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ABSTRACT
Motivated by the success of Bitcoin, lots of cryptocurrencies have
been created, the majority of which were implemented as smart
contracts running on Ethereum and called tokens. To regulate the
interaction between these tokens and users as well as third-party
tools (e.g., wallets, exchange markets, etc.), several standards have
been proposed for the implementation of token contracts. Although
existing tokens involve lots of money, little is known whether or
not their behaviors are consistent with the standards. Inconsistent
behaviors can lead to user confusion and financial loss, because
users/third-party tools interact with token contracts by invoking
standard interfaces and listening to standard events. In this work,
we take the first step to investigate such inconsistent token behav-
iors with regard to ERC-20, the most popular token standard. We
propose a novel approach to automatically detect such inconsis-
tency by contrasting the behaviors derived from three different
sources, including the manipulations of core data structures record-
ing the token holders and their shares, the actions indicated by
standard interfaces, and the behaviors suggested by standard events.
We implement our approach in a new tool named TokenScope and
use it to inspect all transactions sent to the deployed tokens. We
detected 3,259,001 transactions that trigger inconsistent behaviors,
and these behaviors resulted from 7,472 tokens. By manually exam-
ining all (2,353) open-source tokens having inconsistent behaviors,
we found that the precision of TokenScope is above 99.9%. Moreover,
we revealed 11 major reasons behind the inconsistency, e.g., flawed
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tokens, standard methods missing, lack of standard events, etc. In
particular, we discovered 50 unreported flawed tokens.
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1 INTRODUCTION
Motivated by the success of Bitcoin, lots of cryptocurrencies have
been created. Since only a few cryptocurrencies are native assets
(e.g., Bitcoin) of blockchains, the majority of them, so-called tokens,
are implemented as smart contracts running on Ethereum [16],
because Ethereum is the largest blockchain that supports smart
contracts. We will use the terms token and token contract inter-
changeably. These tokens usually involve lots of money. For exam-
ple, the top 10 tokens on Ethereum are worth more than 2.8 billion
USD [16]. To regulate the interactions between token contracts and
users as well as the third-party tools (e.g., wallets, exchange mar-
kets, blockchain explorers), several standards have been proposed
for the implementation of token contracts.

These standards usually specify standard interfaces (i.e., methods)
as well as their functionalities, which should be implemented by
token contracts, and standard events that should be emitted by token
contracts to notify other applications. For example, ERC-20, the
most popular token standard, defines 6 standard interfaces (we do
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not consider the optional standard interfaces) and two standard
events [62].

Users usually employ third-party tools to manipulate tokens. For
example, they use wallets to transfer tokens, leverage exchange
markets to purchase/sell tokens, and employ blockchain explorers
to check transactions. These tools interact with tokens through
the standard interfaces and standard events defined in the token
standards. For example, by investigating the source code of 10
popular third-party tools, we find that all of them recognize to-
ken behaviors by monitoring standard interfaces and/or standard
events. More specifically, 3 blockchain explorers (i.e., EthVM [8],
toy-block-explorer [7] and ETCExplorer [13]) and 1 wallet (i.e.,
MetaMask [37]) monitor standard methods. Ethereum ETL [22], a
data collection tool, recognizes tokens by detecting standard inter-
faces, and captures token transfer behaviors bymonitoring standard
events. Moreover, 1 blockchain explorer (i.e., BlockScout [47]), 2
wallets (i.e, MyEtherWallet [38] and Etherwall [18]), and 2 exchange
markets (i.e., EtherEx [15] and openANX [41]) monitor both stan-
dard methods and standard events.

However, if the implementation of token contracts is not consis-
tent with the standards, third-party tools can neither interact with
tokens properly nor even recognize tokens.

Unfortunately, little is known whether the behaviors of the de-
ployed tokens are consistent with the standards. Inconsistent behav-
iors can lead to user confusion and financial loss. For instance,
the token named blockwell.ai KYC Casper Token emitted standard
events informing others that the tokens have been transferred. How-
ever, it did not really transfer the token and thus cheat users [64].
As another example, the token named USDT made fake deposits
by invoking standard interfaces but did not transfer the tokens.
The exchange markets mistakenly thought that some tokens were
deposited because they detect token transfers by monitoring the
invocation of standard interfaces [40].

In this work, we take the first step to investigate such inconsis-
tent token behaviors with regard to ERC-20, the most popular token
standard. Although some formal verification techniques have been
proposed for checking the properties of smart contracts [2, 32, 49], it
is very challenging for them to conduct such automated inspection,
because they require developers tomanually define the correct prop-
erties and specify all the code that is responsible for such properties
in smart contracts. Unfortunately, since only less than 1% deployed
smart contracts are open-source [19], it is difficult for analysts to
locate all the code relevant to the defined properties. To the best
of our knowledge, none of the existing studies on smart contracts
examines the inconsistent token contracts [3, 20, 23, 36, 39, 57–60].
The closest work is from Fröwis et al. who propose two methods to
recognize token contracts by analyzing Ethereum virtual machine
(EVM) bytecode [20]. The first method relies on the method IDs of
standard interfaces. However, they acknowledged that this method
is prone to both false positives and false negatives [20]. For example,
a false positive will be generated if a constant in the smart contract
is equal to the ID of a standard interface [20]. Moreover, a false
negative will be raised if a token implements standard methods in
multiple contracts. The second method applies symbolic execution
and taint analysis to detect the pattern of token transfers [20]. If a
pattern is detected, a token contract is recognized [20]. More pre-
cisely, it applies taint analysis to check whether storage operations

are determined by inputs, and uses symbolic execution to match
path constraints with the symbolic expressions of the written val-
ues [20]. Unfortunately, this approach suffers from the limitations
of symbolic execution and their pattern definition, which lead to
false negatives [20]. Moreover, these two methods cannot detect
token transfer behaviors realized by the cooperation of multiple
contracts [20]. It is worth noting that their work aims to recognize
tokens, but our work focuses on detecting inconsistent behaviors.

We propose a novel approach to automatically detect the in-
consistent behaviors by contrasting the information from three
different sources, including the manipulations of core data struc-
tures recording the token holders and their shares, the actions
indicated by standard interfaces, and the behaviors suggested by
the standard events. If any two of them do not match, an inconsis-
tent behavior is detected. For example, an inconsistency happens
if the token balance of a token holder is decreased by 10 whereas
the standard Transfer event suggests a different amount. It is non-
trivial to realize this approach because of two challenges: (1) how
to automatically identify the core data structures that store each
token holder’s identifier and balance; (2) how to recognize token
transfers that are triggered through inter-contract invocations. For
example, when user1 wants to transfer tokens to user2, the token
contract can realize such functionality by calling one smart contract
to decrease the balance of user1 and then invoking another smart
contract to increase the balance of user2. Such contract interaction
hinders existing static analysis approaches from recognizing the
token behaviors because it is difficult to know which contract will
be invoked without runtime information.

To address these challenges, our trace-based approach leverages
the salient feature of blockchain that the execution of all smart
contracts can be restored from the blockchain. First, we recover
the execution traces of token contracts by node instrumentation
(§4.2) for investigating contract interactions. Second, we locate the
core data structure that maintains each token holder’s identifier and
balance, and recognize the token behaviors in terms ofmanipulating
the core data structure by exploiting how EVM accesses the data
structures (§4.3). Third, we collect the token behaviors indicated by
standard interfaces and the behaviors suggested by the standard
events through parsing traces, and detect inconsistent behaviors
by contrasting the information from the three sources (§4.4).

We implement our approach in a new tool named TokenScope

and use it to inspect all transactions sent to all deployed tokens.
TokenScope detects 3,259,001 transactions that trigger inconsistent
behaviors, which are produced by 7,472 inconsistent tokens (§5).
By manually examining all open-source (2,353) tokens exposing
inconsistent behaviors, we find only 1 false positive, and thus the
precision of TokenScope is above 99.9% (§5). Besides, we obtain sev-
eral interesting observations from the experimental results. For
example, 81% of inconsistent tokens were deployed after the final-
ization of ERC-20 standard, 1/3 of traded tokens are inconsistent
tokens, and 17.6% of inconsistent tokens are traded in exchange
markets. Moreover, we conduct a thorough investigation to reveal
11 major reasons behind inconsistent behaviors, including flawed
tokens, standard methods missing, lack of standard events, etc (§6).
In particular, we discover 50 unreported flawed tokens.

In summary, this work has three major contributions.
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• To the best of our knowledge, it is the first work on detecting
inconsistent token behaviors with regard to token standards. Our
novel approach automatically detects the inconsistent behaviors by
contrasting the information obtained from three different sources.
• We implement our approach in a new tool named TokenScope

after tackling several challenging issues.
• Using TokenScope to inspect all transactions sent to all deployed
token contracts, we found 3,259,001 inconsistent behaviors that
resulted from 7,472 tokens and obtained many interesting obser-
vations. By manually examining all open-source tokens exposing
inconsistent behaviors, we discover 11 major reasons for inconsis-
tency and find that TokenScope has a very high precision.

2 BACKGROUND
Account. There are two types of accounts in Ethereum: external
owned account (EOA) and smart contract. Only the smart contract
accounts have executable code and they can be created by an EOA
or another smart contract.
Smart contract. After being developed by any high-level lan-
guages (e.g., Solidity) and compiled into EVM bytecode, smart con-
tracts will be deployed to the blockchain and executed by EVM
according to the predefined program logic [63]. After deployment,
a smart contract cannot be modified [63]. A smart contract can
provide methods to be invoked by others, and emit events to in-
form other applications. When executing a smart contract, EVM
maintains a runtime stack, the memory which is a transient space,
and the storage which is a permanent space for storing data [63].
To prevent abusing resources, the deployment and invocation of a
smart contract will charge money from transaction senders [63].
Transaction. A transaction is a message sent by an account. To
invoke a smart contract, an account sends a transaction to the con-
tract, which specifies the invoked method and carries parameters.
There are two types of transactions depending on the senders of
transactions, namely external transactions whose senders are EOAs,
and internal transactions whose senders are smart contracts. Note
that only the external transactions are stored in the blockchain.
Although a smart contract can be called by another one, the first
smart contract in this call chain should be invoked by an EOA.
Token A token is a smart contract which records the information
of token holders and their shares, and supports token activities,
e.g., query the balance of a token holder, transfer tokens to another
holder. A token contract should implement standard interfaces and
standard events so that other applications can interact with it. As
the semantics of standard interfaces and standard events are well-
specified in token standards, users know which standard method
should be invoked to accomplish a task and can get the execution
result by monitoring standard events.

Token contracts can also have non-standard interfaces and non-
standard events, whose semantics are not specified in token stan-
dards. Like fiat money, a token has a total amount in circulation. To-
ken minting/burning means increasing/decreasing the total amount,
respectively.
ERC-20 standard. There are various token standards and the
most popular standard is ERC-20 [62] which defines 6 standard
method interfaces and 2 standard events. For example, the standard
method transferFrom, declared as “function transferFrom(address
_from, address _to, uint256 _value) public returns (bool success)”,

transfers _value tokens from address _from to address _to [62]. Be-
sides, transferFrom() must fire the standard event, Transfer [62].
This event is declared as “event Transfer(address _from, address
_to, uint256 _value)”, denoting that address _from transfers _value
tokens to address _to [62]. Moreover, ERC-20 requires that the
Transfer event should be emitted whenever tokens are transferred
(no matter by standard methods or non-standard methods) [62].
This work focuses on 2 standard interfaces (i.e., transfer() and
transferFrom()) and 1 standard event (i.e., Transfer) because they
are related to the change of token balances.
Node& synchronization.The underlying structure of a blockchain
is a P2P overlay that consists of multiple nodes. We only consider a
full node because it implements all functionalities of Ethereum [63].
Each Ethereum node runs an EVM, and maintains the same copy of
blockchain by synchronization. To reach the consensus with other
nodes, besides downloading blocks from other nodes, each node
replays all historical transactions to reach the same state. Hence,
for each transaction sent to a contract, the contract will be executed
in the node’s EVM during its synchronization with other nodes.

3 MOTIVATING EXAMPLES
This section present two inconsistent tokens, one legitimate token,
UGToken and one malicious token as motivating examples.
UGToken Fig. 1 shows the code of three functions in UGToken.
All code in this paper are in Solidity, the most popular language
for developing Ethereum smart contracts. UGToken uses a map-
ping variable, balances, to store the information of token holders,
which maps the address of a token holder to the amount of the
holder’s tokens. Each function leads to an inconsistent behavior.
Line 2 checks if the token holder _from has sufficient tokens to
send. If not, the execution of the smart contract halts. However,
Line 2 contains an integer overflow bug so that it can be bypassed
if _f eeUдt + _value > 2255 − 1, because both _feeUgt and _value
are 256-bit unsigned integers. If integer overflow happens, the two
token recipients (i.e., _to at Line 3, msg.sender at Line 5) will re-
ceive much more tokens than the amount sent by the token sender
(i.e., _from at Line 7). Therefore, an inconsistency happens because
the behavior indicated by the standard events (Lines 4, 6) does
not reflect the real token behavior. Specifically, Lines 4 and 6 sug-
gest that a huge number of tokens are sent by _from, however,
_from just sends a few tokens due to integer overflow. The func-
tion transfer() will incur an inconsistent behavior after Line 10
executes, because transfer() is a standard interface suggesting that
the account msg.sender will send _value tokens to _to, but no token
will be transferred in practice. Such inconsistency is called fake
deposit that could cheat exchange markets [40]. The function allo-
cateToken() also leads to an inconsistency since Line 12 increases
the balance of owner, but no Transfer event is emitted to announce
such token minting behavior. Lacking of standard events can con-
fuse third-party tools such as wallets, exchange markets, blockchain
explorers, because they will not be informed when token transfers.

By replacing Lines 2, 3, 5, 7, 10, and 12 with 2*, 3*, 5*, 7*, 10*, and
12*, respectively, we can remove the inconsistency and the revised
token contract complies with ERC-20. To fix the integer overflow,
we import the SafeMath library which halts execution if an integer
overflow happens [42]. To fix transfer(), we throw an exception
to halt execution if no token is transferred. Note that the effect of
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1  function transferProxy(address _from, address _to, 

uint256 _value, uint256 _feeUgt, ...)...{ 

2    if(balances[_from] < _feeUgt + _value) throw; 

//2* if(balances[_from] < SafeMath.safeAdd(_feeUgt, _value)) throw; 

  ... 

3 balances[_to] += _value; 

//3* balances[_to] = SafeMath.safeAdd(balances[_to], _value); 

4 Transfer(_from, _to, _value); 

5 balances[msg.sender] += _feeUgt; 

//5* balances[msg.sender] = SafeMath.safeAdd(balances[msg.sender], _feeUgt); 

6 Transfer(_from, msg.sender, _feeUgt); 

7 balances[_from] -= _value + _feeUgt; 

//7* balances[_from] = SafeMath.safeSub(balances[_from], 

SafeMath.safeAdd(_feeUgt, _value)); 

  ...} 

8   function transfer(address _to, uint256 _value) returns(bool success) { 

9 if(...) 

... 

10 else {return false;}} 

//10* else {throw;}} 

11  function allocateTokens(...){ 

... 

12   balances[owner] += value;} 

//12* balances[owner] = SafeMath.safeAdd(balances[owner], value); 

Transfer(0, owner, value);} 

Figure 1: An inconsistent token, the UGToken
executing a smart contract will be canceled if the execution halts
abnormally [63], and hence the revised functions transferProxy()
and transfer() do not produce inconsistent behaviors. To fix allo-
cateTokens(), we first use the SafeMath library to prevent potential
integer overflow, and then emit a Transfer event to announce to-
ken minting (i.e., “Transfer(0, owner, value)” meaning that owner
receives value tokens and nobody’s balance decreases).

Due to page limit, we just demonstrate how TokenScope detects
the inconsistent behavior incurred by the integer overflow in three
steps. First, it locates the core data structure (i.e., balances) that
stores the information of token holders. Then, it monitors the mod-
ification of balances (Lines 3, 5, and 7) to learn real token behav-
iors. That is, the balance of _to increases by _value, the balance of
msg.sender increases by _feeUgt, and the balance of _from decreases
by _value + _f eeUдt − 2256 due to integer overflow. Moreover, it
monitors the standard event emissions (Lines 4 and 6) to obtain the
token behaviors indicated by the event Transfer: the balance of _to
increases by _value, the balance of msg.sender increases by _feeUgt,
and the balance of _from decreases by _value + _f eeUдt which is
larger than 2256. By comparing the real token behaviors with the
behaviors indicated by Transfer, we detect the inconsistency.
A Malicious Token.We craft a token whose implementation (Fig.
2) violates ERC-20, to illustrate how the token can steal tokens
from token holders without being noticed. This token contract uses
a mapping variable, balances, to store the information of token
holders (Line 2). balances maps the address of a token holder to
the amount of tokens possessed by the holder. Line 4 declares the
standard event, Transfer. Lines 7 to 13 implement the standard in-
terface, transfer(). Both the transfer() interface and the Transfer
event (Line 13) indicate that the transaction sendermsg.sender trans-
fers _value tokens to _to. However, the contract steals fee tokens
from msg.sender and sends them to a hacker (Lines 9, 11). It also
defines another mapping variable, victim, to record the amount
of tokens that have been stolen from token holders (Lines 3, 12).

The standard method, balanceOf() (Line 14) is expected to return
the amount of tokens possessed by the queried account. However,
it deliberately returns a fake value that is the summation of the
real value and the amount of stolen tokens (Line 15) to hide its
activity of stealing tokens. Hence, users cannot notice it by invok-
ing balanceOf(). Inconsistent behaviors happen when invoking
transfer() and balanceOf(), because the standard interfaces and
the standard event do not reflect the real token behaviors.

1 contract simpleToken{ 
2 mapping (address => uint256) public balances; 

3 event Transfer(address, address, uint256); 
4 function balanceOf(address _owner) constant returns (uint) { 
5 return balances[_owner]; 

} 
6 function transfer(address _to, uint256 _value) returns(bool){ 
7 balances[msg.sender] -= _value; 

8 balances[_to] += _value; 
9 Transfer(msg.sender, _to, _value); 

} 

} 

1 contract malToken { 
2 mapping (address => uint256) public balances; 
3 mapping (address => uint256) public victim; 

4 event Transfer(address, address, uint256); 
5 uint public fee = 1;  
6 address hacker = 0xa49f0136194b7cb37a0ebc18fb840ce64c75091d; 

7 function transfer(address _to, uint256 _value) returns(bool){ 
8 require (balances[msg.sender] >= _value + fee); 
9 balances[msg.sender] -= _value + fee; 

10  balances[_to] += _value; 
11  balances[hacker] += fee; 
12  victim[msg.sender] += fee; 

13  Transfer(msg.sender, _to, _value);} 
14 function balanceOf(address _owner) constant returns (uint) { 
15 return balances[_owner] + victim[_owner];}} 

Figure 2: An inconsistent token that steals tokens
This contract can mislead Ethereumwallets (e.g., MetaMask [37])

and explorers (e.g., Etherscan [14]). We find that MetaMask returns
the fake value computed by Line 15 instead of the real token balance.
Therefore, users cannot notice token stolen using MetaMask. By
examining the source code of Metamask, we observe that it invokes
the method balanceOf() to query token balance. We also notice
that Etherscan, which discloses neither its source code nor the
technical details, returns the fake value of token balance. Moreover,
a user cannot detect token stolen by checking the transactions
displayed in Etherscan, because Etherscan just shows the value
that the user expects to send. We find that Etherscan learns token
transfer activities by listening to the Transfer event and hence it
can be misled.

Our approach detects such inconsistent behaviors in three steps,
and thus our approach can help pinpoint such token stolen be-
havior. First, it locates the core data structure (i.e., balances, Line
2) for storing the information of token holders. Then, it monitors
the manipulation of balances (Lines 8 to 11) to learn real token
behaviors. More precisely, the balance of msg.sender decreases by
_value + fee, and the balance of _to and hacker increase by _value
and fee, respectively. After that, by monitoring method invocations
and event emissions, our approach obtains the token behaviors
indicated by the method transfer() and the event Transfer. More
precisely, the balance of msg.sender decreases by _value + fee, and
the balance of _to and hacker increase by _value and fee, respec-
tively. After that, by monitoring method invocations and event
emissions, our approach obtains the token behaviors indicated by
the method transfer() and the event Transfer. That is, the balance
of msg.sender should be decreased by _value and the balance of
_to should be increased by _value. By comparing the real token
behaviors with the behaviors indicated by transfer() and Transfer,
we detect the inconsistency.

4 TOKENSCOPE

4.1 Overview
Inconsistency.We let M represent the core data structure in a token
contract for recording the information of token holders. Since the
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token balance of a token holder denotes her asset, we focus on
the token behaviors that change token balances. Let B denote such
token behaviors, which consists of a series of tuples <t_holder,
∆ value>. Each tuple means that the balance of the token holder
t_holder changes by ∆value . We let Bm and Be denote the token
behaviors learned from the standard interfaces and the standard
events, respectively, and let Br denote the real token behaviors
that modify M. Bm is ∅, if an external transaction invokes a non-
standard method, because the semantics of a non-standard method
is unknown. Be is ∅, if the execution of a token contract does not
emit a standard event. Br is ∅, if the execution of a token contract
does not modify M. If an external transaction invokes a standard
method, an inconsistency happens when any two of Bm , Be , and Br
do not match. On the other hand, if an external transaction invokes
a non-standard method, we detect an inconsistency when Be , Br
without considering Bm due to its unknown semantics.
Inconsistent token.Once an inconsistent behavior is detected, we
first locate the smart contracts recorded in the trace. Note that each
trace records the execution of all smart contracts triggered by one
external transaction (§4.2). For each of such contracts, if it invoked
the standard methods or emitted the standard events or modified M
or stored M, we regard it as an inconsistent token. Such definition
includes both the case of individual inconsistent contracts and the
case where several contracts interact to realize the token behaviors.

Stage 1
trace recording

mapping 

recognition

M recognition

token behavior 

recognition
comparison

Stage 2

Stage 3

M

trace

blockchain

inconsistent
token

mapping

event 

parsing
method 

parsing

Be Bm

BmBe

Br
Bm Be Br

Figure 3: Architecture of TokenScope

Workflow. TokenScope consists of three stages (Fig. 3). It takes
in the data from Ethereum, and outputs Bm , Be , Br for inconsis-
tent token behaviors and the corresponding tokens. The first stage
recovers the execution traces of all deployed smart contracts by
instrumenting a full node. The second stage takes in the traces
to recognize Bm , Be by monitoring the invocations of standard
methods and the emission of standard events, respectively, and
then identifies M from the traces. This stage outputs M, Bm , and
Be as the input of the next stage. For each trace, the last stage
recognizes Br by monitoring the modification of M, and compares
Bm , Be and Br to detect inconsistency. Note that the current imple-
mentation of TokenScope focuses on the change of token balances.
That is, TokenScope detects the modification of M and monitors the
emission of Transfer as well as the invocations of transfer() and
transferFrom(). We will extend TokenScope to recognize other to-
ken behaviors (e.g., set the allowable amount of tokens that can be
withdrawn by another account) in future work.

4.2 Stage 1: Trace Recording
A trace contains the execution log of smart contracts. An external
transaction can trigger the execution of a smart contract, which
may send several internal transactions to invoke other smart con-
tracts. By recording the trace for each external transaction sent to

a contract, we can get its execution log and that of internal transac-
tions (as well as how a contract invokes others) if any. Each trace
includes four parts, namely the hash of the corresponding external
transaction, the address of the transaction receiver (i.e., the invoked
smart contract), the data carried by the transaction which specifies
the invoked method and parameters, and the executed EVM opera-
tions of all invoked smart contract in order. TokenScope instruments
an Ethereum node to record traces since each node will download
all blocks and replay all transactions during synchronization [63].

An approach to obtain traces is invoking the API, debug.traceTr-
ansaction() provided by an Ethereum full node, which takes in the
hash of a transaction and outputs the trace triggered by that trans-
action [11]. However, there is no easy way to obtain all transaction
hashes. Moreover, the API runs slowly because before executing
the queried transaction it has to initialize the runtime environ-
ment, construct the correct state before the execution of the block
containing the queried transaction, and then replay the preced-
ing transactions before the queried transaction in the same block.
Besides, APIs use Remote Procedure Calls to communicate with
an Ethereum node, which introduces further delay. We compare
the time required to collect traces between TokenScope with de-
bug.traceTransaction(). The result is shown in Fig. 4. The x-axis
means that we synchronize 200,000 blocks from the genesis block in
the experiment. The cross in black color is the number of collected
traces. Therefore, there are 8,674 traces collected from the first
200,000 blocks. The triangle in red color is the time consumption
by invoking debug.traceTransaction(), and the point in blue color
is the time consumption of TokenScope. We find that the difference
between the time consumptions becomes larger when more blocks
are downloaded. In particular, the API debug.traceTransaction()
needs 8.7x time than TokenScope to collect the first 8,674 traces.
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Figure 4: Time consumption to collect traces
Instead of using debug.traceTransaction(), TokenScope instru-

ments an Ethereum node to record traces since each node will
download all blocks and replay all transactions during synchro-
nization [63]. To record the first three parts of a trace, we process
external transactions and internal transactions in different ways.
More precisely, to process an external transaction which starts the
execution of a smart contract, we insert recording code into the
function ApplyTransaction(), which is responsible for executing
external transactions. Since each Ethereum node provides a han-
dler for interpreting each EVM operation, to process an internal
transaction that invokes a smart contract, we insert recording code
into the handlers of CALL, CALLCODE, DELEGATECALL, and STATICCALL

because these four operations generate internal transactions for
invoking other smart contracts [63]. To record the last part (i.e.,
all executed EVM operations) of a trace, we insert logging code
into the interpretation handler of each EVM operation to record
the operation, values read by the operation, original values and
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new values of the variables written by the operation. Taking the
addition operation ADD [63] as an example, we record the operation,
two addends, and the addition result.

To record contract interaction, we need to identify the address,
the start and the end of each executed smart contract in the trace.
We achieve this goal by maintaining a call stack. Specifically, when
one of the handlers of CALL, CALLCODE, DELEGATECALL and STATICCALL

is invoked, we obtain the address of the executed smart contract,
which is the second item of the EVM stack, and then push the
address on the call stack. When the handler returns, TokenScope
pops the top item of the call stack. Therefore, we know the smart
contract to which an executed EVM operation belongs by checking
the top item of the call stack.

4.3 Stage 2: Locating Core Data Structure
Basic idea. The process of locating the core data structure for
recording token information is presented in Algorithm 1. This stage
takes in a trace, and outputs the core data structure M, token be-
haviors (i.e., Bm , Be ) suggested by standard methods and standard
events, respectively. Mapping is a data structure that maps keys to
values. It is a natural choice for storing the information of token
holders, where the key is the identifier of a token holder and the
value records the amount of tokens possessed by the token holder.

This stage consists of 4 steps. First, TokenScope locates all map-
ping variables in a contract, MAP (Step 1). Then, it recognizes the
token behaviors learned from standard methods(Bm ) (Step 2) and
standard events (Be ) (Step 3) through trace analysis. Since a con-
tract may use mapping variables to store other information, we
exclude irrelevant mapping variables by correlating MAP with Bm
and Be . More precisely, we regard a mapping variable as M if two
mapping items, whose keys are the two token holders specified by
the standard methods or the standard events, are modified (Step
4), because standard methods and standard events reflect token
transfer behaviors.

Algorithm 1: M recognition 

Inputs: trace, t. 

Output: Core data structure for maintaining token information, M; 

Token behaviors suggested by standard methods, Bm; 

Token behaviors suggested by standard events, Be. 

MAP = LocMap(t) //step1 

Bm = ParseStandardMethods(t) //step2 

Be = ParseStandardEvents(t)  //step3 

M = RecognizeM(MAP, Bm, Be) //step4 

return (M, Bm, Be) 

Algorithm 2: Inconsistency Detection 

Inputs: trace, t; 

Core datastructure for maintaining token information, M; 

Token behaviors suggested by standard methods, Bm; 

Token behaviors suggested by standard events, Be. 

Output: Whether an inconsistency happens, bin. 

Br = TokenBehavior(t, M)   //step1 

if Bm == null: bin = Match(Be, Br) 

  else bin = Match(Bm, Be, Br) 

return bin 

//step2 

Step 1: Locating Mapping variables. Without source code, locat-
ing mapping variables is challenging because there is no explicit
mapping structure in EVM bytecode. To tackle the challenge, we
exploit how a mapping variable is stored in EVM bytecode and
how a mapping variable is manipulated by EVM operations. Note
that all mapping variables are stored in the storage [63], and every
variable stored in the storage has a unique 32-byte identity [23].
The EVM operations SLOAD and SSTORE are used to read and write
data in the storage, respectively [63]. To access a mapping item
which is a <key, value> pair, a SHA3 operation takes in the identity
and the key to compute the location of the value. When executing a
SHA3 operation, the identity is stored in a place specified by a stack
item, and the key is stored before the identity.

We identify 4 types of mapping variables after manually in-
specting all 16,248 open-source tokens that have been deployed on
Ethereum and emitted the Transfer events. Although these 4 types
might not cover all deployed tokens, how to automatically identify
all types of mapping variables from the bytecode of smart contracts
deserves another paper. We discuss a possible approach in §8 and
will work on it in future work. In the following, we describe the 4
types of mapping variables and their accessing patterns.
Type-I. <key: addr, value: amount> This type of mapping associates
the address of an account to the amount of her tokens. Fig. 5 shows
how to read the amount from such a mapping variable with the
source code (i.e., “amount = balances[addr];”) and the corresponding
EVM operations. The location of the value (amount) is the result
of a SHA3 operation on the identity of balances and the key (addr).
After that, the amount is read from the storage by a SLOAD.

location
SHA3 SLOAD amountaddr identity

amount = balances[addr];

Figure 5: Read amount from <key: addr, value: amount>
Type-II. <key: addr, value: struct> This type of mapping associates
the address of an account to a struct that records the amount of
tokens possessed by the account. Fig. 6 illustrates how to read the
amount from such a mapping with the source code (i.e., “amount
= balances[addr].amount;”) as well as the corresponding EVM op-
erations. The location of the value (struct) is the result of a SHA3

operation on the identity of balances and the key (addr). We dis-
cover that the struct is stored contiguously in the storage. Hence,
an ADD operation is used to compute the location of amount, which
is equal to the location of struct plus an offset. Finally, the amount
is read by a SLOAD. If the amount is the first item of a struct, the
ADD operation is not needed because the offset is 0 and the data
structure becomes the same as Type-I shown in Fig. 5.

SHA3

SLOAD amount
offset

ADD
location

amount = balance[addr].amount;

addr identity

Figure 6: Read amount from <key: addr, value: struct>
Type-III. <key: addr, value: struct[]>. This type of mapping asso-
ciates an array of struct to a token holder for recording all historical
balances and the last item records her current token balance. We
name such data structures as checkpoints and each item of check-
points (i.e., a struct) as a Checkpoint. The array checkpoints is a
global variable that has an identity and is stored in the storage [63].
By inspecting how EVM stores an array, we reveal that the identity
refers to a storage location that stores the length of the array. Array
items are stored contiguously, and the location of the first array
item is the result of a SHA3 operation on the array’s identity.

Fig. 7 presents the EVM operations of the source code “amount =
balances[addr][balances[addr].length-1].amount;” for reading the
current token balance. To ease the presentation, we use subscripts
to differentiate multiple operations with the same opcode. The
identity of the array checkpoints is the result of a SHA31 operation on
the identity of balances and the address of a token holder. Since the
array identity suggests the location that stores the array length, we
get the length of checkpoints by a SLOAD1. Since the array items are
stored contiguously, the item offset of the latest struct Checkpoint
from the first one is (length-1) × sizeof(Checkpoint). The size of
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Checkpoint is a constant pre-computed during compilation of smart
contracts. By adding the item offset to the location of the first struct
which is the SHA32 result of the array identity, we get the location
of the latest struct. By adding the offset, we pinpoint the location of
the token balance, which is read by a SLOAD2.

Our approach can also handle three special cases. First, to access
the first struct of checkpoints, SLOAD1, SUB and MUL are not needed
because the item offset is 0. Second, when the balance of a token
holder is modified, a new struct recording the latest token balance
will be added to the array. In this case, the SUB is not needed because
the item offset of the new struct is length × sizeof(Checkpoint).
Third, if the amount is the first item of the struct, the ADD2 is not
needed because the offset is 0.
amount = balances[addr][balances[addr].length-1].amount;

SHA31 SLOAD1 lengthaddr identity

SHA32

size1

SUB MUL item offset

ADD1 ADD2

offset

SLOAD2 amount
loc of 1st item struct_loc

id_array

id_array

Figure 7: Read amount from <key: addr, value: struct[]>
Type-IV. Two maps. A smart contract can manage multiple kinds of
tokens simultaneously, and one kind of token is associated with a
struct, which is named as Asset. Such contract usually uses a map-
ping variable to associate the address of a token holder with an
index, and we call this map variable as holderIndex. Asset contains a
mapping variable that associates an index with a struct that records
the token balance. We call the mapping variable as wallets and the
struct asWallet. Fig. 8 demonstrates how to access the balance with
the source code “amount =Asset.wallets[holderIndex[addr]].amount;”.
The location of the index is the result of a SHA31 operation on the
identity of holderIndex (identity1) and the address of a token holder.
Then, the index is read by a SLOAD1. Similarly, the location of a
Wallet is the result of a SHA32 operation on the identity of wallets
(identity2) and the index read from previous operations. The loca-
tion of the amount is computed by adding an offset to the location
of Wallet. Finally, the amount is read by a SLOAD2. Our approach
also handles a special case that the amount is the first item of the
struct. In this case, the ADD is not needed because the offset is 0.

SHA31 SLOAD1
index

location

amount = Asset.wallets[holderIndex[addr]].amount;

addr identity1

SHA32

SLOAD2
amount

offset
ADD

location

index identity2

use

Figure 8: Read amount from two maps
Finding the identities of mappings. To locate a mapping variable, we
need its identity.We locate it by conducting the def-use analysis [51]
and leveraging the accessing pattern of mapping variables instead
of searching the trace for SHA3 operations, because SHA3 can be used
in other scenarios. We present the algorithm for finding mapping
identities in more detail.

Algorithm 2 locates the 4 types of mapping variables from EVM
bytecode, which takes in a trace and outputs the identities of map-
ping variables operated in the trace. We use the accessing pattern

Algorithm 2 : Mapping variables recognition
Inputs: trace, t. 
Output: Identities of mapping variables and their types, ids. 

1   for each op in t: 
2    switch op: 
3 case SHA3: 
4 dep = isPara(t, op, res_manipulate) 
5 if dep == true: 
6 res_sha3_2 = getRes(t, op) 
7 ids.remove(id); 
8 id = getId(t, op) //the identity of wallets (Type-IV) 
9 break 
10 dep = isPara(t, op, res_sha3) 
11 if dep == true: res_sha3_3 = getRes(t, op); 
12    else:  
13 reset();  
14 res_sha3 = getRes(t, op);  
15   id = getId(t, op) //the identity of the other 3 types 
16 case SLOAD | SSTORE: 
17 dep = isPara(t, op, res_add_2) 
18 if dep == true: ids.append(id, 4); // Type-IV 
19 dep = isPara(t, op, res_sha3_2) 
20 if dep == true: ids.append(id, 4); // Type-IV   
21 dep = isPara(t, op, res_add_4) 
22 if dep == false: ids.changeType(id, 3); // Type-III   
23 dep = isPara(t, op, res_add_3)  
24 if dep == true: ids.changeType(id, 3); // Type-III  
25 dep = isPara(t, op, res_add) 
26 if dep == true: ids.append(id, 2); // Type-II  
27 dep = isPara(t, op, res_sha3)  
28 if dep == true: ids.append(id, 1); // Type-I, can be removed   
29 res_manipulate = getRes(t, op)  
30 case ADD: 
31 dep = isPara(t, op, res_add_3) 
32 if dep == true: 
33 res_add_4 = getRes(t, op) 
34   break 
35 dep = isPara(t, op, res_sha3_3) 
36 if dep == true: 
37 dep = isPara(t, op, res_mul) 
38 if dep == true: res_add_3 = getRes(t, op) //not first array item 
39 else: res_add_4 = getRes(t, op) //first array item 
40 break 
41   dep = isPara(t, op, res_sha3_2) 
42 if dep == true: 
43 res_add_2 = getRes(t, op) 
44    break 
45 dep = isPara(t, op, res_sha3) 
46   if dep == true: res_add = getRes(t, op) 
47 case SUB: 
48 dep = isPara(t, op, res_manipulate) 
49 if dep == true: res_sub = getRes(t, op); 
50 case MUL: 
51 dep = isPara(t, op, res_sub) 
52 if dep == true: res_mul = getRes(t, op) //do not add one item 
53 else:  
54 dep = isPara(t, op, res_manipulate) 
55   if dep == true: res_mul = getRes(t, op); //add one array item 
56  return ids 
getRest(t, op): get the result of op. 

isPara(t, op, res): whether a parameter of op is res. If res is null, this function returns false. 

getId(t, op): get identity from a SHA3 operation. 

reset(): delete all temporary variables (e.g., dep). 

of Type-III shown in Fig. 7, which involves the most number of
EVM operations compared to the other patterns, to explain the algo-
rithm. For each EVM operation op in the trace t, if the operation is
SHA3, Line 4 executes. The function isPara(t, op, res) applies def-use
analysis to check whether res is a parameter of op in the trace t. If
res is null, isPara() returns false. Hence, we skip Lines 5 – 11, since
res_manipulate and res_sha3 are null. The function reset() deletes
all temporary variables (e.g., dep). If a mapping variable is found,
we start to detect another mapping variable after executing reset()
(Line 13). The result of SHA3, denoted by res_sha3, is obtained by
the function getRes() (Line 14). A possible identity of a mapping
variable, denoted by id, is obtained by the function getId() (Line
15). Whether id is a real identity will be checked in the following
steps. Note that getRes() and getId() just parse the trace, because
the parameters and results of all execution EVM operations have
already been recorded in the trace.
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When a SLOAD is executed (Line 16), the algorithm conducts
several checks. We skip Lines 17 – 26 since res_add_2, res_sha3_2,
res_add_4, res_add_3, and res_add are null. Since res_sha3 is a pa-
rameter of the SLOAD, the check at Line 27 returns true. Then, id
and the Type-I is added into the list ids (Line 28), indicating that
we have found a mapping variable of Type-I. The result of SLOAD,
res_manipulate is obtained at Line 29. When a SUB is executed
(Line 47), our algorithm checks whether one of its parameters is
res_manipulate (Line 48). If so, we get the result of the SUB, res_sub
at Line 49. When a MUL is executed (Line 50), our algorithm checks
whether res_sub is one of its parameters (Line 51). If so, the result
of the MUL, res_mul, is obtained at Line 52. res_mul is actually the
offset from the first item of the array.

When a SHA3 is executed (Line 3), the algorithm checks whether
one of its parameters is the result of another SHA3 (Line 10). If so, the
result of the SHA3, res_sha3_3 (Line 11) should be the location of the
first item of the array. When an ADD is executed (Line 30), several
checks are conducted. We skip Lines 31 – 34, since res_add_3 is
null. Then, the algorithm checks whether the two parameters of
the ADD are res_sha3_3 and res_mul (Lines 35 – 37). If so, the result
of the ADD, res_add_3 is the location of the array item that should
be read (Line 38). Then, an ADD is executed again. Our algorithm
checks whether res_add_3 is one of its parameters (Line 31). If so,
the result of the ADD, res_add_4, is the location of token balance
(Line 33). Finally, a SLOAD is executed to read the token balance. The
algorithm checks whether res_add_4 is one of the parameters of
the SLOAD (Line 21). If so, the accessing pattern of Type-III is found,
and we change the type of id from 1 to 3 (Line 22). The reason for
changing the type is that the pattern of Type-I is a sub-pattern of
Type-III. Hence, the algorithm first identifies the pattern of Type-I
inside the pattern of Type-III.
Step 2: Parsing standard methods. We analyze transfer() and
transferFrom(), which are used to transfer tokens, according to
their semantics defined in ERC-20 [62]. Other token standards
are discussed in §8. We detail how to monitor the invocation of
transfer() and omit the processing of transferFrom() as it is sim-
ilar. transfer() is defined as “function transfer(address _to, uint
_value) public returns (bool success);”, which allows the transaction
sender to transfer _value tokens to the token holder _to [62]. There-
fore, Bm has two tuples, <sender, -_value> and <_to, _value>. Since
both external and internal transactions can invoke smart contracts,
we handle them separately.

To handle external transactions, we insert recording code to
the function TransitionDb(), which calls vmenv.Call() to execute a
smart contract. Then, we obtain the transaction sender from the
first parameter of vmenv.Call(), and get _to and _value that are
placed together in the third parameter. To handle internal transac-
tions, we instrument the interpretation handlers of CALL, CALLCODE,
DELEGATECALL and STATICCALL. We only describe the instrumenta-
tion of opCall(), the interpretation handler for CALL, because other
handlers are instrumented in a similar way. Since opCall() invokes
env.Call() to execute a smart contract, we obtain the transaction
sender from the first parameter of env.Call(), and acquire _to and
_value from the third parameter.
Step 3: Parsing standard events. TokenScope interprets the Transfer
event according to its semantics defined in ERC-20. First, we look
for all logging operations (i.e., LOG0, LOG1, LOG2, LOG3, LOG4) from

the trace since logging operations are responsible for emitting
events [63]. For each logging operation, we get the third 32-byte
value read by the operation because it is the event ID. Since each
event has a unique ID that is the hash of the event signature [63],
we locate the Transfer event according to its ID. After recognizing
a Transfer event, we record Be which includes two tuples <_from,
-_value> and <_to, _value>. _from, _to and _value are the 4th – 6th
values read by the logging operation, respectively.
Step 4: Recognizing the core data structure M. Since a token
contract may have multiple mapping variables, we need to dis-
tinguish M, which stores the information of token holders, from
irrelevant mapping variables. Our idea is to correlate the modifi-
cation of a mapping variable with the standard interfaces and the
Transfer event. More precisely, if there exists a trace where the
modification of a mapping variable is accordant with the standard
interfaces or the Transfer event, we regard the mapping variable
as M. We detail how to correlate with the Transfer event as follows,
and omit the correlation with the standard interfaces because they
have a similar process. Since the Transfer event records two ad-
dresses (i.e., the sender and the receiver of tokens), we look for a
mapping variable whose two items corresponding to the two ad-
dresses are modified. If found, the mapping variable is M. We use the
token contract in Fig. 2 to illustrate how TokenScope distinguishes M
(balances) from the irrelevant mapping variable (victim). From the
Transfer event (Line 13), we get two addresses, msg.sender and _to.
There are two mapping variables, balances (Line 2) and victim (Line
3). For balances, the two mapping values whose keys aremsg.sender
and _to, respectively, are updated (Lines 9, 10) when the method
transfer() is executed. Therefore, we regard balances as M. In con-
trast, for victim, since only one mapping value corresponding to
the key msg.sender is updated (Line 12), victim is not M.

Algorithm 1: M recognition 

Inputs: trace, t. 

Output: Core data structure for maintaining token information, M;

Token behaviors suggested by standard methods, Bm; 

Token behaviors suggested by standard events, Be.

MAP = LocMap(t) //step1 

Bm = ParseStandardMethods(t) //step2 

Be = ParseStandardEvents(t) //step3 

M = RecognizeM(MAP, Bm, Be) //step4 

return (M, Bm, Be) 

Algorithm 3: Inconsistency Detection 

Inputs: trace, t; 

Core datastructure for maintaining token information, M; 

Token behaviors suggested by standard methods, Bm; 

Token behaviors suggested by standard events, Be. 

Output: Whether an inconsistency happens, bin. 

Br = TokenBehavior(t, M)   //step1 

if Bm == null: bin = Match(Be, Br) 

  else bin = Match(Bm, Be, Br) 

return bin 

//step2 

4.4 Stage 3: Detecting Inconsistent Behaviors
As shown in Algorithm 3, taking in a trace and the outputs of
stage 2, this stage detects inconsistency through two steps, namely
recognizing real token behaviors Br by monitoring the modification
of M (Step1) and comparing Bm , Be , and Br (Step 2).
Step1: Tokenbehavior recognition.Br is a set of tuples,<t_holder,
∆ value > for every trace. This step is similar to the first step in
stage 2, because we locate mapping variables by exploiting their ac-
cessing patterns. For the ease of presentation, we describe this step
by using the example in Fig. 2. After the execution of transfer(),
TokenScope records three tuples, <msg.sender, -(_value+fee)>, <to,
_value>, and <hacker, fee>. To detect the balance change of a token
holder, we first look for a SHA3 operation, which reads the identity
of M and the address of a token holder (i.e., the key), from each trace.
Then, we check if the result of the SHA3 is read by a SSTORE through
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the def-use analysis [51]. If so, we get the tuple < balold ,balnew >,
where balold and balnew are the original value and the new value
written by the SSTORE, respectively. Since the balance of an ac-
count can be modified several times in a trace, we may find several
such SHA3, and thus get n tuples, < baloldi ,bal

new
i >, 1 ≤ i ≤ n.

∆value = balnewn − balold1 , because the trace records the modifica-
tions of an account balance in order.
Step2: Comparison. We consider two cases. First, if Bm , ∅ indi-
cating that an external transaction invokes a standard method, we
compare Bm , Be , and Br . We find an inconsistency if any two of
them do not match. Second, if Bm = ∅ indicating that an external
transaction invokes a non-standard method, we only compare Be
and Br because the semantics of the non-standard method are un-
known, and we find an inconsistency if Be , Br . Reconsider the
example in Fig. 2, assuming that an external transaction invokes the
standard method transfer(), Bm and Be are the same, which are
<msg.sender, -_value> and <_to, _value>. However, Br is different
from them, which are <msg.sender, -(_value+fee)>, <_to, _value>,
and <hacker, fee>. Therefore, TokenScope detects the inconsistent
behavior and the token is considered as an inconsistent token.
Special addresses handling. The Transfer event uses special ad-
dresses to indicate special token behaviors. There are three special
addresses, including 0, the address of the token contract, and the
address of the account who creates the token contract (i.e., token
creator). Consider a Transfer event “event Transfer(address _from,
address _to, uint256 _value)”, a token contract often sets _from to
one of the special addresses to indicate token minting [12]. Simi-
larly, a token contract often sets _to to one of the special addresses
to indicate token burning [12]. In both cases, M will not be modified
if the balances possessed by the special addresses are not recorded
in M. To avoid false positives in detecting inconsistent behaviors,
after finding a mismatch between Be and Br , we check whether it is
because Br does not contain the balance change of special addresses.
If so, we do not consider such mismatch as inconsistency.

5 EXPERIMENTS
5.1 Results
To evaluate TokenScope, we download all 6,066,793 blocks from the
launching of Ethereum (Jul. 30, 2015) to Aug. 1, 2018. We obtain all
7,123,729 deployed smart contracts aswell as all 282,342,715 external
transactions, and record 119,245,201 traces for all transactions sent
to smart contracts.

Table 1 lists the numbers (before ‘/’) of tokens, inconsistent to-
kens adopting different M types, and transactions triggering incon-
sistent behaviors. The figures after ‘/’ denote the numbers of open-
source tokens, open-source inconsistent tokens and the numbers
of transactions triggering inconsistent behaviors of open-source
inconsistent tokens. TokenScope detects 57,411 tokens, where 7,472
(13%) tokens are inconsistent and their inconsistent behaviors are
triggered by 3,259,001 transactions. We find that 2,353 inconsistent
tokens open their source code in Etherscan. Most tokens adopt M
of Type-I, and 500+ tokens choose the other types. We find that
3,334 tokens present inconsistency when executing standard meth-
ods while 4,700 tokens show inconsistency when executing non-
standard methods. Moreover, 562 tokens present inconsistency in
both standard methods and non-standard methods.

Table 1: Tokens with different types of M

Reason Token name Token address 

1 

Bodhi Ethereum 0x47c171cE16c1C06AaE6E785Ba3c518C42235da0F 

WubCoin 0x2664877980f2684c9e9be07a50330e85847c5241 

Tablow Club 0xeab447c1e2b5a76b57f15e55eab504801aa6ceb0 

EIB 0x314d759476c5a3a02c0c6b1f1e213949084e277b 

AnythingApp Token 0x36f74e50de0b79f9b0bbeb644af9d40e3cc26433 

eDogeCoin 0x44cba3a62a15ac8f66ff75bf7abd058dcca7d7ed 

Coinvest COIN Token 0x4306ce4a5d8b21ee158cb8396a4f6866f14d6ac8 

Ethereum Lendo Token 0x45d0bdfDFBfD62E14b64b0Ea67dC6eaC75f95D4d 

2 MiniApps 0x0f587d0b7b1c1ef68b432936b75c4d6c4d12b647 

1. Another standard event of ERC-233 standard 2. Hardcoded key of M in optimized bytecode

Token name Token address 

Bodhi Ethereum 0x47c171cE16c1C06AaE6E785Ba3c518C42235da0F 

WubCoin 0x2664877980f2684c9e9be07a50330e85847c5241 

Tablow Club 0xeab447c1e2b5a76b57f15e55eab504801aa6ceb0 

EIB 0x314d759476c5a3a02c0c6b1f1e213949084e277b 

AnythingApp Token 0x36f74e50de0b79f9b0bbeb644af9d40e3cc26433 

eDogeCoin 0x44cba3a62a15ac8f66ff75bf7abd058dcca7d7ed 

Coinvest COIN Token 0x4306ce4a5d8b21ee158cb8396a4f6866f14d6ac8 

Ethereum Lendo Token 0x45d0bdfDFBfD62E14b64b0Ea67dC6eaC75f95D4d 

Test Token 0xfa74f89a6d4a918167c51132614bbbe193ee8c22 

Auctus Token 0xfd89de68b246eb3e21b06e9b65450ac28d222488 

Type # of tokens # of inconsistent tokens # of transactions 

I 56,864/16,248 7,329/2,329 3,199,583/2,069,581 

II 58/30 21/16 13,085/12,550 

III 227/92 60/3 38,712/872 

IV 262/92 62/5 7,621/465 

sum 57,411/16,462 7,472/2,353 3,259,001/2,083,468 

Deployment time. Fig. 9 shows the deployment time of incon-
sistent tokens, where each cross (x , y) indicates that there are y
inconsistent tokens deployed in the period of x weeks after the
deployment of the first inconsistent token. We find that the first
inconsistent token was deployed on Nov. 26, 2015, nearly 3 months
after the debut of Ethereum. ERC-20 was proposed on Nov. 19, 2015
and formally adopted on Sep. 11, 2017 after several revisions [54].
We observe that 81% ((7, 472 − 1, 420)/7, 472) of inconsistent to-
kens were deployed after the finalization of ERC-20. Moreover, the
number of inconsistent tokens increases steadily over time.
Remark1: there are still many inconsistent tokens after finaliz-
ing ERC-20. The gap between the description of ERC-20 and the
understanding of token developers may be one root cause.
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Figure 9: Deployment time of inconsistent tokens

Exchange markets. Table 2 lists the numbers of tokens traded in
5 centralized exchange markets and 4 decentralized exchange mar-
kets. The 2nd row shows market names and the 3rd row displays
the number of tokens traded in each market. The 4th row aggre-
gates the results of centralized markets and decentralized markets,
separately, and the last row lists the aggregated result from these
9 markets. The numbers before and after ‘/’ denote the number
of tokens and the number of inconsistent tokens, respectively. We
obtain the number of tokens traded in each centralized market by
visiting its website because centralized markets usually maintain a
list of traded tokens. We then get the number of inconsistent tokens
traded in each centralized market by searching its website for the
names and addresses of inconsistent tokens.

We adopt a different way to get the numbers for decentralized
exchange markets (DEXs) because DEXs do not maintain the list of
traded tokens. More precisely, we crawl the webpages of the decen-
tralized exchange order tracker [17] that presents all transactions
of DEXs, and then parse the collected transactions to get the ad-
dresses of all tokens traded in each decentralized exchange market.
After that, we get the number of inconsistent tokens traded in each
decentralized exchange market by matching the addresses of all
traded tokens with the addresses of all inconsistent tokens. Results
show that 1/3 (1, 314/3, 947) of traded tokens are inconsistent and
17.6% (1, 314/7, 472) of inconsistent tokens are traded in exchange
markets. Note that all 348 tokens traded in centralized markets are
also traded in decentralized markets.
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Remark2: inconsistent tokens can incur severe financial conse-
quences because many inconsistent tokens are traded in markets.

Table 2: Number of tokens traded in exchange markets
Centralized exchange market Decentralized exchange market 

Binance Bitfinex Poloniex Kucoin Huobi IDEX EtherDelta Token Store Kyber Network 

177/19 99/16 19/10 172/9 25/3 1,349/499 3,848/1,248 219/91 52/20 

∪ 348/24 3,947/1,314 

∪ 3,947/1,314 
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Figure 10: Number of standard methods realized in tokens

5.2 Token Transfers via Multiple Contracts
We classify tokens, open-source tokens, inconsistent tokens and
open-source inconsistent tokens according to the number of stan-
dard methods implemented by them, and present the results in Fig.
10. ERC-20 requires to implement all six standard interfaces [62],
but this figure shows that about 9.3% (5, 330 = 683 + 68 + 905 +
2, 163 + 687 + 824) tokens implement fewer standard methods.

It is interesting that 1.2% (683) tokens implement 0 standard
methods. By investigating their source code (if any), bytecode and
traces, we find that all of them transfer tokens via multiple con-
tracts. For example, some developers deploy a token contract that
implements standard token interfaces as a library (termed by lib).
Then, other developers write a token contract (termed by tc) with
customized functionality that loads lib and invokes the standard
interfaces implemented by lib to transfer tokens. TokenScope can rec-
ognize such tokens that transfer tokens through multiple contracts,
because it handles contract interaction by trace analysis. Moreover,
88% (601) of the tokens with 0 standard methods are inconsistent
tokens. A possible reason is that it is more difficult to develop the
tokens consisting of multiple contracts. Fig. 11 lists two inconsis-
tent tokens detected by TokenScope where the contract (0x38cD)
loads another contract (0x2a21) as a library. 0x2a21 implements all 6
standard interfaces while 0x38cD stores M and executes the code in
0x2a21 to manipulate M. TokenScope detects an inconsistency since
0x2a21 does not emit the Transfer event after transferring tokens.
TokenScope considers both contracts as inconsistent tokens because
the former stores M while the latter modifies M.

Besides loading library, token transfer can also be completed by
inter-contract invocations. As an example, Fig. 12 presents 4 incon-
sistent tokens (in gray boxes) from a trace recording the execution
of 5 smart contracts. In particular, an EOA A invokes the method
withdrawToken() of the contract Etherdelta_2, then withdrawTo-
ken() invokes the method transfer() of the contract FunFair_Old.
This method emits the Transfer event. Besides, this method in-
vokes the method transfer() of the contract Controller, in which

tc
0x38cD3450Fe4EafC2BF79
eb4b4B357D1E9DBdED0D
0 standard methods

lib 
0x2a21d90745dfed999aa
0b6e08d648855c5f14663
6 standard methods

load
lib 

0x2a21d90745dfed999aa
0b6e08d648855c5f14663
6 standard methods

Figure 11: Two interacted inconsistent tokens

the method transfer() of the contract ledger is called. The lat-
ter transfer() manipulates M. After the execution of the contract
ledger, the Controller calls the method controllerTransfer() of the
contract FunFair, which also emits the Transfer event. A recent
online discussion disclosed that FunFair is a new version of Fun-
Fair_Old, and each version emits the Transfer event when tokens
are withdrawn from Etherdelta_2 [21]. Our approach discovers the
inconsistency because the Transfer event is emitted twice.

A
Etherdelta_2

withdrawToken()

FunFair_Old

transfer()

Transfer

Controller

transfer()

ledger

transfer()

M

FunFair

controllerTransfer()

Transfer

1 2 3 4

5

Figure 12:An inconsistency foundby cross-contract analysis

5.3 Precision of TokenScope
We define precision as the ratio of the number of real inconsis-
tent tokens to the number of inconsistent tokens discovered by
TokenScope. A false positive refers to a token contract that complies
with ERC-20 but is regarded as an inconsistent one by TokenScope

mistakenly due to incorrect computation of either Bm , Be , or Br .
To evaluate the precision of TokenScope, we manually check all

2,353 open-source inconsistent tokens detected by TokenScope, and
find only 1 false positive (i.e., MiniApps). Hence, the precision is
99.9%= (2, 353−1)/2, 353. Manual inspection reveals that MiniApps
hardcodes an address in the contract and uses the address as the key
to access M. Note that the location of the mapping value, whose key
is the hardcoded address, will be pre-computed during compilation
if full optimization is used. Consequently, SHA3 is not needed in the
contract’s bytecode to compute the location. TokenScope can locate M
because MiniApps also accesses the balances of other token holders
(not the hardcoded one). But it mistakenly reports an inconsistency
when the balance of the hardcoded address is modified, because
Br = ∅ due to the lack of SHA3.
Screening through whitepapers. If the whitepaper of an incon-
sistent token describes the inconsistency, such inconsistency may
not cause severe consequences because users can get aware of the
inconsistency by reading the whitepaper. We further evaluate how
many inconsistent tokens detected by TokenScope can be filtered
out by their whitepapers. Without considering the false positive
mentioned above, we search for the whitepapers of all 2,352 open-
source inconsistent tokens from the Internet including the official
websites of tokens, whitepaper collection websites and forums, and
successfully download 752 whitepapers. After reading them, we
find that only 31 whitepapers describe token behaviors in detail
(e.g., how many tokens will be charged as fee) and only 1 token’s
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(i.e., Krown) whitepaper mentions the inconsistency: “An Event
‘Authority Notified’ is generated on the blockchain to notify Central
Authority” [46] instead of the Transfer event. Note that TokenScope
considers Krown as an inconsistent token because Be , Br . This
analysis shows that existing whitepapers pay little attention to
describing inconsistency.
Screening through other standards. TokenScope may detect an
inconsistency if a token contract emits a standard event defined by
other token standards, because that event is a non-standard event
whose semantics is not defined in ERC-20. Such inconsistency may
not introduce serious problems because users can get aware of the
inconsistency by reading the other token standards. By checking all
2,353 open-source inconsistent tokens, we find that TokenScope de-
tects 681 (0.017% = 681/3, 259, 001) inconsistent behaviors resulted
from 10 (0.4%=10/2,353) tokens. These 10 tokens emit both the ERC-
20 Transfer event and a new type of Transfer event defined by
the ERC-223 standard, whose prototype is “event Transfer(address
_from, address _to, uint256 _value, bytes _data)” [10]. Note that
the ERC-223 Transfer event is different from the ERC-20 Transfer

because they have different event prototypes. TokenScope identifies
these 10 tokens since they emit ERC-20 Transfer events, and it
detects inconsistent behaviors when these tokens emit ERC-223
Transfer events. These 10 tokens are listed in Table 3. We plan to
extend TokenScope to support other token standards in future.

Table 3: Ten Inconsistent Tokens due to the Event Defined
in ERC-223

Reason Token name Token address 

1 

Bodhi Ethereum 0x47c171cE16c1C06AaE6E785Ba3c518C42235da0F 

WubCoin 0x2664877980f2684c9e9be07a50330e85847c5241 

Tablow Club 0xeab447c1e2b5a76b57f15e55eab504801aa6ceb0 

EIB 0x314d759476c5a3a02c0c6b1f1e213949084e277b 

AnythingApp Token 0x36f74e50de0b79f9b0bbeb644af9d40e3cc26433 

eDogeCoin 0x44cba3a62a15ac8f66ff75bf7abd058dcca7d7ed 

Coinvest COIN Token 0x4306ce4a5d8b21ee158cb8396a4f6866f14d6ac8 

Ethereum Lendo Token 0x45d0bdfDFBfD62E14b64b0Ea67dC6eaC75f95D4d 

2 MiniApps 0x0f587d0b7b1c1ef68b432936b75c4d6c4d12b647 

1. Another standard event of ERC-233 standard 2. Hardcoded key of M in optimized bytecode

Token name Token address 

Bodhi Ethereum 0x47c171cE16c1C06AaE6E785Ba3c518C42235da0F 

WubCoin 0x2664877980f2684c9e9be07a50330e85847c5241 

Tablow Club 0xeab447c1e2b5a76b57f15e55eab504801aa6ceb0 

EIB 0x314d759476c5a3a02c0c6b1f1e213949084e277b 

AnythingApp Token 0x36f74e50de0b79f9b0bbeb644af9d40e3cc26433 

eDogeCoin 0x44cba3a62a15ac8f66ff75bf7abd058dcca7d7ed 

Coinvest COIN Token 0x4306ce4a5d8b21ee158cb8396a4f6866f14d6ac8 

Ethereum Lendo Token 0x45d0bdfDFBfD62E14b64b0Ea67dC6eaC75f95D4d 

Test Token 0xfa74f89a6d4a918167c51132614bbbe193ee8c22 

Auctus Token 0xfd89de68b246eb3e21b06e9b65450ac28d222488 

Type # of tokens # of inconsistent tokens # of transactions 

I 56,864/16,248 7,329/2,329 

II 58/30 21/16 

III 227/92 60/3 

IV 262/92 62/5 

sum 57,411/16,462 7,472/2,353 

5.4 Vetting Tokens before Deployment
Although TokenScope focuses on detecting inconsistent behaviors
that have been happened in Ethereum, it can be easily extended
to discover inconsistent tokens before deployment by equipping
it with any path exploration techniques (e.g., symbolic execution,
fuzzing) to generate traces. To demonstrate the feasibility, we de-
velop a tool named TokenFuzzer that integrates TokenScope with
ContractFuzzer, which is an open-source fuzzing tool for discov-
ering security vulnerabilities of smart contracts [30], to detect in-
consistent tokens. ContractFuzzer instruments the EVM to check
whether security vulnerabilities are triggered, and runs the target
smart contracts with generated inputs (i.e., transactions) in a private
chain equipped with the customized EVM. TokenFuzzer reuses the
code for generating transactions from ContractFuzzer, replaces the
EVM instrumented by ContractFuzzer with the EVM instrumented
by TokenScope for recording traces, and reuses the code for locating
M and detecting inconsistent behaviors from TokenScope.

To evaluate TokenFuzzer, we first manually identify 20 incon-
sistent tokens from all open-source tokens that have not exposed

inconsistent behaviors yet. That is, TokenScope has not discovered
their inconsistent behaviors. It is worth mentioning that we do
not select many inconsistent tokens to test TokenFuzzer due to two
reasons. First, ContractFuzzer needs to run a private chain which
is very time consuming. Second, the purpose of this experiment
is to demonstrate that TokenScope can be extended to vet token
contracts before their deployment, and we will further enhance
TokenFuzzer’s capability and boost its performance in future work.

The experimental results show that TokenFuzzer discovers 7
(35% = 7/20) inconsistent tokens, where 2 tokens have integer over-
flow bugs and the other 5 tokens do not emit standard events when
M is modified (reasons are detailed in §6). After manually inspect-
ing the 13 undiscovered inconsistent tokens, we find 3 issues: (1)
some code can only be triggered by certain accounts; (2) some code
can only be triggered when another method has already executed;
(3) ContractFuzzer randomly generates inputs which are difficult
to trigger integer overflow. To evaluate whether TokenFuzzer can
discover such inconsistent tokens if these 3 issues are solved, we
use proper accounts to invoke token contracts, properly arrange
the order of the tested methods, and modify the input generation
strategy of ContractFuzzer to produce desired values. After that,
we re-run TokenFuzzer and find that it can successfully discover all
these inconsistent tokens.
Remark3: TokenScope can be easily extended to discover inconsis-
tent tokens before token deployment (i.e., inconsistent behaviors
have not been trigger yet) if it is equipped with a proper path
exploration component. We will investigate it in future work.

Table 4: 11 major reasons for inconsistency
Reason # Description 

Flawed tokens 88 Incorrect implementation of standard event emission or M manipulation. 
Incorrect method 

invocation 
34 The unnamed method rather than the standard methods is invoked. 

Lack of event/M 
modification 

2,097 The token contract does not emit the standard event or modify M. 

Fee 51 
The code of fee charging is implemented in a standard method, or in a non-
standard method without proper implementation of standard events. 

Token minting 654 
The code of token minting is implemented in a standard method, or in a 
non-standard method without proper implementation of standard events. 

Token burning 463 
The code of token burning is implemented in a standard method, or in a 
non-standard method without proper implementation of standard events. 

Token purchase 246 
An account buys tokens in ETH by invoking a standard method, or a non-
standard method without proper implementation of standard events. 

Token sell 18 
An account sells tokens for ETH by invoking a standard method, or a non-
standard method without proper implementation of standard events.  

Unit conversion 19 
Converting the token into a much smaller basic unit, and the code of unit 
conversion is implemented in a standard method, or in a non-standard 
method without proper implementation of standard events. 

Account changed 50 
The balance of a specified account, rather than the account indicated by 
standard method interfaces or standard events, is modified. 

Amount changed 6 
The specified amount of tokens, rather than the amount indicated by 
standard method interfaces or standard events, are transferred. 

1 https://eips.ethereum.org/EIPS/eip-777 
2 https://github.com/ethereum/EIPs/issues/1404 
3 https://github.com/ethereum/EIPs/issues/223 
4 https://github.com/ethereum/EIPs/issues/965 
5 https://github.com/ethereum/EIPs/issues/827 
6 https://github.com/ethereum/EIPs/issues/1003 
7 https://github.com/ethereum/EIPs/issues/677 
8 https://github.com/ethereum/EIPs/pull/621 

Standard 
# of ERC-20 standard interfaces 

support (must/optional) 
# of new standard 

interfaces 
# of standard 

events 
# of new standard 

events 
7771 2/2 9 0 5 

14042 6/0 2 2 0 
2233 3/3 1 0 1 
9654 2/2 12 0 5 
8275 6/3 2 2 0 

10036 6/3 1 2 0 
6777 6/3 1 2 0 
6218 6/3 2 2 0 

6 REASONS OF INCONSISTENT BEHAVIORS
We manually investigate all 2,352 open-source inconsistent tokens
to reveal the reasons behind inconsistency. Table 4 lists the 11 major
reasons, some of which have several sub-categories. For each reason,
we explain it and show the number of inconsistent tokens. Note
that one inconsistency can be caused by several reasons. The most
number of reasons we find for an inconsistent token is 3, and we
find 68 such kind of inconsistent tokens. The figures in “<>” denote
the numbers of tokens in the corresponding categories. Note that
all inconsistent tokens presented in this section have been deployed
in Ethereum and invoked (e.g., purchase/sell/transfer) by accounts.
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6.1 Flawed tokens
Flawed tokens implement the standard event emission or M manip-
ulation incorrectly. We found 88 flawed tokens and classified them
into four groups. To the best of our knowledge, 50 flawed tokens are
unreported. All flawed tokens are listed in http://bit.ly/Tokenscope
due to page limit.
(1) Incorrect implementation of Transfer <24>. We find various er-
rors in implementing the Transfer event, such as incorrect accounts,
and duplicated events. The consequence is the confusion of users be-
cause they cannot know the real token behaviors from the Transfer
event. Fig. 13 presents a flawed token that sets an incorrect account
in Transfer (Line 5). Both the semantics of transferFrom() (Line 1)
and the modification of M (Lines 2, 3) indicate that the token sender
is _from. Therefore, the correct implementation of the Transfer

event should be “Transfer(_from, _to, _value);” instead of the one
on Line 5. As another example, Fig. 14 shows a token that emits the
Transfer event twice (Lines 2, 6) for each invocation of transfer().
A token holder will be confused since the Transfer events suggest
that 2 × _value tokens are transferred by invoking transfer().

1 function transfer(address _to, uint256 _value) public validAddress(_to) ... {
2 if(balanceOf[msg.sender] >= _value && _value > 0){
3 balanceOf[msg.sender] = sub(balanceOf[msg.sender], _value);
4 balanceOf[_to] = add(balanceOf[_to], _value);
5 Transfer(msg.sender, _to, _value);
6 return true;}
7 else{return false;}}

1 function transferFrom(address _from, address _to, uint256 _value) returns (bool success){
......

2 balanceOf[_from] -= _value;
3 balanceOf[_to] += _value;
4 spentAllowance[_from][msg.sender] -= _value;
5 Transfer(msg.sender, _to, _value);}

1 function transfer(address _to, uint256 _value) returns (bool success) {
2 Transfer(msg.sender, _to, _value);
3 if (balances[msg.sender] >= _value && _value > 0) {
4 balances[msg.sender] -= _value;
5 balances[_to] += _value;
6 Transfer(msg.sender, _to, _value);
7 return true;
8 } else { return false; }}

1 function transferFrom(address _from, address _to, uint256 _value) ...{
2 balanceOf[_from] = SafeMath.sub(balanceOf[_from], _value);
3 balanceOf[_to] = SafeMath.add(balanceOf[_to], _value);
4 TransferFrom(_from, _to, _value);
5 return true;}

1 function transfer(address _receiver, uint256 _amount) ...{
2 require(_transferCheck(msg.sender, _receiver, _amount));
3 UserBalances[msg.sender] = Sub(UserBalances[msg.sender], _amount);
4 UserBalances[_receiver] = Add(UserBalances[msg.sender], _amount);
5 Transfer(msg.sender, _receiver, _amount);
6 return true; }

1 function transfer(address _toAddress, uint256 _amountOfTokens)...{
......

2 tokenBalanceLedger_[_customerAddress] = SafeMath.sub(
tokenBalanceLedger_[_customerAddress], _amountOfTokens);

3 transferFrom(_customerAddress, _toAddress, _amountOfTokens); ...}

Figure 13: Incorrect implementation of Transfer event

1  function transfer(address _to, uint256 _value) public validAddress(_to) ... { 

2    if(balanceOf[msg.sender] >= _value && _value > 0){ 
3 balanceOf[msg.sender] = sub(balanceOf[msg.sender], _value); 
4 balanceOf[_to] = add(balanceOf[_to], _value); 

5 Transfer(msg.sender, _to, _value); 
6      return true;} 
7    else{return false;}} 

1  transferFrom(address _from, address _to, uint256 _value) returns (bool success){ 

   ...... 
2    balanceOf[_from] -= _value; 
3    balanceOf[_to] += _value; 

4    spentAllowance[_from][msg.sender] += _value; 
5    Transfer(msg.sender, _to, _value);} 

1 function transfer(address _to, uint256 _value) returns (bool success) { 
2 Transfer(msg.sender, _to, _value); 

3 if (balances[msg.sender] >= _value && _value > 0) { 
4 balances[msg.sender] -= _value; 
5 balances[_to] += _value; 

6 Transfer(msg.sender, _to, _value); 
7 return true; 
8 } else { return false; }} 

Figure 14: A flawed token that emits the Transfer event twice

(2)Informing ETH transfer instead of token transfer <2>. The event
Transfer is used to inform token transfer, but we found 2 token con-
tracts that use it to inform ETH transfer (i.e., an account transfers
some ETH to another account). Users could be confused because
there is no token transfer when they receive the Transfer event.
(3) Incorrect implementation of M manipulation <14>. Such flawed
tokens will incur serious consequences including financial loss, be-
cause the flawed manipulation of M may set an incorrect balance to
an unexpected account. Fig. 15, Fig. 16 and Fig. 17 present three such
flawed tokens. The token contract shown in Fig. 15 sets the balance
of _receiver to an incorrect value (Line 4) because the balance of _re-
ceiver rather than that ofmsg.sender should be added. Hence, Line 4
should be “UserBalances[_receiver] = Add(UserBalances[_receiver],
_amount);”. The token contract shown in Fig. 16 reduces the bal-
ance of the token sender twice for each invocation of the standard
method transfer(). Specifically, the balance is reduced at Line 2,
and then the standard method transferFrom() is invoked (Line 3),
which reduces the balance again. Fig. 17 shows a token containing
a subtle flaw. The variable balanceFrom is set to the token balance
of _from (Line 2). Then, the token balance of _from is set to the
subtraction of _value from balanceFrom (Line 4). The balance should
not be changed if _from is _to. However, the token balance of _from
will decrease by _value due to the subtle implementation error, if
_from is _to.

1  function transfer(address _to, uint256 _value) public validAddress(_to) ... { 

2    if(balanceOf[msg.sender] >= _value && _value > 0){ 
3 balanceOf[msg.sender] = sub(balanceOf[msg.sender], _value); 
4 balanceOf[_to] = add(balanceOf[_to], _value); 

5 Transfer(msg.sender, _to, _value); 
6      return true;} 
7    else{return false;}} 

1  transferFrom(address _from, address _to, uint256 _value) returns (bool success){ 

   ...... 
2    balanceOf[_from] -= _value; 
3    balanceOf[_to] += _value; 

4    spentAllowance[_from][msg.sender] += _value; 
5    Transfer(msg.sender, _to, _value);} 

1 function transfer(address _to, uint256 _value) returns (bool success) { 
2 Transfer(msg.sender, _to, _value); 

3 if (balances[msg.sender] >= _value && _value > 0) { 
4 balances[msg.sender] -= _value; 
5 balances[_to] += _value; 

6 Transfer(msg.sender, _to, _value); 
7 return true; 
8 } else { return false; }} 

1 function transferFrom(address _from, address _to, uint256 _value) ...{ 

2 balanceOf[_from] = SafeMath.sub(balanceOf[_from], _value); 
3 balanceOf[_to] = SafeMath.add(balanceOf[_to], _value); 
4 TransferFrom(_from, _to, _value); 

5 return true;} 

1 function transfer(address _receiver, uint256 _amount) ...{ 
2 require(_transferCheck(msg.sender, _receiver, _amount)); 
3 UserBalances[msg.sender] = Sub(UserBalances[msg.sender], _amount); 

4 UserBalances[_receiver] = Add(UserBalances[msg.sender], _amount); 
5 Transfer(msg.sender, _receiver, _amount); 
6 return true; } 

Figure 15: A flawed token that sets an incorrect balance

1  function transfer(address _to, uint256 _value) public validAddress(_to) ... { 

2    if(balanceOf[msg.sender] >= _value && _value > 0){ 
3 balanceOf[msg.sender] = sub(balanceOf[msg.sender], _value); 
4 balanceOf[_to] = add(balanceOf[_to], _value); 

5 Transfer(msg.sender, _to, _value); 
6      return true;} 
7    else{return false;}} 

1  transferFrom(address _from, address _to, uint256 _value) returns (bool success){ 

   ...... 
2    balanceOf[_from] -= _value; 
3    balanceOf[_to] += _value; 

4    spentAllowance[_from][msg.sender] += _value; 
5    Transfer(msg.sender, _to, _value);} 

1 function transfer(address _to, uint256 _value) returns (bool success) { 
2 Transfer(msg.sender, _to, _value); 

3 if (balances[msg.sender] >= _value && _value > 0) { 
4 balances[msg.sender] -= _value; 
5 balances[_to] += _value; 

6 Transfer(msg.sender, _to, _value); 
7 return true; 
8 } else { return false; }} 

1 function transferFrom(address _from, address _to, uint256 _value) ...{ 

2 balanceOf[_from] = SafeMath.sub(balanceOf[_from], _value); 
3 balanceOf[_to] = SafeMath.add(balanceOf[_to], _value); 
4 TransferFrom(_from, _to, _value); 

5 return true;} 

1 function transfer(address _receiver, uint256 _amount) ...{ 
2 require(_transferCheck(msg.sender, _receiver, _amount)); 
3 UserBalances[msg.sender] = Sub(UserBalances[msg.sender], _amount); 

4 UserBalances[_receiver] = Add(UserBalances[msg.sender], _amount); 
5 Transfer(msg.sender, _receiver, _amount); 
6 return true; } 

1  function transfer(address _toAddress, uint256 _amountOfTokens)...{ 

  ...... 
2 tokenBalanceLedger_[_customerAddress] = SafeMath.sub( 
     tokenBalanceLedger_[_customerAddress], _amountOfTokens); 

3    transferFrom(_customerAddress, _toAddress, _amountOfTokens); ...} 

Figure 16: A flawed token that reduces token balance twice

1 function transferFrom(address _from, address _to, uint256 _value) ... { 

   ...... 
2 uint256 balanceFrom = balances[_from]; 
   ...... 

3    balances[_to] = safeAdd(balances[_to], _value); 
4 balances[_from] = safeSub(balanceFrom, _value);...... } 

Figure 17: A flawed token with a subtle error

1 function transferFrom(address _from, address _to, uint256 _value) ... { 

   ...... 
2 uint256 balanceFrom = balances[_from]; 
   ...... 

3 balances[_to] = safeAdd(balances[_to], _value); 
4 balances[_from] = safeSub(balanceFrom, _value);...... } 

1  function transfer(address to, uint256 value) public returns (bool) { 
2 tokens = value * 10 ** decimals; 

3 balance[to] = balance[to] + tokens; 
4 balance[owner] = balance[owner] - tokens; 
5 emit Transfer(owner, to, tokens); } 

Figure 18: A flawed token with an integer overflow bug

(4) Integer overflow <50>. In EVM, an integer has a maximum value
so that an integer overflow happens if an operation results in a
value greater than the maximum value, causing the value to wrap-
around [61]. A token contract often uses “uint256”, a 256-bit un-
signed integer which is the longest number supported by EVM [63],
to store token balance, and this value will be incorrect if integer
overflow happens. Integer overflow has become a major threat to
the security of smart contracts, leading to severe consequences (e.g.,
the market prices of tokens drop, exchange markets suspend token
deposits and withdraws) [33, 45, 53]. Fig. 18 presents an inconsis-
tent token having an integer overflow bug (Line 4). When invoking
transfer() with a large value, the result of balance[owner] - tokens
could be overflowed. Consequently, the token balance of owner
increases after subtraction (Line 4).

6.2 Incorrect method invocation
For 34 inconsistent tokens, users attempt to invoke standard inter-
faces, however, the unnamed method is invoked since the standard
methods are not implemented. Note that in EVM the unnamed
method will be invoked if the transaction does not specify the in-
voked method, or the invoked method is not implemented in the
contract [63]. Consequently, users may be confused because they
intend to call standard methods, rather than the unnamed method.
This kind of inconsistency can incur serious security problems,
such as token stolen, token frozen (detailed in §7).

6.3 Lack of Transfer event and/or Mmodification
Since TokenScope detects inconsistent tokens by comparing Bm , Be
and Br if Bm , ∅, or comparing Be and Br otherwise, the lack of
Be or Br results in inconsistency. 2,097 inconsistent tokens resulted
from this reason, which can be divided into three groups.
(1) Be = ∅ <1,405>. The lack of standard event emission hinders
the third-party tools from knowing token behaviors. In particular,
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users do not know where their tokens come from or go to, even if
they could call balanceOf() to check their token balances.
(2) Br = ∅ <44>. The lack of Mmanipulation indicates that no token
transfers happen in practice. Consequently, users may be confused
because the Transfer event informs token transfers. KYC Casper
Token reported by a recent news belongs to this category [64].
(3) Be = Br = ∅ <833>. We find 833 inconsistent tokens that
neither manipulate M nor emit the Transfer event, when executing
standard methods. As a result, the third-party tools (e.g., exchange
markets) that detect token behaviors by monitoring the invocation
of standard interfaces will incorrectly think that token transfer
happens. This issue will cause “fake deposit” [40]. Fig. 19 shows
an example detected by TokenScope. Line 7 will be executed if the
comparison in Line 2 returns false. In this case, the standard method
transfer() executes without modifying M and emitting the standard
event.

1  function transfer(address _to, uint256 _value) public validAddress(_to) ... { 

2    if(balanceOf[msg.sender] >= _value && _value > 0){ 
3 balanceOf[msg.sender] = sub(balanceOf[msg.sender], _value); 
4 balanceOf[_to] = add(balanceOf[_to], _value); 

5 Transfer(msg.sender, _to, _value); 
6      return true;} 
7    else{return false;}} 

Figure 19: An inconsistency because Be = Br = ∅

6.4 Fee
A token contract can charge fee from any token holder, and the
fee is sent to the token contract, the token creator, or any account
specified by the token creator. An inconsistent behavior happens if
the code of fee charging is written (1) in a standard method, or (2) in
a non-standard method without proper implementation of standard
events. 51 inconsistent tokens are due to this reason, and Fig. 20
presents one. A token holder, msg.sender intends to transfer _value
tokens to a token holder _to by invoking transfer() (Line 1). The
balance ofmsg.sender is decreased by _value (Line 3), however, only
_value − _value × fee / 10,000 tokens are transferred to _to (Line 4).
The remaining tokens are charged as fee and sent to another token
holder, _feeWallet (Line 5). The token emits two Transfer events
that faithfully reflect token behaviors (Lines 6, 7). Our approach
detects the inconsistency because Bm is different from Be and Br .
Note that the account who invokes transfer() may not intend to
transfer money to _feeWallet.

1 function transfer(address _to, uint256 _value) public returns (bool){ 
2 require(_to != address(0)); 
3 balances[msg.sender] = balances[msg.sender].sub(_value); 

4 balances[_to] = balances[_to].add(_value.sub(_value * fee / 10000)); 
5 balances[_feeWallet] = balances[feeWallet].add(_value * fee / 10000); 
6 Transfer(msg.sender, _to, (_value.sub(_value * fee / 10000))); 

7 Transfer(msg.sender, feeWallet, (_value * fee / 10000)); 
8 return true;} 

Figure 20: The inconsistency incurred by charging fee

6.5 Token minting
Token minting means increasing the total amount of tokens in cir-
culation. If the code of token minting is written (1) in a standard
method, or (2) in a non-standard method without proper imple-
mentation of standard events, an inconsistency happens. We detect
token minting according to Br . More precisely, for every trace, we
sum the token changes of all token holders whose balances are

increased. Similarly, we sum the (absolute value) token changes of
all token holders whose balances are decreased. Then, we check
whether the first summation is larger than the second one. If so, we
think that token minting happens. Please reconsider the contract
in Fig. 2, the balances of _to and hacker are increased by _value
and fee, respectively and then the first summation is _value + fee.
The balance of msg.sender is decreased by _value − fee. Hence, the
first summation is equal to the second, and thus no token minting
happens in this contract. 654 inconsistent tokens are due to token
minting. We classify those 654 tokens into five minor categories,
and the figures in “<>” stand for the numbers of inconsistent tokens
belonging to the sub-categories.
(1) Reward <635>. A token contract can implement various strate-
gies to reward users with some amount of tokens. For example, a
token rewards the accounts who produce the block or call the token
contract for the first time.
(2) Subsidy <2>. Ethereum requires transaction senders to pay trans-
action fee in ETH to prevent resource abusing [6]. To attract users
to invoke token contracts, many token contracts send users some
amount of tokens as the subsidy for transaction fee.
(3) Donation <4>. We find that 4 token contracts donate some
amount of tokens to specified accounts for each invocation of the
token contracts.
(4) Token migration <8>. Token developers will deploy a new ver-
sion of token contract on the blockchain to substitute the old version
for some reasons (e.g., fix bugs). After the deployment of the new
contract, the new contract should migrate some data from the old
contract, e.g., the addresses of token holders, the amount of tokens
possessed by token holders. Without migration, users’ tokens will
be lost.
(5) Unlocking <9>. The founders of a token contract can lock their
proportions of tokens to increase the confidence of other users. The
locked tokens cannot be circulated because they are not recorded in
M. In other words, they can be neither sold nor transferred to other
users. The locked tokens will be unlocked when some conditions
are met, e.g., the locking period is expired. Token unlocking results
in token minting, because the unlocked tokens will be added in M.

Fig. 21 presents a deployed inconsistent token due to both subsidy
and donation. A token holder intends to transfer tokens tokens to
the holder to by invoking transfer() (Line 1), and the Transfer

event is accordant with transfer() (Line 6). The token contract
sends 5,000 tokens to msg.sender as subsidy (Line 3), and it donates
5,000 tokens to an account, donation (Line 5). The contract emits a
non-standard event Donation (Line 7), however, the semantics of
Donation is unclear. Consequently, the transaction sender may not
know the occurrence of token donation. By leveraging a wallet, the
sender knows that the balance of msg.sender decreases by tokens -
5,000. Hence, the transaction sender could be confused because the
sender intends to send tokens tokens to to by invoking transfer().

1 function transfer(address _to, uint256 _value) public returns (bool){ 
2 require(_to != address(0)); 
3 balances[msg.sender] = balances[msg.sender].sub(_value); 

4 balances[_to] = balances[_to].add(_value.sub(_value * fee / 10000)); 
5 balances[_feeWallet] = balances[feeWallet].add(_value * fee / 10000); 
6 Transfer(msg.sender, _to, (_value.sub(_value * fee / 10000))); 

7 Transfer(msg.sender, feeWallet, (_value * fee / 10000)); 
8 return true;} 

1  function transfer(address to, uint tokens) public returns (bool success){ 
2    address donation = donationsTo[msg.sender]; 
3    balances[msg.sender] = (balances[msg.sender].sub(tokens)).add(5000); 

4    balances[to] = balances[to].add(tokens); 
5 balances[donation] = balances[donation].add(5000); 
6    emit Transfer(msg.sender, to, tokens); 

7 emit Donation(donation); 
8    return true;} 

Figure 21: The inconsistency due to subsidy and donation
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6.6 Token burning
Token burning means decreasing the total amount of tokens in
circulation. We detect an inconsistency if the code of token burn-
ing is written (1) in a standard method, or (2) in a non-standard
method without proper implementation of standard events. We
detect token burning using a similar approach for detecting token
minting, except that token burning happens if the first summation
is smaller than the second one. 463 inconsistent tokens are due to
token burning. We classify them into two sub-categories.
(1) Wear <9>. Some token contracts charge fee, but the fee is not
sent to any account so that the fee disappears during token transfer.
(2) Reclaim <454>. Some token contracts burn tokens when some
tokens are sent to the address 0, the addresses of token contracts,
the addresses of token creators or any accounts specified by to-
ken creators. In such case, token contracts intend to reclaim those
tokens.

Fig. 22 presents a deployed inconsistent token due to reclaim. The
token contract first calls super.transferFrom() to transfer _value
tokens from the account _from to the account _to (Line 2). Then,
the token contract checks whether the tokens are sent to the token
contract (Line 3). If so, the transferred tokens are burned (Line 4).
Although the token contract emits a non-standard event, Destruc-
tion (Line 6), the semantics of this event are unclear and thus the
transaction sender may not know token burning.

1 function transfer(address _to, uint256 _value) public returns (bool){ 
2 require(_to != address(0)); 
3 balances[msg.sender] = balances[msg.sender].sub(_value); 

4 balances[_to] = balances[_to].add(_value.sub(_value * fee / 10000)); 
5 balances[_feeWallet] = balances[feeWallet].add(_value * fee / 10000); 
6 Transfer(msg.sender, _to, (_value.sub(_value * fee / 10000))); 

7 Transfer(msg.sender, feeWallet, (_value * fee / 10000)); 
8 return true;} 

1  function transferFrom(address _from, address _to, uint256 _value)... { 

2 assert(super.transferFrom(_from, _to, _value)); 
3 if (_to == address(this)) { 
4 balanceOf[_to] -= _value; 

5 totalSupply -= _value; 
6 Destruction(_value); 

} 

7    return true; 
} 

Figure 22: The inconsistency incurred by reclaim

6.7 Token purchase
Some token contracts allow automatic token purchase without
the interference of exchange markets. These token contracts send
some amount of tokens to the accounts who send ETH to the token
contracts according to the exchange rate implemented in the token
contracts. An inconsistent behavior occurs if the code of token
purchase is written (1) in a standardmethod, or (2) in a non-standard
method without proper implementation of standard events. 246
inconsistent tokens are due to token purchase. Fig. 23 presents an
inconsistent token due to token purchase. The transaction sender
pays msg.value ETH to purchase qiuAmount tokens (Line 2). The
token contract sends qiuAmount tokens to msg.sender (Lines 4, 5),
and then emits a non-standard event (Line 6). The consequence
of the inconsistency is that although users can check their token
balances by invoking the standard method balanceOf(), they may
not know why their balances increase because the semantics of the
non-standard events are unclear.

6.8 Token sell
Some token contracts check whether the ETH possessed by an
account is smaller than a threshold. If so, token contracts charge
some amount of tokens from the account and send some amount of
ETH to that account according to the exchange rate implemented in

1 function transfer(address _to, uint256 _value) public returns (bool){ 
2 require(_to != address(0)); 
3 balances[msg.sender] = balances[msg.sender].sub(_value); 

4 balances[_to] = balances[_to].add(_value.sub(_value * fee / 10000)); 
5 balances[_feeWallet] = balances[feeWallet].add(_value * fee / 10000); 
6 Transfer(msg.sender, _to, (_value.sub(_value * fee / 10000))); 

7 Transfer(msg.sender, feeWallet, (_value * fee / 10000)); 
8 return true;} 

1  function transferFrom(address _from, address _to, uint256 _value)... { 

2 assert(super.transferFrom(_from, _to, _value)); 
3 if (_to == address(this)) { 
4 balanceOf[_to] -= _value; 

5 totalSupply -= _value; 
6 Destruction(_value); 

} 

7    return true; 
} 

1  function exchangeForQIU() payable public returns (bool){ 
2    uint qiuAmount = msg.value * eth2qiuRate / 1000000000000000000; 

3    require(qiuAmount <= balances[this]); 
4    balances[this] = balances[this].sub(qiuAmount); 
5    balances[msg.sender] = balances[msg.sender].add(qiuAmount); 

6    ExchangeForQIU(this, msg.sender, qiuAmount, msg.value); 
7    return true; 
  } 

Figure 23: The inconsistency incurred by token purchase

the token contracts. Token sell will incur inconsistency if the code
of token sell is written (1) in a standard method, or (2) in a non-
standardmethodwithout proper implementation of standard events.
18 inconsistent tokens are due to token sell. Fig. 24 shows a deployed
inconsistent token due to token sell. If the ETH possessed by the
token receiver _to is less than a threshold, minBalanceForAccounts
(Line 2), the amount of tokens, amountinBoss is computed according
to the exchange rate, sellPrice (Line 3). Then, amountinBoss tokens
are transferred to the account specified by the token creator (Line
4), and the account _to receives amountinBoss / sellPrice ETH (Line
5). Such token sell behavior may be troublesome, since any account
A could convert the tokens of another account B into ETH by
transferring some tokens to B.

1 function transfer(address _to, uint256 _value) public returns (bool){ 
2 require(_to != address(0)); 
3 balances[msg.sender] = balances[msg.sender].sub(_value); 

4 balances[_to] = balances[_to].add(_value.sub(_value * fee / 10000)); 
5 balances[_feeWallet] = balances[feeWallet].add(_value * fee / 10000); 
6 Transfer(msg.sender, _to, (_value.sub(_value * fee / 10000))); 

7 Transfer(msg.sender, feeWallet, (_value * fee / 10000)); 
8 return true;} 

1 function transferFrom(address _from, address _to, uint256 _value)... { 

2 assert(super.transferFrom(_from, _to, _value)); 
3 if (_to == address(this)) { 
4 balanceOf[_to] -= _value; 

5 totalSupply -= _value; 
6 Destruction(_value); 

} 

7    return true; 
} 

1  function exchangeForQIU() payable public returns (bool){ 
2    uint qiuAmount = msg.value * eth2qiuRate / 1000000000000000000; 

3    require(qiuAmount <= balances[this]); 
4    balances[this] = balances[this].sub(qiuAmount); 
5    balances[msg.sender] = balances[msg.sender].add(qiuAmount); 

6    ExchangeForQIU(this, msg.sender, qiuAmount, msg.value); 
7 return true; 
  } 

1  function _transfer(address _from, address, _to, uint _value) internal{ 

...... 
2    if(_to.balance < minBalanceForAccounts){ 
3 uint256 amountinBoss = (minBalanceForAccounts - _to.balance) * sellPrice; 

4 _transfer(_to, owner, amountinBoss); 
5 _to.transfer(amountinBoss / sellPrice);} 
6    Transfer(_from, _to, _value);} 

Figure 24: The inconsistency incurred by token sell

6.9 Unit conversion
Some token contracts specify a basic unit of tokens, which is much
smaller than one token. Unit conversion will lead to inconsistency
if the code of unit conversion is written (1) in a standard method,
or (2) in a non-standard method without proper implementation
of standard events. We detect 19 inconsistent tokens due to such
reason. Fig. 25 presents a real case. The Transfer event informs
that the user userAddress[myid] receives no_of_token tokens (Line
4). However, the tokens are converted into the basic unit before
token transfer (Lines 2, 3). The basic unit is 1/1010 of one token.
Consequently, the user may be confused because the user will
find that the token balance is significantly larger than the amount
informed by the Transfer event, when checking the balance by
invoking balanceOf() (Lines 5, 6).

category name address # tx method invoked description USD involved 

1 function __callback(bytes32 myid, string result){ 

   ...... 
2    balances[owner] -= (no_of_token * 10000000000); 
3    balances[userAddress[myid]] += (no_of_token * 10000000000); 

4    Transfer(owner, userAddress[myid], no_of_token); 
  ......} 

5 function balanceOf(address sender) constant returns (uint256 balance) { 

6 return balances[sender];} 

Figure 25: The inconsistency incurred by unit conversion

6.10 Account changed
We find 50 token contracts that change the accounts to send or
receive tokens instead of using the account specified by the standard
interfaces or standard events. Fig. 26 presents a real case due to this
reason. The transaction sender intends to transfer some tokens to
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the account _to by invoking transfer() (Line 1), but _to is changed
to another account (Line 5) when some conditions are satisfied
(Lines 3, 4). Consequently, the transaction sender may feel upset
since tokens are sent to a different account rather than the intended
one.

category name address # tx method invoked description USD involved 

1 function __callback(bytes32 myid, string result){ 

   ...... 
2    balances[owner] -= (no_of_token * 10000000000); 
3    balances[userAddress[myid]] += (no_of_token * 10000000000); 

4    Transfer(owner, userAddress[myid], no_of_token); 
  ......} 

5 function balanceOf(address sender) constant returns (uint256 balance) { 

6 return balances[sender];} 

1 function transfer(address _to, uint256 _value) onlyPayloadSize(2 * 32){ 
   ...... 
2    if(_to == deposit_address){ ......} 

3    else{ 
4    if(isLeading4FF(_to)){ 

  ...... 

5   _to = shopStoreAddress[uint(storeid)]; 
  ......}} 

6    Transfer(msg.sender, _to, _value);} 

Figure 26: The inconsistency incurred by account specifying

6.11 Amount changed
Some token contracts change the amount of transferred tokens
rather than the amount indicated by standard interfaces or standard
events before token transfers. However, users cannot know the
change by monitoring the invocation of standard method interfaces.
6 inconsistent tokens are due to amount specifying. Fig. 27 shows a
real case. The transaction sender intends to transfer _value tokens
(Line 1). However, the real transferred amount is restricted to _value
- maxGoalInICO (Line 6) if some conditions are satisfied (Lines 2, 5).
Consequently, the transaction sender may be confused since the
real transferred amount is less than the intended amount.

category name address # tx method invoked description USD involved 

1 function __callback(bytes32 myid, string result){ 

   ...... 
2    balances[owner] -= (no_of_token * 10000000000); 
3    balances[userAddress[myid]] += (no_of_token * 10000000000); 

4    Transfer(owner, userAddress[myid], no_of_token); 
  ......} 

5 function balanceOf(address sender) constant returns (uint256 balance) { 

6 return balances[sender];} 

1 function transfer(address _to, uint256 _value) onlyPayloadSize(2 * 32){ 
   ...... 
2    if(_to == deposit_address){ ......} 

3    else{ 
4    if(isLeading4FF(_to)){ 

  ...... 

5   _to = shopStoreAddress[uint(storeid)]; 
  ......}} 

6    Transfer(msg.sender, _to, _value);} 

1 function transferFrom(address _from, address _to, uint256 _value) ... { 

   ...... 
2 if (now < startTime){ 
3 if(_value < maxGoalInICO ) { 

4   tokensSoldToInvestors = safeAdd(tokensSoldToInvestors, _value); 
5 } else { 
6 _value = safeSub(_value, maxGoalInICO);}} 

..... 
7 Transfer(_from, _to, _value); 
8 return true;} 

Figure 27: The inconsistency incurred by amount specifying

We also show the cumulative distribution function plots of open-
source inconsistent tokens and flawed tokens in Fig. 28. Each ×

(x, y)/◦ (x, y) indicates that there are y inconsistent/flawed tokens,
and there are no more than x external transactions trigger/exploit
the inconsistencies/flaws. For about 19% ((2, 352 − 1, 908)/2, 352) of
inconsistent tokens and about 10% ((88 − 79)/88) of flawed tokens,
there are at least 100 (i.e., more than 99) external transactions that
trigger/exploit the inconsistencies/flaws. That is, many inconsis-
tent tokens executed inconsistent behaviors frequently, and many
flawed tokens have been exploited frequently. For example, the
inconsistent behaviors of IdleEth have been triggered by the most
number of external transactions (i.e., 269,204), and the HYDRO to-
ken is the flawed token that has been exploited by the most number
of external transactions (i.e., 15,032) (detailed in §7).

7 CASE STUDIES
This section presents case studies of six inconsistent tokens: HY-
DRO, SMT, ZXBT, GTN, Tablow Club, and MCRT. HYDRO has an
implementation flaw in transferFrom(). SMT contains an integer
overflow bug. The other four inconsistent tokens are due to incor-
rect method invocation. We find that all of them have been attacked
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Figure 28: CDFs of open-source inconsistent/flawed tokens

according to our trace analysis, leading to serious consequences,
including incorrect token balance, token frozen, or token stolen.
GTN. 26,097 external transactions have been sent to the HYDRO
token contract, and 12,705 accounts possess HYDRO Token. We
show below how an attacker can steal HYDRO tokens from an
exchange market. The standard method transferFrom() (Fig. 29)
contains a bug resulting in inconsistency. The token behavior of
the standard method is that _from transfers _value tokens to _to.
However, the real token behavior is that the account who invokes
transferFrom() (msg.sender) transfers the tokens to _to. (Lines 2, 5
- 7).

1 function transferFrom(address _from, address _to, uint256 _value) ... { 

   ...... 
2 uint256 balanceFrom = balances[_from]; 
   ...... 

3 balances[_to] = safeAdd(balances[_to], _value); 
4 balances[_from] = safeSub(balanceFrom, _value);...... } 

1  function transfer(address to, uint256 value) public returns (bool) { 
2 tokens = value * 10 ** decimals; 

3 balance[to] = balance[to] + tokens; 
4 balance[owner] = balance[owner] - tokens; 
5 emit Transfer(owner, to, tokens); } 

1 function transferProxy(address _from, address _to, 

uint256 _value, uint256 _feeSmt... { 
2 if(balances[_from] < _feeSmt + _value) revert(); 
3    balances[_to] += _value; 

4 Transfer(_from, _to, _value); 
5 balances[msg.sender] += _feeSmt; 
6 Transfer(_from, msg.sender, _feeSmt); 

7 balances[_from] -= _value + _feeSmt;...} 

1 function transferFrom(address _from, address _to, uint256 _value)...{ 
  ...... 

2    _transfer(msg.sender, _to, _value); 

3    Transfer(msg.sender, _to, _value); 
4    return true;} 
5 function _transfer(address _from, address _to, uint _value) internal { 

6 balances[_from] -= _value; 
7    balances[_to] += _value;} 

Figure 29: Code snippet of HYDRO token.
1 function depositToken(address token, uint amount) { 
2 if (token == 0) throw; 

3 if (!Token(token).transferFrom(msg.sender, this, amount)) throw; 
4 tokens[token][msg.sender] = safeAdd(tokens[token][msg.sender], amount); 
5 Deposit(token, msg.sender, amount, tokens[token][msg.sender]); } 

6  function withdrawToken(address token, uint amount) { 
7 if(token == 0) throw; 
8    if(tokens[token][msg.sender] < amount) throw; 

9    tokens[token][msg.sender] = safeSub(tokens[token][msg.sender], amount); 
10   if (!Token(token).transfer(msg.sender, amount)) throw; 
11 Withdraw(token, msg.sender, amount, tokens[token][msg.sender]); } 

Figure 30: Code snippet of Etherdelta_2
Wefind 15,032 invocations of transferFrom() from another smart

contract, EtherDelta_2 which belongs to EtherDelta [9]. EtherDelta
is a popular exchange market, and we observe more than 10 million
external transactions sent to EtherDelta_2. Users can deposit and
withdraw various kinds of tokens by invoking depositToken() and
withdrawToken() in EtherDelta_2, receptively (Fig. 30). The kind
of token to be deposited or withdrawn is specified by its address,
and the amount is specified by amount. depositToken() invokes
transferFrom() in the HYDRO token contract to transfer amount
tokens from the account who invokes depositToken() (msg.sender)
to the EtherDelta_2 contract (this) (Line 3). Due to the flawed im-
plementation of the HYDRO token contract (Fig. 29), the real token
behavior is that the EtherDelta_2 contract (rather than the account
who deposits the HYDRO tokens) transfers amount tokens to the
EtherDelta_2 contract. We find 23 accounts who sent 15,032 transac-
tions to invoke depositToken() of the EtherDelta_2 contract which
in turn call transferFrom() of the HYDRO token contract. Those
15,032 transactions deposit more than 2.6 billion HYDRO tokens.

To withdraw tokens, a user invokes withdrawToken() to trans-
fer amount tokens from the EtherDelta_2 contract to the user. An
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Figure 31: The process of stealing HYDRO.
attacker steals HYDRO tokens from the EtherDelta_2 contract (i.e.,
the EtherDelta exchange market) by first invoking depositToken()
and then invoking withdrawToken(). We found that more than 2.5
million HYDRO tokens were stolen by 25 external transactions sent
from 11 accounts. Fig. 31 shows the attack process. We assume
that the attacker does not hold HYDRO tokens and EtherDelta_2
holds x HYDRO tokens before attacks. The M of HYDRO contains
an item corresponding to EtherDelta_2. An attacker invokes de-
positToken() with parameters HYDRO and v to transfer v HYDRO
tokens from the attacker to EtherDelta_2. EtherDelta_2 records
such token deposit behavior in its storage. Due to the implemen-
tation flaw in transferFrom() as shown in Fig. 29, EtherDelta_2
instead of the attacker transfers v HYDRO tokens to EtherDelta_2,
and thus no token transfer happens. After that, the attacker invokes
withdrawToken() to withdraw v HYDRO tokens from EtherDelta_2.
EtherDelta_2 updates the corresponding record and the HYDRO
contract transfers v tokens from EtherDelta_2 to the attacker. Con-
sequently, the attacker steals v HYDRO tokens from EtherDelta_2.
SMT. SMT has an integer overflow bug and was deployed to the
blockchain on Dec. 09, 2017. The first attack exploiting the bug
happened on Apr. 24, 2018 and the first report about this attack
was published on Apr. 25, 2018 [44]. Fig. 32 shows the method
transferProxy() that contains the integer overflow bug. The token
balance of _fromwill be decreased by _value + _feeSmt (Line 7), and
Line 2 checks whether _from possesses sufficient tokens. However,
the summation _feeSmt + _value can be overflowed providing a
big _feeSmt or a big _value. Consequently, the check can be passed
because the summation is a small value due to integer overflow,
and the account _to or msg.sender will receive a great amount of
tokens (Lines 3, 5).

1 function transferFrom(address _from, address _to, uint256 _value) ... { 

   ...... 
2 uint256 balanceFrom = balances[_from]; 
   ...... 

3 balances[_to] = safeAdd(balances[_to], _value); 
4 balances[_from] = safeSub(balanceFrom, _value);...... } 

1  function transfer(address to, uint256 value) public returns (bool) { 
2 tokens = value * 10 ** decimals; 

3 balance[to] = balance[to] + tokens; 
4 balance[owner] = balance[owner] - tokens; 
5 emit Transfer(owner, to, tokens); } 

1 function transferProxy(address _from, address _to, 

uint256 _value, uint256 _feeSmt... { 
2 if(balances[_from] < _feeSmt + _value) revert(); 
3    balances[_to] += _value; 

4 Transfer(_from, _to, _value); 
5 balances[msg.sender] += _feeSmt; 
6 Transfer(_from, msg.sender, _feeSmt); 

7 balances[_from] -= _value + _feeSmt;...} 

Figure 32: Code snippet of SMT token.

TokenScope detects a transaction (transaction hash: 0x1abab4c8
db9a30e703114528e31dee129a3a758f7f8abc3b6494aad3d304e43f) w-
hich exploited the vulnerability. In this attack, _from and _to are the
same account, and _msg.sender is a different account. The balances
of the two accounts before the attack are 0. The attacking transac-
tion sets _value and _feeSmt to two big integers, 0x8ffffffffffffffff
fffffffffffffffffffffffffffffffffffffffffffffff and 0x700000000000000000
0000000000000000000000000000000000000000000001, respectively.
Hence, the summation of _value and _feeSmt is 0 due to integer
overflow. After the attack, the balance of _from (or _to) becomes

0x8fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, and the bal-
ance of _msg.sender is 0x700000000000000000000000000000000000
0000000000000000000000000001.
ZXBT. Its token contract does not implement the standard method
transfer(). Consequently, when a user attempts to invoke transfer(),
the unnamed method will be invoked instead. ZXBT can be traded
on EtherDelta [9], which deploys EtherDelta_2 to manage this to-
ken. Due to the implementation issue of ZXBT, user’s token will be
frozen. That is, the user can neither withdraw nor sell ZXBT. Fig.
30 shows the code of EtherDelta_2. A user invokes depositToken()
(Line 1) to deposit ZXBT to EtherDelta_2, and then invokes with-
drawToken() (Line 6) to withdraw ZXBT from EtherDelta_2. Since
the implementation of transferFrom() in this token contract is cor-
rect, the user successfully deposits ZXBT to EtherDelta_2. However,
the user cannot withdraw ZXBT because EtherDelta_2 invokes the
unnamed method, which does not transfer tokens, rather than the
transfer() (Line 10). We found that 7,115,006 ZXBT is frozen which
was worth about 3,000 USD when ZXBT was deposited.
GTN. Its contract does not implement the standard method transf-

erFrom(). Therefore, when a user attempts to invoke its transferFrom(),
the unnamed method will be invoked. We find that the GTN token
can also be traded on EtherDelta. Consequently, the method deposit-
Token() does not transfer GTN to Etherdelta_2 (shown in Fig. 30)
because it invokes the unnamedmethod rather than transferFrom()

(Line 3). However, Etherdelta_2 is not aware of the implementation
issue in the token contract of GTN, and hence it mistakenly records
that a user deposits GTN to Etherdelta_2 (Line 4). By invoking
withdrawToken(), a user can withdraw GTN (Line 10), although
the user does not deposit GTN. Hence, an attacker can exploit this
implementation flaw to steal GTN from Etherdelta_2. We observe
that two accounts successfully exploited the issue to steal 3,000,000
GTN from Etherdelta_2. Besides GTN, attackers stole Tablow Club
and MCRT from Etherdelta_2 due to the same reason.

8 DISCUSSION
We discuss the limitations of TokenScope and potential solutions.
Other token standards.We focus on 2 standard interfaces transfer()
and transferFrom() and 1 standard event Transfer defined in ERC-
20. Fortunately, to be compatible with ERC-20 or at least avoid con-
flicting with ERC-20, other standards typically support transfer(),
transferFrom() and Transfer defined in ERC-20. We will extend
TokenScope to support other standard methods and events of ERC-
20 as well as other token standards in future work.
Deliberate evasion. Smart contracts can deliberately evade the de-
tection of TokenScope by using other data structures instead of those
recognized by TokenScope. However, using a deliberately crafted
data structure for M may lead to a more complicated implemen-
tation of the token contract, and thus increase the cost (i.e., gas)
of deploying and invoking the token. We will investigate how to
automatically infer the data structures and accessing patterns of M
in future work. Such automatic inference is possible because the
two storage locations (i.e., the space to store balances) derived from
the two addresses (i.e., the token sender and the token receiver)
will be written when token transfers. By monitoring the access
to the two storage locations, we can learn the access pattern and
then infer the data structure. In particular, we will first conduct pro-
gram slice to extract the operations that are related to the storage
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modifications, and then identify the access patterns from the slices.
Another possible evasion approach to disperse a typical token be-
havior (e.g., token transfer) into several methods and then perform
the token behavior by sending several external transactions to in-
voke those methods (i.e., one external transaction just triggers part
of a typical token behavior). Thus, TokenScope may produce false
positives because it detects inconsistency per trace which is corre-
sponding to one external transaction. We will improve TokenScope

by conducting cross-transaction analysis in future work.

9 RELATEDWORK
Token analysis. Somin et al. identify token transfers by parsing
the Transfer event [56], which does not necessarily reflect real
token behaviors. The differences between our work with Fröwis
et al.’s work [20] are described in §1. SECBIT maintains a collection
of buggy ERC-20 tokens [52], but it mainly focuses on common
token problems (e.g., weak access control) rather than inconsistency,
and we find that about 95.7% of inconsistent tokens detected by
TokenScope are not disclosed in its list.
Vulnerability discovery. SmartCheck detects 21 kinds of bugs in
Solidity source code by searching for bug patterns [57]. It cannot be
easily extended to detect inconsistency in EVM bytecode because (1)
it needs the source code of smart contracts; and (2) the detection of
inconsistency needs to understand program semantics but pattern
searching does not support it. EtherTrust [24] detects two kinds
of security bugs based on formal semantics of EVM bytecode [25].
Vandal decompiles EVM bytecode into semantic logic relations and
detects five kinds of security problems which are expressed by logic
specifications [3]. MadMax detects security problems using Vandal for
bytecode decompilation [23]. Sereum builds on-line taint analysis
into EVM to protect smart contracts from reentrancy attacks [48].

teEther produces transactions by symbolic execution (SE) to
find and exploit the vulnerabilities of a smart contract [35]. Osiris
combines SE and taint analysis to discover integer overflow bugs in
EVM bytecode [58]. EthRacer integrates fuzzing of event sequences
and SE to check whether a contract produces different outputs by
re-ordering event sequences [34]. sCompile applies SE to critical
paths which involve money transfer, and leaves the other paths
unexplored [4]. Huang detects security problems in EVM bytecode
via deep learning [29]. Parizi et al. study four tools about their
capabilities to discover security bugs [43], and find that SmartCheck
achieves the highest accuracy [43]. ContractFuzzer applies fuzzing
to discover seven kinds of security problems [30]. Grossman et
al. detect the reentrancy bug by focusing on the callback nature
of smart contracts [26]. In summary, these techniques focus on
vulnerability discovery, especially security vulnerabilities rather
than inconsistent token behaviors violating ERC-20.
General analysis platforms. K framework [49, 50] is based on
the formal semantic of KEVM [27] and is possible to detect the in-
consistency happened in standard methods because the semantics
of standard methods interfaces are known. However, K framework
is not fully automated. For example, to apply it for checking in-
consistency, users have to provide the identity of M in the specifi-
cation. Differently, our approach locates M automatically. Second,
K framework requires the developers of token contracts to write
specifications for analyzing non-standard methods since their se-
mantics are unknown. Differently, our approach can automatically

detect the inconsistency in non-standard methods. Chatterjee et al.
propose to infer the lower bound and upper bound of a variable in
their proposed language [5]. The contract is considered as an incor-
rect one if the expected value does not fall into the interval [lower
bound, upper bound] [5]. However, their method may suffer from
false negatives, e.g., an incorrect value can also fall into the interval.
Moreover, inference of the expected value is non-trivial because it
requires a deep understanding of the analyzed contract and the se-
mantics of EVM operations. A few works propose formal semantics
of EVM and EVM bytecode [1, 25, 28, 31] to facilitate correctness
verification, but they do not provide an automated verifier.

Securify [59] decompiles EVM bytecode, and uses a domain-
specific language (DSL) to express several security properties. Then,
it analyzes smart contracts to check those security properties. Securify
does not recover the types of variables during decompilation, and
hence it cannot locate M in a token contract. Besides, whether DSL
can express inconsistency is unknown. Zeus [32] is a security ver-
ifier that needs the source code of smart contracts. It converts
the specification written in XACML [55] into checking code, and
then inserts the checking code into the source code of smart con-
tracts. After that, Zeus translates the modified source code into
an intermediate language, and then applies abstract interpretation
and symbolic model checking to check security properties. The
applicability of Zeus is restricted since open-source smart contracts
only account for less than 1% of all contracts [19]. In contrast, our
approach directly processes EVM bytecode. Moreover, whether
XACML is able to express inconsistency is unknown.

10 CONCLUSION
Inconsistent behaviors can mislead users and cause severe financial
loss, such as money frozen and money stolen. We propose a novel
approach and develop a new tool named TokenScope to automati-
cally detect inconsistent behaviors resulted from tokens deployed
in Ethereum by comparing the information from three different
sources, including the manipulations of core data structures, the ac-
tions indicated by standard interfaces, and the behaviors suggested
by standard events. Applying TokenScope to inspect all transactions
sent to all deployed tokens, we find 3,259,001 transactions which
trigger inconsistent behaviors, and 7,472 inconsistent tokens with
a very high precision. The investigation of all open-source incon-
sistent tokens reveals 11 major reasons behind the inconsistency,
including 50 unreported flawed tokens.
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