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ABSTRACT
Public perceptions of Robotics and Artificial Intelligence (RAI) are
important in the acceptance, uptake, government regulation and
research funding of this technology. Recent research has shown
that the public’s understanding of RAI can be negative or inaccu-
rate. We believe effective public engagement can help ensure that
public opinion is better informed. In this paper, we describe our
first iteration of a high throughput in-person public engagement
activity. We describe the use of a light touch quiz-format survey
instrument to integrate in-the-wild research participation into the
engagement, allowing us to probe both the effectiveness of our
engagement strategy, and public perceptions of the future roles
of robots and humans working in dangerous settings, such as in
the off-shore energy sector. We critique our methods and share
interesting results into generational differences within the public’s
view of the future of Robotics and AI in hazardous environments.
These findings include that older peoples’ views about the future
of robots in hazardous environments were not swayed by exposure
to our exhibit, while the views of younger people were affected by
our exhibit, leading us to consider carefully in future how to more
effectively engage with and inform older people.
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Figure 1: Crowds interacting with our exhibit.

1 INTRODUCTION
Public engagement is widely appreciated and is regarded as essen-
tial for researchers and scientists for the wider dissemination of
their work. It helps to establish public perception towards science
and technology and is particularly important in the field of Ro-
botics, Artificial Intelligence (RAI) and Human-Robot Interaction
(HRI). More specifically, the field of HRI can make an important
contribution to information transfer to the public. With the grow-
ing negative public perception in the field of RAI, more engagement
building positive public perception is needed. A survey conducted
in 27 European countries highlighted negative attitudes towards
robots between 2012 and 2017. Notably, the concept of robots assist-
ing in the work place received the strongest negativity [17]. One of
the reasons behind these negative perceptions is increased media
coverage and public discourse about robots replacing humans in
several areas. A recent study analyzing the framing of Artificial
Intelligence (AI) in American newspapers showed that, while the
benefits of AI were highlighted more frequently in newspapers,
AI’s adverse traits were emphasized [13].

We understand that this negative perception is also due to the
misconceptions or limited knowledge of the public. Certainly, their
knowledge is driven by print and digital media. A recent survey
of 1078 participants conducted in the UK investigated awareness
of RAI. The results showed that 85% claimed to have heard of
AI. However, it highlighted that most participants had a distorted
understanding of AI [12]. The rationale for this limited knowledge
lies in the complexity of forming public opinion, particularly in
the cognitive miser theory [34]. The theory suggests that people
form opinions and attitudes with incomplete information using
cognitive shortcuts or heuristics mostly gleaned from mass media
[34, 40]. However, research shows that negative perceptions can
be reduced by giving exposure or experience with the technology.
For instance, in the education domain, a study conducted with

https://doi.org/10.1145/3319502.3374789
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teachers from five EU countries to understand their views on the
use of robots in education showed that teachers found robots to be a
disruptive technology [41]. Although, other researchers highlighted
that teachers’ views were derived from limited understanding or no
experience of robots [1, 52]. Importantly, they conducted studies
and showed a transformation of perception after limited and long-
term exposure to a robot in the classroom [1, 2, 52].

We, therefore, believe that public engagement is important in
building public perception and knowledge of AI and robots and
it can play an important role in reducing negative perceptions.
Consequently, we, a team of researchers from five universities took
part in the prestigious Royal Society Summer Science Exhibition to
disseminate information on RAI in hazardous environments.

In this paper, we describe our approach to robotics engagement
designed for a high throughput public event. This approach allows
both engagement with the public and the conducting of research in
the context of an event with more than 12,000 visitors over seven
days (Figure 1). Our engagement activities were interactive and our
research methods had to be light touch and seen as part of visiting
the exhibit. The Royal Society event, at which we deployed our first
iteration of this approach, had many exhibits and thus visitors typi-
cally had only a short time to engage at each. Our challenge was to
entertain and inform all visitors who engaged at our RAI exhibit and
expose as many as possible to research. The engagement challenge
was met by designing a highly interactive yet safe exhibit allowing
visitors of all ages to engage with researchers and get hands-on
control of a robot to complete a challenge. It is important to note
that the aim of our engagement was not to overtly influence opinion
but to inform and thus indirectly influence public views of RAI. Our
research aim was to explore and investigate whether knowledge
and opinions on the usage of robots in hazardous environments dif-
fered between participants exposed and not exposed to the exhibit.
The research objective was met by devising a research protocol and
instrument, which became part of the engagement itself for those
who took part. The protocol was brief, lightweight, and applied
the high ethical standards essential for involving members of the
public including children [23].

The contributions of this paper are summarized as:
• Exposition of the methods used in a high throughput RAI
public engagement activity.

• The design of an engaging light touch survey instrument
integrated with the engagement activity to probe public
knowledge and opinions about the future of robotics and AI
in extreme environments.

• Results suggesting there are some generational differences
in public views in this area.

• Discussion of the results and of the effectiveness of the meth-
ods used for this mass in-person RAI public engagement
activity and study.

2 BACKGROUND
2.1 Perception of Robotics and AI
The perception of technology can have two broad aspects: 1) Func-
tionality, and 2) Safety. A clear picture of both is required for a
technology to be used safely. A misleading picture may result in
catastrophes, such as recent airline crashes due to malfunctioning

computer controlled systems [6, 7, 14, 18, 19]. Most people are not
equipped with the training or prior knowledge to understand a
system’s abilities and safety as perhaps an engineer would. Their
perceptions are often affected by high profile accidents and nefari-
ous misuse delivered through the news media, films, TV programs
and literature. Public knowledge about AI safety is shaped by co-
mentary such as Azimov’s Laws [3], high profile books [9, 28], and
the open letter by popular scientists and engineers [33].

The perception of RAI systems and technology is important, as
it will determine first, whether the technology is used [10, 36], and
second, whether it is used safely [48, 49, 53]. If a negative view
of RAI exists, there will be resistance to their use, adoption, and
funding [45]. This could then impact the possible safety benefits
and increases in productivity and/or living standards that the RAI
systems could provide. An important point to make here is that
a blindly positive adoption of RAI is not always a good thing. It
is argued that a perception mismatch, either an overly negative
or positive view, can have negative impacts [20, 22, 29]. While the
focus of our engagement activity described in this paper is robotics
in extreme environments, which has more clear-cut safety benefits
to humanwell-being compared to RAI in general, we did still employ
this balanced approach. In addition, the climate of public opinion
can influence research funding and regulatory policy [43]. Good
public engagement, presenting a balanced view, can help ensure
that such influence is at least well-informed.

It is challenging to inform public attitudes and beliefs. To un-
derstand some of the complexities, we reflect on two theoretical
models from social psychology. First, the Cognitive Miser Model
[34]. This theorizes that people will only collect the minimum facts
they think are needed and make decisions with limited information
often relying on cognitive shortcuts such as attitudes and beliefs.
Secondly, the Scientific Literacy Model [5]. This suggests that only
those keenly interested in a technology seek more facts before
taking an informed decision. Our activities in this paper were de-
signed to provide relevant information in an engaging way for those
activating the Scientific Literacy Model attending the exhibition.

2.2 Types of Robotics Engagement Activities
A recent review on the usage of social robots in public spaces shows
that they have primarily been used in the education and healthcare
sector and also indicated their use in the shopping malls [16, 30, 42].
Other projects include a semi-autonomous Heart Robot puppet [38]
and Zora robot for elderly care [47]. Most of the public engage-
ments with these projects have been highlighting their usages in
the various social domains such as care-homes, museums and simi-
lar others. The dissemination medium of public engagement with
these robots has been mainly through social networking platforms,
such as Twitter [31]. The above highlights that, to the best of our
knowledge, there has been limited systematic work published on
the public engagement experience in the HRI community, partic-
ularly towards understanding the value of the engagement with
robots in terms of shaping public opinions and augmenting their
general knowledge in the area. Consequently, this demonstrates
the need and value of the work presented in this paper as we aim
to learn about the impact of a robotic engagement in shaping both
the public’s opinions and knowledge.
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3 THE ENGAGEMENT
3.1 Context and Aims
The engagement took place at the prestigious annual week-long
Royal Society Summer Science Exhibition, whose aim is to expose
the public to the state-of-the-art research being done by universities.
The exhibition attracted 12,653 visitors this year (2019).

The specific aim of the exhibit was to demonstrate how robots
can operate both autonomously and also through remote control
in hazardous environments typically unsafe for humans. A sec-
ondary aim was promoting STEM careers. To achieve these aims,
we enabled visitors to engage with researchers and participate by
completing a challenge through controlling the robots (details in
Sections 3.3 and 3.4).

3.2 Design and Build
A modular approach was adopted to allow for the following: a)
the necessary portability of the exhibit; b) the accessibility and
viewing angles for the visitors; c) the planned range of activities
and engagement; and d) a level of flexibility e.g. ifa module broke or
proved more popular than the others. A fabrication company with
experience in creating interactive exhibits was brought on board to
build the exhibit.

Therewere threemodules in the exhibit: 1)Wind Turbine,
2) Offshore Energy Platform, and 3) Industrial Maze.

Each would present visitors with a different experience and
allow them to consider the hazards of offshore environments [21].
The Wind Turbine and Offshore Energy Platform modules were
enclosed and would feature small robots (Cozmo1, Limpet sensors 2
and Drones 3, to represent larger robots to be used off-shore) (Figure
3). This was a practical compromise because for reasons of safety,
we were not permitted to use full size industrial robots and drones.
The Industrial Maze module was fully open to the visitors allowing
objects to be picked up and handled. The entire exhibit can be seen
in Figure 2 (bottom-left).

3.3 Challenges for Visitors
Each of the modules offered a different activity and challenge for the
visitors. They were of varied difficulty and offered potential for brief
but engaging interaction for multiple participants simultaneously.

1) The Wind Turbine module offered the following challenges:
• One challengewas tomake a Cozmo robotmove to a location,
retrieve a cube and return it safely to the starting point. This
could be made more complex with a time limit and obstacles.
This would simulate the removal of heavy tools or spare
parts that a human would struggle with (Figure 2 top-right).

• If there were more than two visitors wishing to use the
module, we could have them race each other to retrieve the
most cubes and return them safely to their zone or they could
work together to clear all of the area of cubes.

2) The Offshore Energy Platform module:

1Made by Anki. Skageby[44] describes the background to its development.
2A 6.5 cm diameter ROS enabled multi-sensing low-cost device, which can communi-
cate with other ROS robots using wifi or LoRa[39].
3We used Tello EDU dones https://www.ryzerobotics.com/

Figure 2: The three modules of the exhibit. Top Left: The
Offshore Energy Platform module with a participant pho-
tographing a drone. Top Right: A child in front of the Wind
Turbine module operating a Cozmo robot and attempting
to return the tools (cube) to the correct location. Bottom
Right: A close up from above looking down into the Indus-
trialMazemodule, as aCozmo robot performs a stackingma-
neuver. Bottom Left: All three modules with the Industrial
Maze in the foreground and the Offshore Energy Platform
in the background.

Figure 3: Left: One of the drones (approx 12 cm in diameter),
in its netted enclosure. Right: A Cozmo (foreground) with a
circular Limpet [39] sensor attached to the wall behind.

• For the majority of the time, this accommodated robots dis-
playing autonomous behavior. Visitors could engage the
researchers about the behavior, but when the exhibit became
busy we could have a visitor operating a Cozmo and either
clearing a space for the drone to land or trying to disrupt
the autonomous behavior. The autonomous behavior would
simulate the actual behavior of a full sized industrial robot
on an energy platform and give the visitors a chance to see
that, while autonomous robots are effective they are also not
perfect and can be disrupted. Thus illustrating that there are
somethings robots cannot yet handle.

3) The Industrial Maze module provided multiple activities to
help illustrate some benefits of robots:
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• A visitor could operate a Cozmo and attempt to move all of
the cubes from one room to the other. This task simulates
hazardous waste removal.

• A visitor could operate a Cozmo and stack the cubes in
front of the Limpet sensors [39] thus triggering its proximity
sensor and turning the LED from red to blue. This would
simulate a robot being used to extinguish a fire.

• Multiple Cozmos could be used to carry Limpets and use their
light sensor to detect which cubes are illuminated. Then the
other Cozmo can remove these cubes. This would simulate
robots inspecting and removing hazardous material.

• Visitors could operate an EMAT sensor (Electro Magnetic
Acoustic Transducer) [15], they would move the sensor over
a steel plate and would, by looking at a screen, try to detect
damage and imperfections on the other side of the plate that
was not visible, thus simulating the inspection required on
offshore platforms for corrosion and damage.

3.4 Engagement Messages and Enthusiasm
To conduct a successful engagement activity, the exhibitors need
to show enthusiasm in participation. We sought volunteers from
within our institutions, wishing to engage with the public and
describe their work. Our teamwas diverse in nationality and gender.

We trained in engagement techniques as a group and developed
three core messages to convey to visitors: 1) ‘Let a robot do the
dangerous work’, 2) ‘Robots and renewable energy are the
future’ and 3) ‘Engineering is a diverse profession’.

We devised duty rotas, which carefully avoided long spells of
duty over the seven-day exhibition so that the enthusiasm of the
team could be frequently refreshed.

4 STUDY AIMS AND CONSTRAINTS
4.1 Aims
We constructed four research questions to focus our study:

• RQ1 Knowledge: Does exposure to the outreach engage-
ment exhibit impact people’s knowledge about robots oper-
ating in hazardous environments?

• RQ2 Safety:What are the visitors’ perceptions in terms of
rating the amount of danger for a person performing cer-
tain tasks in hazardous environments, and is this perception
affected by exposure to the exhibit?

• RQ3 Future Jobs: What are the visitors’ opinions in terms
of rating the likelihood of a human and a robot working in
hazardous environments in the future, and is this affected
by exposure to the exhibit?

• RQ4 Demographics Factors: Do age group and gender
have an effect on responses?

4.2 Study Design Constraints
Our hosts, The Royal Society, asked that collecting demographic
data be kept to a minimum. A major focus of the event was on high
school students (14 to 18 yrs.) soon to make decisions on future
careers. However, there were particular exhibition times for families
and also evenings just for adults. This age diversity, coupled with
the expected high volumes, offered the opportunity to segment our

participants by age group. One of the aims was promoting STEM
careers. Due to the under-representation of females in some of these
disciplines [46], exposing any gender differences in responses might
be useful to inform future interventions and engagement activities.
Thus, collecting age and gender data allowed us to compare groups.
As we were not collecting identifying information, age and gender,
although personal data, would be non-identifiable and un-linked
data. Nevertheless, we took steps in the questionnaire design to
make even the collection of these two pieces of demographic data
seem non-threatening for any participant. We describe these later.
Also due to the expected high volume of visitors each individual
engagement would be short. Any participation in our study would
need to be similarly short to be proportionate.

4.3 Ethical Constraints
Ethical considerations were of particular importance. Firstly, we
wished to involve child participants and they require special con-
sideration when obtaining consent [23]. Secondly, the perceived
burden of participation was carefully minimized. The decision to
participate had to be an easy one (although participants were able
to consider and return later if desired).

Ethical best practice when involving children in research is to
obtain the informed consent of their parent and then obtain the
agreement (or assent) of the child [23]. We defined a child as 15 or
under in line with best practice in the domain of public engagement
[25]. To set a minimum age limit, we consulted with a school edu-
cation practitioner. We took into account the questions and set the
lower age limit at 7. Thus a child participant would be 7 to 15 years
old. We encountered no pressure from visitors to include younger
children, however, one enthusiastic six-year-old did participate.

Although we only intended to collect age and gender demo-
graphic data, the presentation and wording of these fields in our
questionnaire would need to be treated with sensitivity.

These ethical constraints were considered to protect the interests
of participants and the reputations of the research community, our
institutions and the Royal Society. These ethical issues had a central
role in the study design and their proper consideration was key to
obtaining ethical approval from our institution.

5 STUDY METHOD
5.1 Main Elements and Rationale
To allow the participation of large numbers in a fast-moving ex-
hibition environment, we used a tablet-borne questionnaire. To
minimize the time for obtaining informed consent, and participants’
understanding of what they needed to do, we opted for an assisted
questionnaire. Thus, participants were supported by a facilitator,
who explained the quiz, obtained and recorded verbal consents,
held the tablet and read out the questions from it. This also relieved
participants of the burden of physically handling a questionnaire.

Protocols for administering the questionnaire, specifying how
participants were approached, obtaining informed consent and, if
necessary, child assent, were devised and approved as part of the
study’s ethical approval through our institution.

5.2 The Design of the Study Instrument
5.2.1 Quiz Format. We decided to format the study instrument as
a quiz, which participants would enjoy the challenge of answering,
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Demographics 
(Adult Format)

Age > 6 ? 

Age <=15 ?

Yes

No

Too young

Parental 
Consent?

Consent?

Child Assent?
Do not 

proceed

Demographics 
(Child Format)

Quiz Questions
Response 
recorded

Yes Yes

Yes

No

No

Yes

No

NoDo not 
proceed

Do not 
proceed

Figure 4: The tablet-borne questionnaire logic flow show-
ing decision points for the differing consent/assent require-
ments for child and adult participants. The details of the
Child and Adult format for completing demographics fields
are described in the text. The quiz questions pertained to
one of four randomly picked quiz scenes Figures 5 and 6).

and view as part of their engagement with the exhibit, rather than
as a survey. While this restricted us to questions suitable for a quiz,
it was successful as it was rare for participants to decline. As a small
reward, all participants were given an all-ages robots coloring book.

To address RQ1, we asked knowledge questions presenting
scenes depicting tasks on an off-shore installation (Figure 5). We
scored the knowledge answers using a rubric based on the answers
of a panel of experts. To address RQ2 and RQ3, we asked opinion
questions to probe their views about the danger levels of the tasks
and the future capabilities and deployment of robots to do the vari-
ous tasks. Rather than attempt to exhaustively cover our research
questions, we used questions to sample within those two areas.

5.2.2 Questionnaire Administration. The tablet-borne question-
naire combined administrative and demographic questions with
the main questions and followed a logic flow for consent fields
based on age. We added age-based checks to cater for the consent
consideration. The facilitator protocol called for consents to be ob-
tained verbally before starting the questionnaire. The questionnaire
recorded those verbal consents. Figure 4 shows the flow involved.

5.2.3 Sensitive Treatment of Demographic Fields. The demographic
fields were for gender and age. The issue of self-identification with
gender labels can be a delicate one. We were simply interested in
being able to say whether or not females were answering our quiz
any differently to males. However, sex and gender are often inter-
twined, often unintentionally, in questionnaires [51]. To allow our
facilitators to deal sensitively with the gender field, we presented
this differently for children and adults. For children, we did not
confront them with the question. Instead the facilitator provided a

Figure 5: Example scene card held by a participant and pro-
viding the context for their answers to the quiz. Facilitators
gave participants guidance on the scale of the robots and the
scene. The other three scenes are described in the text and
summarized in Figure 6.

Figure 6: Scene cards A, B, and D are described by this mon-
tage containing their information pictorially summarised.
See the full Scene C card in Figure 5.

judgment, i.e.: Question, "Participant is..." with available responses
being "Male", "Female", and "Don’t know". Participants 16 or over
were asked to complete the field themselves without the facilitator
overlooking and the item took this form: Question, "I am ..." with
available responses being "Male", "Female", and "Prefer not to say".
It was a deliberate design choice not to label the items as asking
about gender but instead allow those answering to infer a label
for the question from the response labels. In this way, using facil-
itator judgments, avoiding labeling the question as about gender,
and providing alternative response labels, we avoided forcing any
participant to self-categorize as male or female [51].
5.2.4 Knowledge Items - QK1 and QK2. To test their knowledge of
robotics related to our exhibit (offshore energy asset inspection)
and probe their opinions about robot capabilities now and in the
future, we presented participants with one of four question scenes,
randomly picked, depicting four inspection scenarios as shown in
Figures 5 and 6. The four scenes were of the same difficulty and
depicted a selection of inspection tasks on a block of machinery
on a fictional off-shore energy platform. While probing knowledge,
the questions would implicitly require participants to understand
positively that only certain robots and sensors are appropriate for
particular tasks, while on the other hand some are not suitable.
After considering a scene, participants would all respond to the
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Figure 7: Example quiz question using the Smileyometer for-
mat [54]. This shows QPD1, probing perception of danger.

same questions. To keep participation time to a minimum, each
participant was asked about only one scene (randomly selected).

The scenes and labeled images of the choice of robots were
shown to participants on laminated A5 sized cards. (Figure 5 shows
an example). This allowed the scene to be in view to the participant
at all times during the quiz rather than it scrolling on the tablet.
Participants held the scene card. The facilitator held the tablet, read
the questions and either entered the participant’s answer or allowed
them to choose the answer on the tablet if they wished.

• QK1 asked them to choose from three different robots (aerial,
legged, and wheeled) to carry out the task.

• QK2 asked them to choose from four different sensors for the
robot to carry and to do the inspection (camera, thermometer,
pressure sensor and microphone).

5.2.5 Perception of Danger, and Opinion Items - QPD1, QOp1, and
QOp2. These items used the "Smileyometer" format of Likert-style
items with opposing semantic poles and icons with varying degrees
of smile so as to be more user-friendly for children [54] (Figure 7).
Note how rather than the lowest rating having a sad face, it has a
very slight smile because sad faces have been shown to be rarely
selected by children [54]. To probe perception of the amount of
danger that the task involved and to explore opinions about the
likely adoption of robots in the future, we asked the following:

• QPD1 “Is it dangerous for a person to do this task?”, re-
sponses: “Very Dangerous” (1) up to “Completely safe” (5).

• QOp1 “Do you think a human will be doing this task in 10
to 15 years from now?”, responses from “Absolutely not” (1)
up to “Definitely yes” (5).

• QOp2 “Do you think a robot will be doing this task in 10 to
15 years from now?”, responses from “Absolutely not” (1) up
to “Definitely yes” (5).

5.3 Experimental Design
5.3.1 Hypotheses. We formed the following hypotheses: H1 - (Ad-
dressing RQ1) Participants exposed to our exhibit will score more
highly on the knowledge questions (QK1 and QK2) than those
not exposed. H2 - (Addressing RQ2) Perception of danger (QPD1)
will differ between the exposed and not exposed participants. H3-
(Addressing RQ3) Opinions on the future of robots in hazardous
environments (QOp1 and QOp2) will differ between the exposed
and not exposed participants. H4 - (Addressing RQ4) Age group
may have an effect on participant responses.H5 - (Addressing RQ4)
Gender may have an effect on participant responses.

Thus, the condition which we manipulated was exposed and
not exposed to engaging with our exhibit (Figure 8). The study used

Figure 8: Child participants with their parents completing
the quiz before entering the exhibition hall and engaging
with the exhibit and thus part of the "Not Exposed" group.

Age Group Exposed Not Ex-
posed

Total

GenZ (7-15 yrs) 50 77 127
Millennials (16-34 yrs) 66 90 156
GenX (34-54 yrs) 45 43 88
BabyB+ (>54 yrs) 27 25 52
Total 188 235 423

Table 1: The number of participants in the two exposure con-
ditions by Age Group. There were a total of 426 completed
quizzes. There were missing age values in some rows so that
is why the total is 423 rather than 426.

a between-subjects design to allow us to investigate any effect of
exposure to our exhibit’s engagement activities. The other factors
which we explored were age group and gender.
5.3.2 Age Groups. We wished to explore variations across age
groups especially as we expected to have a large number of child
participants. Rather than choose age groups in an arbitrary way,
we used generational boundaries. There are differing definitions of
these [8, 24, 37, 50]. We chose age groups that both fitted contempo-
rary definitions and gave us reasonable group sizes for the data col-
lected [11]. This allowed us to keep our child participants as a single
age group. We chose to combine the baby boomer generation with
the pre-war generation due to the low numbers in both. This gives
age groups of 7-15, 16 - 34, 35-54, and over 54s (nominally
Generation Z (GenZ), Millennials, Generation X (GenX), and
Baby Boomers and the prewar generations (BabyB+)).

5.3.3 Expert Rubric to Score Knowledge Questions. To allow us to
independently score the answers to the knowledge questions QK1
and QK2, addressing RQ1, we recruited seven experts in robot-
ics and AI (6 males & 1 female). We used convenience sampling
from the academics and postdoctoral researchers at our institu-
tions. None were authors. All were volunteers. Each completed all
four questionnaires based on the four scenes. Participants’ answers
matching the experts were scored as 1. Where there was disagree-
ment between the experts on the best correct answer, a weighted
score was given equivalent to an answer’s popularity among the
expert group, e.g. for Scene B, item QK1, 3/7 experts chose "Legged"
and 4/7 chose "Aerial" as the best robot for the task thus for that
item the scoring rubric was: "Legged" scored 0.43; "Aerial", 0.57.
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Hypoth-
esis

Dep.
Var.

Indep.
Var.

F(3,423) p-value

H1 QK1 Exposure 3.152 .07
H1 QK2 Exposure 0.345 .557
H4 QK1 Age Gp. 2.882 <.05
H4 QK2 Age Gp. 1.95 .121

Table 2: Multivariate Analysis of Variance (MANOVA) with
Knowledge questions QK1, QK2 as Dependent Variables
(DV), and Exposure andAgeGroup as IndependentVariables
(IV). F(3,423) being the F statistic.

Hypoth-
esis

Dep.
Var.

Indep.
Var.

F(3,423) p-value

H2, H4 QPD1 Age Gp. 2.866 <.05
H3, H4 QOp1 Age Gp. 2.811 <.05
H3, H4 QOp2 Age Gp. 1.414 .238
H2 QPD1 Q.Scene 1.829 .141
H3 QOp1 Q.Scene 0.370 .775
H3 QOp2 Q.Scene 1.730 .160

Table 3: MANOVA with Perception of Danger QPD1, and
OpinionQOp1 andQOp2 as DVs, andQuestion (Q) Scene and
Age Group as IVs. F(3,423) being the F statistic.

6 RESULTS
In this section, we report the results which we will discuss in detail
in the Findings, Discussion and Future Work section.

To test H14, the knowledge questions QK1 and QK2were scored
according to the rubric of answerweights calculated from our expert
panel’s answers. We then conducted Multivariate Analysis of Vari-
ance (MANOVA) with the scores for QK1 and QK2 as Dependent
Variables (DVs) and with Exposure and Age Group as Independent
Variables (IVs). See Table 2. We did not observe significant differ-
ences in participants’ knowledge between the Exposed and Not
Exposed conditions. The means (M) and standard deviations (SD)
were as follows: QK1 Exposed, M:.63, SD:.40; QK1 Not Exposed,
M:.53, SD:.41; QK2 Exposed, M:.75, SD:.33; Qk2 Not Exposed, M:.74,
SD:.33. On the other hand, we saw a significant effect of Age Group
on knowledge for QK1 (robot choice), but no differences were ob-
served for QK2 (sensor choice). The posthoc test suggested that
there was a significant difference between GenZ (M:.5187,SD:.4175)
and BabyB+ (M:.7227,SD:.32614) (p < .05) for QK1.

To initially test hypotheses H2, H3 and investigate H45,
we conducted a MANOVA with QPD1 (Is it dangerous for a person
to do this task?), QOp1 (Do you think a human will be doing this
task in 10 to 15 years from now?), and QOp2 (Do you think a
robot will be doing this task in 10 to 15 years from now?) as DVs
and Question Scene and Age Group as IVs. Question Scene was
included to investigate if that was having an effect. We use analysis
4H1: Participants in the exposed condition will score more highly on the knowledge
questions than those not exposed
5H2: Perception of danger (QPD1) will differ between the exposed and not exposed
groups. H3: Opinions on the future of robots in hazardous environments (QOp1 and 2)
will differ between the exposed and not exposed groups. H4: Age group may have an
effect on participant responses.

of variance on our opinion rating data as has been done in other
HCI studies [4, 27] and which is validated in Norman [32]. (See also
Pell [35] and Jamieson [26] for further detail on this.) See Table 3.

For the significant results in theMANOVA,we conducted posthoc
tests with Bonferroni correction. For QPD1, we found a significant
difference between Millennial and GenX ratings (p < .05) with Mil-
lennials (M:2.77, SD:.908) rating it more dangerous for a person to
do a task as compared to GenX (M:2.40,SD:.953). For QOp1, we also
found a significant difference between GenZ and GenX (p < .05)
with GenZ (M:2.64,SD:1.07) rating humans performing the given
task in 10 to 15 years less likely than GenX (M:2.40,SD:.953).

To further investigate H4, we did tests as follows. The dif-
ference among the groups of generations motivated us further to
investigate the differences in perception and opinions for each
of the Scenes A, B, C, and D. Hence, we individually conducted
MANOVAs with QPD1, QOp1, and QOp2 as DV and Generation
group as IV for each of the four scenes. For reasons of space, we re-
port here only those significant at the .05 probability threshold along
with post-hoc test results: Firstly, for Scene B, QPD1 (F(3,89)=3.068,
p < .05), with posthoc tests showing that GenZ (M:3.21,SD:1.19)
rated the danger of the task significantly higher (p < .05) than
GenX (M=2.31,SD:.946). Lastly, for Scene D, we observe significant
difference for QPD1 (F(3,112)=3.274, p < .05), with post-hoc tests
showing that Millennials (M=2.71,SD:.879) rated the danger of the
task significantly higher (p < .05) than GenZ (M=2.09,SD:.753).

To further investigate H2, H3, and H4 we did the following
tests. To investigate further the differences in perception and opin-
ions between the exposed and not exposed conditions, we conducted
further MANOVAs with QPD1, QOp1, and QOp2 as DVs and Gen-
eration and Exposure as IVs separately for Scenes A, B, C, and D.
As above, for reasons of space, we report here only those signifi-
cant at the .05 probability threshold along with posthoc test results:
For Scene C, we observed a significant interaction effect between
Age Group and Exposure for QOp2 (F(3,109)=4.904, p < .05). The
MANOVA showed that, interestingly, all generation groups except
BabyB+ ratings of humans doing the task in Scene C were signifi-
cantly lower (p < .05) in theNot Exposed condition than the Exposed
condition (with BabyB+, ratings were significantly (p < .05) higher
in the Exposed condition). Themean and SD for BabyB+Not Exposed
and Exposed were M:1.33,SD:.50, & M:3.20,SD:1.30 respectively.

To investigate H56, we tested for significant differences be-
tween how males and females answered all 5 questions, but found
none (we carried out MANOVA with DVs as the five questions and
IV as Gender.) Of the 426 participants 235 were Male, 189 were Fe-
male and 2 preferred not to say (too few to analyze). The mean and
standard deviation for the age of males and females were M:29.19,
SD:19.54 & M:29.01, SD:17.09 respectively.

7 LIMITATIONS
Firstly, our focus was robotics in hazardous environments as op-
posed to RAI in general. We hope in future to apply our engagement
strategy to robotics in more social settings. Aside from that, the
limitations in our study are chiefly those of restrictions imposed by
the need to make participation lightweight and quick for partici-
pants. Using an assisted questionnaire may have introduced some

6H5: Gender may have an effect on participant responses.
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facilitator bias. It is possible that unconscious bias may have caused
some uneven coverage by age by facilitators. There were seven
facilitators across all the days of the exhibition. Any possible bias
was minimized by each receiving the same training and following
the same protocol. If any bias did exist we expect that it would be
largely randomly distributed across the participant groups and thus
simply contribute to experimental noise rather than be systematic.
Our use of four question scenes to match our exhibit’s wide scope
of robots and sensors may have been a confounding factor in that
we had less statistical power. We discuss this particular limitation
and improvements we would make to our study design below.

8 FINDINGS, DISCUSSION AND FUTURE
WORK

In this section, we set out specific findings and for each discuss
the results leading to them. We discuss the effectiveness of our
engagement strategy and the more general insights into public per-
ception of the future of robotics and AI in hazardous environments.
Where we mention generational differences, we do not claim such
differences are necessarily based on social generations, they may
simply be age group differences.

RQ1 -Knowledge:No significant effect onknowledge from
exposure to the exhibit. Our comparison of the quiz knowledge
question scores between participants exposed and not exposed to
our exhibit show that there was no significant difference. Therefore,
our hypothesis H1 was not accepted. We interpret this as being
probably due to a mismatch between the knowledge that our exhibit
provided to our participants and that which we probed in the two
knowledge questions. Not every participant interacted over the full
range of activities. Thus, in future iterations of our engagement
strategy, we plan to both a) focus specific knowledge in our key
engagement messages and b) ensure that any knowledge we probe
in an accompanying quiz matches the key engagement messages.
Additionally, rather than attempting to probe such a wide range
of knowledge with four question scenes, we will adopt a sampling
approach choosing one representative scene. This will simplify anal-
ysis and improve statistical power. We had expected a more even
coverage in the age groups and higher overall numbers, therefore
this limitation only surfaced in the light of our experience in this
study.

RQ2 - Safety: Millennials may appreciate more the bene-
fits of having robots undertake dangerous work than GenX
do. In QPD1, Millennials (16 to 34 yrs.) rated the tasks as more
dangerous for humans than did GenX (35 to 54 yrs.).

RQ2 - Safety: Children rated one scene more dangerous
than GenX did. When we examined by question scene, we found
in Scene B (an inspection located on an unguarded walkway), QPD1,
that GenZ rated the danger of the task significantly higher than
GenX did. This could be due to GenZ’s lack of experience, but it
might presage a future increased imperative to have robots take
over more of the hazardous work.

RQ3 - Future Jobs: Older peoples’ opinions about humans
doinghazardousworkwere not affected by our exhibitwhere-
as opinions of younger people were. Our hypothesis, H3 was
partially accepted as we did expose one effect of our exhibit on
participants’ opinions. For one question scene, C, for all generations
except BabyB+, the ratings of humans doing the task (QOp1) were

lower for those exposed to the exhibit than for those not exposed. i.e.
they thought that it was less likely that humans would be doing the
task in 10 to 15 years’ time. Scene C showed an "Analog sensor read".
It could well be that most of our participants felt that it was likely
this fairly simple task would be within the capability of robots soon
and so humans would not be doing it, whereas the other scenes
showed tasks that were viewed as less straight-forward by our
participants. The fact that, for the other scenes, opinions were not
significantly affected by exposure could mean we lacked enough
data. However, we could interpret this as either a) our interactive
exhibit strategy of presenting a balanced view, aimed at visitors
seeking new information activating the Scientific Literacy Model
[5], was not effective as it only had a partial effect on opinions, or
b) experiencing our exhibit mostly confirmed pre-existing opinions
about the future of RAI in hazardous environments.

RQ3 - Future Jobs: Children were more optimistic that
robots will do the dangerous work in future. We did discover
interesting age group differences in public opinions about the future
use of AI and robotics in extreme environments. In QOp1, GenX
were more certain that humans would still be doing all the tasks
10 to 15 years from now than GenZ (6 to 15 yrs.). We interpret
this as our young participants, either due to their youth or their
knowledge, being more optimistic that humans will be able to leave
more dangerous work to robots in the future.

RQ4 Demographic Factors: No difference in knowledge
between males and females. In relation to our aim of using our
findings to inform future engagement in terms of encouraging fe-
males into STEM careers, we found no differences between how
males and females answered all five quiz questions. This can be
used to reinforce our engagement messages to encourage more
females to study STEM subjects as we can point out that, as far
as our data in this study can show, the male and female public’s
knowledge in this area does not seem to differ significantly.

Our engagement strategy did strike a chord with the visi-
tors. This is evidenced by comments collected by the host institu-
tion, e.g. “Best thing was how interactive their exhibit was - for all age
ranges”; “Many interactive stalls, lots of robots the visitors could play
with so they handle the crowds well”; and “The robot demonstration
was very hands-on, you get to try it out for yourself and see how they
could work in real-life scenarios”.

9 CONCLUSION
In this paper, we described methods used in the first iteration of
a high throughput interactive Robotics and AI (RAI) public en-
gagement strategy. We designed an engaging light touch survey
instrument integrated with our engagement activity to probe pub-
lic knowledge and opinions about the future of RAI in extreme
environments. Our results showed that exposure to our exhibit did
not significantly change visitors’ immediate knowledge and only
slightly moved opinion. However, they did highlight some genera-
tional differences in visitors’ opinions of the future development of
RAI in hazardous environments. We aim to apply lessons learned
in future iterations of our high volume RAI engagement methods.
We hope this paper will encourage adoption of our approach by
other groups who wish to spread accurate knowledge of RAI to the
public and help to moderate some of the misinformed views of this
domain that currently distort public opinion.
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