threshold.

goal pose: SE(3)
translation speed: [0.01, 0.25] m/s
force threshold: [5.0, 20.0] N

Apply Force with Fingers The robot’s parallel gripper closes its fingers until a certain
grasping force is exerted.

grasping force: [20.0, 100.0] N

Move Fingers The robot’s parallel gripper moves its fingers to a desired
finger distance.

finger distance: [0.0, 0.08] m

User Synchronization The robot’s waits until the user exerts a force on it greater
than a force threshold (e.g., by pushing or pulling it).

force threshold: [5.0, 30.0] N

∗ Linear interpolation with specified translation speed. The goal pose is defined in a frame at the robot’s base.

(goal pose of motion actions) or via sliders on the GUI (all other
parameters).

Expert programs. To evaluate the proposed framework in a real
robotic scenario, we need value distributions fv (x) for the actions’
parameters in our DSL. We designed four table-top tasks described
in Table 2 and created programs expressed in the proposed DSL
that perform them. We then randomized the parameter values of
these programs and asked experts (graduate students in robotics,
N=8) to tune them.

The experts tuned the programs with the GUI shown in Figure 4b.
The GUI allowed the experts to select parameter values via sliders,
execute robot actions, and revert them (i.e. bring the robot to the
action’s preconditions) in case further tuning was deemed neces-
sary. To ensure variability in the collected data, the experts were
instructed to adopt 2 different programming styles: a safe style, i.e.
prioritizing safety of the robot and of possible humans close by,
and an efficient style, i.e. minimizing task completion time.

We collected a total of 64 expert authored programs (8 experts
× 4 programs × 2 styles). For each action’s parameter, we used
Kernel Density Estimation (KDE) [63] on the values selected by the
experts to learn two fv (x) priors, one for each programming style.
As the goal of this experiment was to obtain the fv (x) priors, the
experts did not specify a feasible range of values for the actions’
parameters. We however computed expert ground truth ranges (for
each parameter and action in each of the 4 programs) from the final
single values selected by the experts in each style, considering the
lower quartile and the upper quartile respectively as the lowerbound
l and upperbound u. We then repeated the strategy comparison of
Experiment 1 (same parameters for all strategies) on 44 learning
problems made of expert ground truth ranges and the matching
prior fv (x) (two learning problems for each parameter from the
tasks of Table 2, one for each programming style).

Results. Figure 3b shows the mean J (F̂ , F) for each strategy. Sig-
nificant differences between strategies are observed after 3 queries
(Friedman test, p<.01∗∗). We see how ExpDiv and Split outper-
forms Random already after 3 queries (Wilcoxon signed-rank,

p<.01∗∗). ExpDiv and Split have, as in Experiment 1, a similar per-
formances, with a significant difference only after the third and
forth query (p<.05∗). The cautious strategies behave essentially
as in Experiment 1, with strategies c-ExpDiv and c-Split having
comparable results for low numbers of queries and later converging
to a lower index, compared to their incautious counterparts.

Overall, the results show how directional queries and active
selection strategies can obtain good range estimates with a low
number of queries starting from priors learned from real programs,
outperforming random selection. While the differences in perfor-
mance between ExpDiv and Split are small in our scenario, we
expect ExpDiv to better handle harder estimation problems (thanks
to its expected information gain analysis). Like other expected error
reduction techniques [61], ExpDiv is however more computation-
ally expensive compared to simpler techniques like Split, making
the choice between the two dependent on task-specific constraints.

Table 2: Benchmark tasks for Experiments 2 and 3.

Task Program Description

Hand-over
6 actions,
7 parameters

The robot picks a soft toy, moves close to
the user and waits for her to push/pull it.
It then releases the toy and retreats.

Push against wall
3 actions,
4 parameters

The robot approaches a heavy box, pushes
it against a wall, then retreats.

Push without
tipping
3 actions,
4 parameters

The robot approaches a tall box, pushes
it against a wall without tipping it, then
retreats.

Transport
without spilling
7 actions,
7 parameters

The robot moves close to user; waits for
a spoon to be handed by pushing on the
gripper. It then grasps the spoon which
has a marble on it, transports the marble
without dropping it on the table (2 mo-
tions), drops it into a bowl and retreats.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

634

Current value slider

Feasible range slider

(b)

Query response buttons

(c)(a)

Figure 4: (a) Setup for Experiment 2 and 3 with a Panda robotmounted on a desk, with the user tuning robot programs through
2 GUIs: (b) a passive GUI that allows selection of parameter values to be tested on the robot and specification of the feasible
range for each action’s parameter, used in Experiment 2 and 3, and (c) a GUI that integrates the AL strategy c-ExpDiv, used in
Experiment 3 for the active condition. Example of tuning procedure available at vimeo.com/mattiaracca/hri20.

4.3 Experiment 3: Evaluation with novices
To explore the usability of the proposed interactive tuning approach,
we conducted a study with 8 novice users with no experience in
robotics.

Experimental setup. The participants’ task was to specify the fea-
sible parameter ranges for a robot program in the proposed DSL
for the hand-over task described in Table 2. Given the proximity of
the participants to the robot arm and the interactive nature of the
task, the robot’s actions were implemented with impedance control.
Furthermore, the range of values for each parameter reported in
Table 1 was selected with the safety of the participants in mind.
During the study, the participants directly controlled the robot
through a GUI, with the experimenter only controlling the robot’s
emergency stop. This study was approved by Aalto University’s
Research Ethics Committee.

Conditions and protocol. Each participant specified the feasible pa-
rameter ranges for the hand-over program of Table 2 by using two
different programming interfaces: a passive interface, shown in Fig-
ure 4b, and an active interface, embedding the proposed c-ExpDiv
strategy (same parameters specified in Section 4.1 and priors learned
on the safe version of the experts’ programs) as shown in Figure 4c.
The budget B was set to 3 queries as a tradeoff between performance
and experiment duration. Each experiment lasted on average 40
minutes. The order of interfaces was counterbalanced.

Participants were instructed to find a range of feasible values
according to their preferences for each parameter of the 6 actions
composing the hand-over program. With the passive interface, the
participants operated the robot as the experts did in Experiment 2,
specifying the parameter values and the feasible ranges via sliders,
with the possibility to freely execute and revert actions as many
times as they wanted.

In the active condition, the GUI shown in Figure 4c guided the
user through the tuning process, following a protocol based on
Algorithm 1. The GUI goes through the program action by action
and makes B = 3 queries about each parameter. First, c-ExpDiv
selects a parameter value to be queried, announcing it to the user
through the GUI (e.g., “I will now execute this Linear Motion with
speed 0.1 m/s”). Second, the robot executes the action and the user’s
evaluation of the execution is requested via the GUI. Finally, either

the robot’s action is reverted to make further queries (if query bud-
get is still available) or the tuning moves to the next action in the
program. To aid the user’s evaluation, the wording of the possi-
ble answers to the query was altered according to the addressed
parameter, as shown in Figure 4c for the speed parameter.
Participants. Eight participants (ageM=26, SD=3, 75% female) were
recruited in a university campus. Participants had no hands-on ex-
perience with robotic arms or formal robotics education, with only
two participants having an engineering background. Participants
were rewarded with a movie ticket as compensation.
Logged data. We logged the wall-clock time the participants spent
tuning the feasible ranges for each condition, alongwith the number
of action executions needed with the passive interface. In the case
of the active interface, the number of action executions was defined
by the query budget B (21 total executions from 3 queries for each
of the 7 parameters in the tuned program). After working on each
interface, participants filled the SUS questionnaire [14]. At the
end of the experiment, we gathered the participants’ preferences
regarding the interfaces along with free form feedback.
Results. We compare the participants’ performance with active
and passive parameter tuning in terms of efficiency and quality of
tuning, as well as subjective usability. In particular, we measured
the quality of the novices’ parameter ranges by computing their
Jaccard index against the expert ones from Experiment 2. The mean
J (F̂ , F) achieved for the active condition after three queries was
0.52 (SD=0.28), against the 0.38 (SD=0.24) achieved in the passive
condition after three executions (Wilcoxon signed-rank, T=463,
p<.01∗∗). While in the active condition the number of execution
was capped to 21 by the query budget, with the passive condition the
participants used an average of 27.5 (SD=9.5) total action executions.
The mean J (F̂ , F) achieved with the passive interface at the end
of the tuning remained however at 0.38.

Although these results do not translate to failures of the tuned
program, we see how the novices specified parameter ranges sub-
stantially different from the expert ones of Experiment 2. The active
interface however mitigated this tendency by constraining the user
input through the querying mechanism.

Participants spent about 13 minutes tuning parameters in the
passive condition and around 8 minutes in the active condition

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

635

http://vimeo.com/mattiaracca/hri20

(Wilcoxon signed-rank, T=2, p<.05∗). Therefore, in the active con-
dition participants obtained parameter ranges closer to the experts’
ones in less time. Regarding usability, we observed a mean SUS
score of 73.7 for the passive interface and of 73.1 for the active,
suggesting good usability [7] for both interfaces.

In terms of subjective preference, three participants out of eight
preferred the active interface. We summarize the participants’ feed-
back about the interfaces in two categories: aid offered to the user
and control over the tuning process. The active interface was gen-
erally described as easy to use, for its ability of guiding the tuning
process and selecting the parameter values to try out (“the active
interface does the work for me”). This aspect mattered especially at
the beginning of the interaction, when the participants had less
experience with the robot, the parameters, and the task at hand
(“the active interface is easier especially if you don’t have any ideas
about the values and parameters, but you have less control” and “I
felt guided through the process”). In comparison, the participants
did not specifically comment on easiness of use or the helpfulness
of the passive interface. Because of the safeness of the setup, the
participants quickly realized they could try out parameter values
with the passive interface without risk of damaging the robot or
the environment. We believe this facilitated their exploration for
good parameter values, making the guidance offered by the active
interface less relevant.

The participants that preferred the passive interface backed their
opinion mainly commenting on the freedom left to them compared
to the active condition. Participants explained how the passive
interface allowed them to achieve a more customized result (“I had
more freedom in choosing the parameter values”) and to complete the
task faster (“I can choose parameters as I want, and I am much faster
[than with the active interface]”), even though they were actually
slower. Participants might have felt that they were more efficient
with the passive interface because they tended to reduce the number
of executions per action over time, as they acquired experience with
the different parameters. The number of executions went from a
median of 10.5 executions for the first action to 3 executions for
the last action of a program. Such adjustment over time was not
present with the active interface, where the number of queries per
parameter remained constant and there was no knowledge transfer
from earlier actions to later ones.

Overall, although our active interface steered the novices’ tun-
ing and let them produce ranges closer to the expert ones with
fewer action executions, the rigid control imposed represented
its main weakness in this study. People’s preference for being in
control is in line with what observed for other embodied active
learners [3, 18, 53]. This issue can be addressed by adopting a mixed-
initiative strategy or having queries only on-demand. Alternatively,
the proposed active approach could suggest parameter values to
try out in more discrete ways like e.g., by highlighting parts of the
GUI’s sliders, while leaving full control to the user as in the passive
interface.

5 LIMITATIONS AND FUTURE WORK
We have shown with the experiments our framework’s potential
for aiding novice programmers. Next, we discuss its limitations and
possible ways of addressing them.

In our framework, both interfaces require the robot’s ability to
execute and revert actions to let the user to evaluate parameters.
Although the active approach aims to reduce its action executions,
operating a physical robot is still extremely time consuming. To
speed up the tuning process, queries could be made via visualiza-
tion and simulation tools, where robot and environment can be
instantaneously reset, resorting to their execution on the physical
robot only if needed (e.g., for actions that require user interaction,
like the synchronization action of Table 1) or requested by the user.

While the passive interface lets the user decide which parameters
to tune and whether to tune multiple of them at the same time, our
active approach tunes parameters separately, one after the other,
assuming their independence during the query selection process.
While potentially reducing the number of queries, adapting our
active approach to the simultaneous tuning of multiple parameters
would require the modelling of the relationship between action’s
parameters in the priors, possibly requiring more data than in the
single parameter case. Furthermore, the query selection process
would become a multivariate optimization problem. The tuning of
multiple parameters would also impact the interaction design. As
research in LfD has shown how users provide better corrections
when addressing one feature at a time [6], we need to investigate
whether users can identify and evaluate the effects of the different
parameters on the action execution, if several of them are tuned
simultaneously. This could also impact the choice of query type:
would users still be able to answer directional queries on single
parameters or should simpler query types (e.g., label queries as
“was the overall action execution fine?”) be adopted?

6 CONCLUSIONS
We tackled the problem of efficiently tuning parameters of robot
actions, in the context of end-user robot programming. Our Active
Learning approach aids the user in the complex and tedious task
of specifying ranges of feasible values for action parameters by
selecting values to be tested and estimating the ranges from the
user’s feedback. We evaluated the proposed approach, along with
two baselines, both on synthetic and real-robot priors (obtained by
implementing a simple domain-specific language for a robot arm
and collecting expert programs targeting manipulations tasks). The
results show how our active approach, together with the use of
directional queries, allows for the estimation of parameter ranges
in a small number of queries. Finally, we investigated the usability
of our active approach with a user study, where novice users (N=8)
tuned the parameter ranges of a real-robot hand-over program.
Results show how novices were able to obtain feasible parameter
ranges closer to the expert ones in less time with the active interface.
However, participants’ preference for the passive interface (5 out of
8), largely due to a perceived lack of control reported for the active
interface, indicates the need for different ways of incorporating our
strategy into end-user programming interfaces.

Acknowledgements. This work was supported by the Strategic Re-
search Council at the Academy of Finland, decision 314180, and by
the National Science Foundation (USA), awards IIS-1552427 “CA-
REER: End-User Programming of General-Purpose Robots" and
IIS-1925043 “NRI: INT: COLLAB: Program Verification and Synthe-
sis for Collaborative Robots."

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

636

REFERENCES
[1] Sonya Alexandrova, Maya Cakmak, Kaijen Hsiao, and Leila Takayama. 2014.

Robot programming by demonstration with interactive action visualizations. In
Robotics: Science and Systems.

[2] Sonya Alexandrova, Zachary Tatlock, andMaya Cakmak. 2015. RoboFlow: A flow-
based visual programming language for mobile manipulation tasks. In 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 5537–5544.

[3] Saleema Amershi, Maya Cakmak, William B. Knox, and Todd Kulesza. 2014.
Power to the people: The role of humans in interactive machine learning. AI
Magazine 35, 4 (2014), 105–120.

[4] Dana Angluin. 1988. Queries and concept learning. Machine Learning 2, 4 (1988),
319–342.

[5] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A
survey of robot learning from demonstration. Robotics and Autonomous Systems
57, 5 (2009), 469–483.

[6] Andrea Bajcsy, Dylan P. Losey, Marcia K. O’Malley, and Anca D. Dragan. 2018.
Learning from physical human corrections, one feature at a time. In Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot Interaction. ACM,
141–149.

[7] Aaron Bangor, Philip T. Kortum, and James T. Miller. 2008. An empirical evalu-
ation of the system usability scale. International Journal of Human–Computer
Interaction 24, 6 (2008), 574–594.

[8] Emilia I. Barakova, Jan C. C. Gillesen, Bibi E. B. M. Huskens, and Tino Lourens.
2013. End-user programming architecture facilitates the uptake of robots in
social therapies. Robotics and Autonomous Systems 61, 7 (2013), 704–713.

[9] Chandrayee Basu, Erdem Biyik, Zhixun He, Mukesh Singhal, and Dorsa Sadigh.
2019. Active Learning of Reward Dynamics from Hierarchical Queries. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

[10] Chandrayee Basu, Mukesh Singhal, and Anca D. Dragan. 2018. Learning from
Richer Human Guidance: Augmenting Comparison-Based Learning with Feature
Queries. In Proceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction (HRI). ACM, 132–140.

[11] Aaron Bestick, Ravi Pandya, Ruzena Bajcsy, and Anca D. Dragan. 2018. Learning
Human Ergornomic Preferences for Handovers. In Robotics and Automation
(ICRA), 2018 IEEE International Conference on. IEEE, 3257–3264.

[12] Erdem Biyik and Dorsa Sadigh. 2018. Batch Active Preference-Based Learning of
Reward Functions. In Conference on Robot Learning. 519–528.

[13] Michael Brenner, Nick Hawes, John D. Kelleher, and Jeremy L. Wyatt. 2007. Me-
diating between qualitative and quantitative representations for task-orientated
human-robot interaction.. In Proceedings of the International Joint Conference on
Artificial Intelligence. 2072–2077.

[14] John Brooke. 1996. SUS-A quick and dirty usability scale. Usability evaluation in
industry 189, 194 (1996), 4–7.

[15] Daniel S. Brown, Yuchen Cui, and Scott Niekum. 2018. Risk-Aware Active Inverse
Reinforcement Learning. In Conference on Robot Learning. 362–372.

[16] Kalesha Bullard, Yannick Schroecker, and Sonia Chernova. 2019. Active learning
within constrained environments through imitation of an expert questioner. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence.
AAAI Press, 2045–2052.

[17] Kalesha Bullard, Andrea L. Thomaz, and Sonia Chernova. 2018. Towards Intelli-
gent Arbitration of Diverse Active Learning Queries. In Intelligent Robots and
Systems (IROS), 2018 IEEE/RSJ International Conference on. IEEE, 6049–6056.

[18] Maya Cakmak, Crystal Chao, andAndrea L. Thomaz. 2010. Designing interactions
for robot active learners. IEEE Transactions on Autonomous Mental Development
2, 2 (2010), 108–118.

[19] Maya Cakmak and Andrea L. Thomaz. 2012. Designing robot learners that ask
good questions. In Proceedings of the seventh annual ACM/IEEE international
conference on Human-Robot Interaction. ACM, 17–24.

[20] Sylvain Calinon, Florent D’halluin, Eric L. Sauser, Darwin G Caldwell, and Aude G.
Billard. 2010. Learning and reproduction of gestures by imitation. IEEE Robotics
& Automation Magazine 17, 2 (2010), 44–54.

[21] Sonia Chernova and Manuela Veloso. 2007. Confidence-based policy learning
from demonstration using gaussian mixture models. In Proceedings of the 6th
International Joint Conference on Autonomous Agents and MultiAgent Systems.
ACM, 233.

[22] Sonia Chernova and Manuela Veloso. 2009. Interactive policy learning through
confidence-based autonomy. Journal of Artificial Intelligence Research 34, 1 (2009),
1.

[23] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. 1996. Active learning
with statistical models. Journal of Artificial Intelligence Research 4, 1 (1996),
129–145.

[24] Yuchen Cui and Scott Niekum. 2018. Active reward learning from critiques.
In 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
6907–6914.

[25] Joachim de Greeff and Tony Belpaeme. 2015. Why robots should be social:
Enhancing machine learning through social human-robot interaction. PLoS one

10, 9 (2015), e0138061.
[26] Felix Duvallet, Thomas Kollar, and Anthony Stentz. 2013. Imitation learning for

natural language direction following through unknown environments. In 2013
IEEE International Conference on Robotics and Automation. IEEE, 1047–1053.

[27] Staffan Ekvall and Danica Kragic. 2008. Robot learning from demonstration: a
task-level planning approach. International Journal of Advanced Robotic Systems
5, 3 (2008), 33.

[28] FRANKA EMIKA. 2019. Panda’s Capability. https://www.franka.de/capability/
[29] Yifan Fu, Xingquan Zhu, and Bin Li. 2013. A survey on instance selection for

active learning. Knowledge and information systems 35, 2 (2013), 249–283.
[30] Michael J. Gielniak, C. Karen Liu, and Andrea L. Thomaz. 2011. Task-aware

variations in robot motion. In 2011 IEEE International Conference on Robotics and
Automation. IEEE, 3921–3927.

[31] Dylan F. Glas, Takayuki Kanda, and Hiroshi Ishiguro. 2016. Human-robot inter-
action design using Interaction Composer eight years of lessons learned. In 2016
11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE,
303–310.

[32] Victor Gonzalez-Pacheco, Maria Malfaz, Alvaro Castro-Gonzalez, Jose C. Castillo,
Fernando Alonso-Martín, and Miguel A. Salichs. 2018. Analyzing the Impact
of Different Feature Queries in Active Learning for Social Robots. International
Journal of Social Robotics 10, 2 (2018), 251–264.

[33] Javi F. Gorostiza and Miguel A. Salichs. 2011. End-user programming of a social
robot by dialog. Robotics and Autonomous Systems 59, 12 (2011), 1102–1114.

[34] Bradley Hayes and Brian Scassellati. 2014. Discovering task constraints through
observation and active learning. In Intelligent Robots and Systems (IROS), 2014
IEEE/RSJ International Conference on. IEEE, 4442–4449.

[35] Justin Huang and Maya Cakmak. 2017. Code3: A system for end-to-end pro-
gramming of mobile manipulator robots for novices and experts. In 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 453–
462.

[36] Justin Huang, Tessa Lau, and Maya Cakmak. 2016. Design and evaluation of a
rapid programming system for service robots. In 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, 295–302.

[37] Benjamin Johnson and Hadas Kress-Gazit. 2012. Probabilistic Guarantees for
High-Level Robot Behavior in the Presence of Sensor Error. Autonomous Robots
33 (2012), 309–321.

[38] Taylor Kessler Faulkner, Reymundo A. Gutierrez, Elaine Schaertl Short, Guy
Hoffman, and Andrea L. Thomaz. 2019. Active Attention-Modified Policy Shaping.
In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems. 728–736.

[39] Hadas Kress-Gazit, Morteza Lahijanian, and Vasumathi Raman. 2018. Synthesis
for robots: Guarantees and feedback for robot behavior. Annual Review of Control,
Robotics, and Autonomous Systems 1 (2018), 211–236.

[40] Alap Kshirsagar, Hadas Kress-Gazit, and Guy Hoffman. 2019. Specifying and
Synthesizing Human-Robot Handovers. In Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on.

[41] Johannes Kulick, Marc Toussaint, Tobias Lang, and Manuel Lopes. 2013. Active
Learning for Teaching a Robot Grounded Relational Symbols. In Proceedings of
the International Joint Conference on Artificial Intelligence. 1451–1457.

[42] David D. Lewis andWilliamA. Gale. 1994. A sequential algorithm for training text
classifiers. In Proceedings of the 17th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. Springer-Verlag, 3–12.

[43] Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE
Transactions on Information Theory 37, 1 (1991), 145–151.

[44] Tomas Lozano-Perez. 1983. Robot Programming. Proc. IEEE 71, 7 (1983), 821–841.
[45] Marco Manca, Fabio Paternò, and Carmen Santoro. 2019. Analyzing Trigger-

Action Programming for Personalization of Robot Behaviour in IoT Environments.
In International Symposium on End User Development. Springer, 100–114.

[46] Carlos Mateo, Alberto Brunete, Ernesto Gambao, and Miguel Hernando. 2014.
Hammer: An Android based application for end-user industrial robot program-
ming. In 2014 IEEE/ASME 10th International Conference on Mechatronic and Em-
bedded Systems and Applications (MESA). IEEE, 1–6.

[47] Hai Nguyen, Matei Ciocarlie, Kaijen Hsiao, and Charles C. Kemp. 2013. Ros com-
mander (ROSCo): Behavior creation for home robots. In 2013 IEEE International
Conference on Robotics and Automation. IEEE, 467–474.

[48] Scott Niekum, Sarah Osentoski, George Konidaris, and Andrew G Barto. 2012.
Learning and generalization of complex tasks from unstructured demonstrations.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
5239–5246.

[49] Steve Paik. 2015. On the distribution of the range of a sample. Technical Report.
[50] David Porfirio, Evan Fisher, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu.

2019. Bodystorming Human-Robot Interactions. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology.

[51] David Porfirio, Allison Sauppé, Aws Albarghouthi, and Bilge Mutlu. 2018. Author-
ing and verifying human-robot interactions. In The 31st Annual ACM Symposium
on User Interface Software and Technology. ACM, 75–86.

[52] Mattia Racca. 2019. EUPanda: a End-User Programming Framework for the
FRANKA EMIKA Panda. https://github.com/MattiaRacca/eupanda.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

637

https://www.franka.de/capability/
https://github.com/MattiaRacca/eupanda

[53] Mattia Racca and Ville Kyrki. 2018. Active Robot Learning for Temporal Task
Models. In Proceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction (HRI). ACM, 123–131.

[54] Mattia Racca, Antti Oulasvirta, and Ville Kyrki. 2019. Teacher-Aware Active
Robot Learning. In 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). IEEE, 335–343.

[55] Nemanja Rakicevic and Petar Kormushev. 2019. Active learning via informed
search in movement parameter space for efficient robot task learning and transfer.
Autonomous Robots (2019), 1–19.

[56] Vasumathi Raman and Hadas Kress-Gazit. 2011. Analyzing unsynthesizable spec-
ifications for high-level robot behavior using LTLMoP. In International Conference
on Computer Aided Verification. Springer, 663–668.

[57] Stephanie Rosenthal, Manuela Veloso, and Anind K. Dey. 2012. Acquiring accurate
human responses to robots’ questions. International Journal of Social Robotics 4,
2 (2012), 117–129.

[58] Nicholas Roy and Andrew Mccallum. 2001. Toward Optimal Active Learning
through Sampling Estimation of Error Reduction. In Proceedings of 18th Interna-
tional Conference on Machine Learning.

[59] Dorsa Sadigh, Anca Dragan, Shankar S. Sastry, and Sanjit A. Seshia. 2017. Active
Preference-Based Learning of Reward Functions. In Robotics: Science and Systems.

[60] Casper Schou, Jens S. Damgaard, Simon Bøgh, and Ole Madsen. 2013. Human-
robot interface for instructing industrial tasks using kinesthetic teaching. In IEEE
ISR 2013. IEEE, 1–6.

[61] Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning 6, 1 (2012), 1–114.

[62] Elaine Schaertl Short, Adam Allevato, and Andrea L. Thomaz. 2019. SAIL:
Simulation-Informed Active In-the-Wild Learning. In 2019 14th ACM/IEEE Inter-
national Conference on Human-Robot Interaction (HRI). IEEE, 468–477.

[63] Bernard W. Silverman. 1986. Density Estimation for Statistics and Data Analysis.
Monographs on Statistics and Applied Probability 26 (1986).

[64] Franz Steinmetz and Roman Weitschat. 2016. Skill parametrization approaches
and skill architecture for human-robot interaction. In 2016 IEEE International
Conference on Automation Science and Engineering (CASE). IEEE, 280–285.

[65] Franz Steinmetz, Annika Wollschläger, and Roman Weitschat. 2018. RAZER-A
Human-Robot Interface for Visual Task-Level Programming and Intuitive Skill
Parameterization. IEEE Robotics and Automation Letters 3, 3 (2018), 1362–1369.

[66] Maj Stenmark, Mathias Haage, and Elin Anna Topp. 2017. Simplified program-
ming of re-usable skills on a safe industrial robot: Prototype and evaluation.
In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot
Interaction. ACM, 463–472.

[67] Samuel S. Wilks. 1943. Mathematical Statistics. Princeton University Press.

Day 3 Session 5: Learning and Inference HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

638

	Abstract
	1 Introduction
	2 Related work
	3 Active parameter tuning
	3.1 Bayesian estimation of parameter ranges
	3.2 Active learning approach

	4 Experiments
	4.1 Experiment 1: Comparison with synthetic priors
	4.2 Experiment 2: Comparison with real priors
	4.3 Experiment 3: Evaluation with novices

	5 Limitations and Future Work
	6 Conclusions
	References

