SMoTherSpectre: Exploiting Speculative Execution
through Port Contention

Atri Bhattacharyya *
EPFL

Alessandro Sorniotti
IBM Research — Zurich

Alexandra Sandulescu f
IBM Research — Zurich

Babak Falsafi*
EPFL

Matthias Neugschwandtner!
IBM Research — Zurich

Mathias Payer*
EPFL

Anil Kurmus f
IBM Research — Zurich

ABSTRACT

Spectre, Meltdown, and related attacks have demonstrated
that kernels, hypervisors, trusted execution environments,
and browsers are prone to information disclosure through
micro-architectural weaknesses. However, it remains unclear
as to what extent other applications, in particular those that
do not load attacker-provided code, may be impacted. It also
remains unclear as to what extent these attacks are reliant
on cache-based side channels.

We introduce SMOTHERSPECTRE, a speculative code-reuse
attack that leverages port-contention in simultaneously multi-
threaded processors (SMOTHER) as a side channel to leak
information from a victim process. SMOTHER is a fine-grained
side channel that detects contention based on a single victim
instruction. To discover real-world gadgets, we describe a
methodology and build a tool that locates SMOTHER-gadgets
in popular libraries. In an evaluation on glibc, we found
hundreds of gadgets that can be used to leak information.
Finally, we demonstrate proof-of-concept attacks against the
OpenSSH server, creating oracles for determining four host
key bits, and against an application performing encryption
using the OpenSSL library, creating an oracle which can dif-
ferentiate a bit of the plaintext through gadgets in libcrypto
and glibc.

CCS CONCEPTS

e Security and privacy — Side-channel analysis and
countermeasures.

*firstname.surname@epfl.ch
T{a»sa,, eug, aso, kur}@zurich.ibm.com

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and /or a fee. Request permissions
from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights
licensed to ACM.

ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3363194

KEYWORDS

side-channel; simultaneous multithreading; speculative exe-
cution; attack; microarchitecture

ACM Reference Format:

Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus . 2019. SMoTherSpectre: Exploiting Speculative Execu-
tion through Port Contention. In 2019 ACM SIGSAC Conference
on Computer €& Communications Security (CCS ’19), November
11-15, 2019, London, United Kingdom. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3319535.3363194

1 INTRODUCTION

Spectre [23, 24, 29] and Meltdown [26] form a new class
of micro-architectural attacks. These attacks leverage weak-
nesses in speculative execution (Spectre) or separation be-
tween privileged and unprivileged code (Meltdown) to leave
micro-architectural traces [5]. Both Spectre and Meltdown
leverage a side channel based on the memory architecture
to leak data from the address space of a target (e.g. from
another process or from the kernel).

While micro-architectural side channels were known before
the discovery of Meltdown and Spectre, their applicability was
mostly limited to targets applying data-dependent control
flow patterns or memory accesses. In this older class of vulner-
abilities, an attacker would observe the micro-architectural
changes to shared resources caused by the execution of a
victim. For example, in a cache-based attack, the adversary
would prime the cache, let the victim execute, and then detect
which locations have been evicted from the cache. Such a side
channel leaks addresses and allows the adversary to learn
information from data-dependent execution. An effective mit-
igation strategy is to eliminate data-dependent control flow
over sensitive data, such as cryptographic material.

In contrast, Spectre and Meltdown render this class of
attacks generic and significantly harder to mitigate through
software changes only. The side channel is now used indirectly,
in a way that — crucially — does not rely on poor choices in
the development of the target application. In Spectre, for
instance, the attacker first primes the speculation engine
(e.g., by preparing the branch target buffers) as well as the
cache-based side channel; the victim then misspeculates at

https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3319535.3363194

an attacker-controlled location and thereby leaks informa-
tion [5]. The attacker can then read out the cache-based side
channel. In light of these new attack vectors, architectural,
system-wide defenses such as Kernel Page-Table Isolation [15],
retpolines [33], or microcode updates must be rolled out to
protect the system against attacks. One proposed microar-
chitectural defense is to revert all side effects of speculative
execution [21].

One mitigating factor is that so far, with the exception of
Netspectre-AVX [29], all existing attacks rely on side channels
that are invariably cache-based to read out information. This
in turn requires the presence of specific gadgets in the victim,
which are often hard to find. Consider the example of Branch
Target Injection (BTI), the technique used in Spectre v2 [23]:
in the initial exploit, no suitable gadget was identified in
the kernel. The attack was successful because it redirected
speculative control flow to externally provided code, in the
form of eBPF kernel code. This observation justifies why
mitigations such as retpoline are not employed at large by
user-space programs.

In this paper, we show that speculation attacks (e.g.,
through branch target injection) can leak arbitrary secrets
from generic user-space programs through a side channel that
is not based on the memory architecture. In particular, we
show that branch target injection can be used on existing
program code, without requiring the injection of attacker
code. To this end, we first show that port contention can be
used as a powerful side channel when executing with simul-
taneous multi-threading (SMOTHER). We then exploit port
contention as a side channel to transmit information during
speculative execution (SMOTHERSPECTRE). This shows that,
because the transmission occurs before speculative execution
ends, reverting side effects of speculative execution would
not be sufficient as a defense. Finally, we show how suitable
portions of code can be found in target binaries automatically.

Other related work has looked at execution-unit-sharing
as a side channel [1, 2, 11, 35]. Portsmash [2], concurrently
developed to our work, demonstrates that port sharing leaks
code access patterns and successfully extracts secrets from a
known vulnerable version of OpenSSL. We are, however, the
first to characterize this side channel and leverage it for a
speculative execution attack, providing a full working proof of
concept that leaks data from an up-to-date OpenSSL version.
Further, we attack the OpenSSH server, leaking bits from
the host’s RSA key.

This paper makes the following contributions:

e A precise characterization of the port-contention side
channel (SMOTHER);

e A speculative execution attack (SMOTHERSPECTRE)
that demonstrates the suitability of non-cache-based
side channels to leak information. We show an end-to-
end attack using speculation based on BTI by combin-
ing it with the port contention side channel;

e An automated technique to find target speculative
gadgets in programs; and

From the frontend

___________________________ ¢¢

Opcodeap r1, I2

Instruction
window

Opcodenp r3, rg

Opcodekg rs, rg

Scheduling Port0 Port 1 Port2

_ opa| [Ope| [Opc]| [JOpa
Exgcutlon Opp Ope Ope
units 0

PF

Figure 1: Instructions from the window are scheduled to
ports shared by sets of execution units. A single instruc-
tion may be scheduled per port per cycle.

e Real world attacks where we target BTI gadgets in the
OpenSSH server and in the latest version of OpenSSL,
along with a SMOTHER gadget from the libc.

2 BACKGROUND

The work in this paper relies on the complex interplay be-
tween software and hardware. In the following, we provide the
background information necessary to understand SMOTHER
and SMOTHERSPECTRE.

CPU Microarchitecture. A modern CPU is typically
split into two main components: the frontend and the back-
end (or execution engine). The frontend predicts where to
fetch instructions from and creates a program-order stream of
instructions to be executed by the backend. The instructions
are either decoded and executed “as-is” in RISC ISAs (e.g.,
IBM POWER or ARM) or broken down into RISC-like in-
structions called pops in CISC ISAs (e.g., x86 or IBM Z). For
brevity we refer to all instructions executed by the backend
as pops. Once fetched and decoded, the pops are placed in an
instruction window (also referred to as issue queue or reser-
vation stations) to be scheduled and dispatched to execution
units when their operands are ready. Every cycle, the sched-
uler searches the instruction window to identify which pops
are ready for execution and which execution unit is available
to dispatch them to. pops can execute out of program order
(e.g., a later pop in program order can execute earlier) if their
operands are ready and a relevant execution unit is available.
Ideally, all execution units would be designed to handle ev-
ery type of operation to maximize throughput. In practice,
execution units are specialized and only the more commonly
used ones are replicated. A group of execution units share a
port, indicating their availability in a given cycle. Contention
for a port leads to delays in execution. Figure 1 demonstrates
scheduling instructions from an execution window containing
three pops, where contention for port 3 prevents the second
pop from being scheduled in the same cycle as the other two.

Speculative Execution. Because the stream of pops is
predicted but is not guaranteed to execute, complete and

make its state visible to software, the backend also contains a
re-order buffer that commits the state of each completed pop
in program order to the software visible structures (i.e., reg-
ister file and memory). This execution of pops is speculative
because the frontend may have mispredicted the direction
and/or the target address of a branch operation. Upon mis-
prediction, the pipeline flushes all pops in the re-order buffer
and restarts fetching and decoding pops. While executing
on the mispredicted path, the processor accesses the cache
hierarchy leaving side-effects which lead to cache-based side
channels even though the values accessed are discarded and
do not impact the executing software.

Simultaneous Multithreading. Out-of-order proces-
sors provision a large fraction of silicon area to mechanisms
that exploit speculation and parallelism in execution. While
these mechanisms are designed for peak parallelism, most
structures (e.g., execution units, branch tables, physical reg-
isters, instruction window, re-order buffer) remain underuti-
lized on average. Simultaneous MultiThreading (SMT) is a
technique to improve utilization of these structures by allow-
ing pops from multiple threads (e.g., two in x86 and eight
in IBM POWER) to execute simultaneously on a single core.
Individual SMT threads maintain their own architectural
state, but share many microarchitectural structures in the
processor pipeline simultaneously. SMT (or HyperThreading
as Intel brands its implementation) is entirely transparent
to software to which a single core appears as multiple logi-
cal cores. Besides the execution units, physical registers and
instruction window, it is an implementation’s choice as to
which other structures SMT threads share. Experiments have
proven that the branch predictor can be shared between
hyperthreads [6, 18] on Intel CPUs.

Speculative Execution Attacks. Speculative execution
can be exploited by priming the branch predictor with suffi-
cient history such that it is tricked into predicting the wrong
target for a branch. Because branch direction history (i.e.,
taken or not taken) is a shared resource, an attacking pro-
cess can prime the branch predictor of its victim. Similarly,
a branch target buffer predicting the target address for a
branch can be primed by an attacking process. This works
for both conditional branches as well as indirect branches. In
a conditional branch, such as an array-size check in Spectre
V1, the CPU can be tricked into speculatively executing
an out-of-bounds array access in spite of the failing length
check. If the target address of the length check is not in
the cache then the memory fetch will take longer than the
following speculatively executed instructions. In an indirect
branch, the CPU can be tricked into speculatively executing
arbitrary code in a victim process by providing a malicious
branch history through a temporally or spatially (in the case
of SMT) co-located attacker process. We discuss related work
in Section 7.

Cache-timing Side Channel. Speculative execution at-
tacks, such as Spectre, exploit the fact that a speculatively
executed and then discarded operation does have side effects
on the micro-architectural state, even if it has none on the
architectural state. For example, an instruction that operates

on a value stored in memory will need to fetch that value
and cause the corresponding memory region to be pulled
into the cache. The side-effect that the memory region is
now cached is not undone when the instruction is discarded
instead of retired, and can be measured using cache side
channels. For example, in Spectre V1 the victim code uses
two dependent array lookups, where the result of the lookup
of the first array is used as an index into the second array.
This index can be leaked by measuring access times to the
second array through a flush and reload attack. By ensuring
that the second array has been flushed from the cache before
the victim code executes, and measuring the access times
afterwards, only the lookup of the index that has been used
by the victim code will be significantly faster.

3 SMOTHER

In this section, we describe and evaluate SMOTHER, a side
channel based on port-contention, present in SMT architec-
tures. SMOTHER is based on the following observation: two
co-located (i.e., running on the same physical core) hardware
threads of execution share execution units. Instructions that
are scheduled to execute on the same execution port will
contend for the available resources. We show how this con-
tention can be measured, at first in a coarse-grained way, i.e.,
with large sequences of instructions scheduled on the same
port on both threads, and then in a fine-grained way, i.e.,
with minimal sequences of instructions. The result is that an
unprivileged attacker process can detect whether a co-located
victim process is running an instruction on a given port.

3.1 Ideal covert channel

In this experiment, we demonstrate port contention between
two threads running simultaneously on the same physical
core and describe how it can be measured in ideal conditions.

3.1.1 Experiment design. Executing instructions that occupy
a specific port and measuring their timing enables inference
about other instructions executing on the same port. We
first choose two instructions, each scheduled on a single,
distinct, execution port. One thread runs and times a long
sequence of single pop instructions scheduled on port a, while
simultaneously the other thread runs a long sequence of
instructions scheduled on port b. We expect that, if a = b,
contention occurs and the measured execution time is longer
compared to the a # b case.

3.1.2 Experimental setup. We run experiments on an Intel
Core i7-6700K CPU running Ubuntu 16.04.4 stock kernel, ver-
sion 4.15.0. Both attacker and victim are pinned to different
hardware threads on the same physical core. The CPU gover-
nor is set to Performance for a constant clock frequency. The
“performance” state is configured below the turbo frequency
range to lower non-deterministic factors in the environment.
Apart from these changes, all other settings are kept to their
defaults. Most notably, speculative-execution-related mitiga-
tions are left enabled.

In the measuring thread, we execute and time a sequence
of 1,200 shl, a single pop instruction that executes on port
0 or port 6, which we denote port 06, on this CPU. The
colocated thread runs a sequence of either 1,200 shl or popcnt
instructions: the shl instructions directly contend for port 06
while the popcnt instructions will introduce no contention as
they execute only on port 1. Instruction-to-port mappings
are available through reverse engineering [10] or the Intel
Architecture Code Analyzer (IACA) tool.

3.1.3 Results and discussion. We report averages over 10,000
runs, together with a 95%-confidence interval calculated us-
ing the Student’s t-distribution. The experiment success-
fully demonstrates that port contention occurs and that the
SMOTHER side channel can be used to extract information, as
we can see in Table 1. Indeed, the run time of the contention
experiment is about twice of the non-contended one. This
indicates that port contention is likely the main bottleneck
in this experiment.

This result shows how SMOTHER can be used as a reli-
able covert communication channel between two co-located
threads. However, as this experiment requires precisely choos-
ing the type and number of instructions running in one of the
two threads, it is yet unclear if port contention may serve as
a practical side channel. We explore this aspect in the next
section.

Experiment Execution Time (cycles)
Port contention 1214 + 67
No port contention 674 + 13

Table 1: Port contention covert channel: a thread running
a long sequence of port 06 instructions is twice as slow
when a co-located thread executes a long sequence of port
06 instructions, when compared to a co-located thread
executing a long sequence of port-1-only instructions

3.2 Characterization of the side channel

We now analyse whether SMOTHER is effective as a side chan-
nel for distinguishing realistic sequences of instructions on a
simultaneously executing, co-located victim process. Specifi-
cally, we want to explore whether an attacker can distinguish
between the different sequences of instructions from a known
set which the victim may run. To encapsulate this property
of the set, we define the term SMOTHER-differentiability.
SMoTher differentiability. Let us consider that the
victim runs one sequence out of a set V.= {Vp, V1,...}. The
attacker is allowed to craft any sequence of instructions A and
time multiple iterations of A running concurrently with the
victim. If the attacker can infer which sequence V; € V' the
victim was running based on its timing measurements, the
sequences in V' are said to be SMOTHER-differentiable. On
its part, the attacker has a-priori knowledge of what timing
to expect when A runs concurrently with each of V; € V. It
can use experiments in a similar, but controlled, environment
to generate this knowledge. Further, the attacker is allowed

to use any statistical test or metric to make its decision.
Examples of such metrics include the mean or the median of
the timings, or their distribution.

In experiments in later sections of this paper, we shall estab-
lish various pairs of sequences to be SMOTHER-differentiable.
After collecting attacker timings distributions for each victim
sequence in our controlled environment, we shall use the Stu-
dent’s t-test to establish statistical difference between them
with at-least 95%-confidence. We argue that an attacker, in
an adversarial scenario, can correlate its own timing distribu-
tion with either of the a-priori distributions to identify the
victim sequence.

At its core, SMOTHER-differentiability implies that the
sequences in V have differing degrees of utilization on some
specific port(s) and vice-versa. The attacker would ideally
choose a sequence of instructions scheduled solely on these
ports to maximize the chance of encountering different lev-
els of contention across the different possible V;. Through
our experiments, we wish to explore how short SMOTHER-
differentiable sequences can be and the ideal length of attacker
sequences to differentiate them.

Experiment design and setup. In our first experiment,
we consider a victim running sequences of either popent (port
1) or ror (port 06) and an attacker timing a sequence of
popent. We vary the length of both attacker and victim se-
quences, and check for SMOTHER-differentiability by noting
the percentage change in mean execution time for the attacker.
In a second experiment, the victim runs either cmovz (port
06) instructions or popcnt. In this case, the attacker times a
sequence of bts (port 06) instructions with both operands as
registers.

To run this experiment, an orchestrator process is used to
fork the victim and attacker processes, and to set their core
affinities so that they share a physical core. We require the
execution of the target sequence in the victim to temporally
overlap with the (timed) execution of the attacker sequence
to assure port contention. Therefore, the processes use a
synchronization barrier which ensures that any following in-
structions will be run concurrently. Thereafter, each process
runs their respective sequence, using rdtscp to take times-
tamps at the beginning and end of each run. The timestamps
tell us the number of cycles taken to execute the sequence
and were used to also check that the executions were prop-
erly synchronized. Atomic operations on variables in shared
memory were used to implement the synchronization. We
repeat this process to collect multiple timing samples.

In this set of experiments, we keep the same hardware and
OS configuration as used in the covert channel experiment,
while precisely controlling the synchronization of threads
through the additional instrumentation described above.

Results. Figure 2 plots the average difference in attacker
execution time between the two sequences of victim instruc-
tions for each experiment. The length of the sequence for
the victim was taken from the set {1,4,8,16,32} while the
attacker sequence varied in length between one and 100 in-
structions.

~
o

HoOoH NN W W A
o v o v o v o

wu

Attacker execution time difference (%)

(=]

0 20 40 60 80 100
of instructions in the attacker

(a) SMoTher attack using popcnt to detect if the co-

located victim runs on port 1.

IS
tn

® 1 victim instructions

9 []
o 40 ¥ B 4 victim instructions
= t + 8 victim instructions
@ 35 § % 16 victim instructions
(] : .)
= 3 ¥ ¥ ¥ 32 victim instructions
E30 ! ++ _ :
[
£ 25
=]
& 20
=]
3
o 15
x
o}
5 10
S
B 5
< 0
0 20 40 60 80 100

of instructions in the attacker

(b) SMoTher attack using bts to detect if the co-located
victim runs on port 06.

Figure 2: SMoTher side channel characterization. Each data point represents the difference between the average exe-
cution time of the attacker thread, between the port contention scenario and the baseline. We do not plot the few data
points where Student’s t-test shows no statistically significant difference between both distributions at 95%-confidence.
The data points for which the attacker runs fewer instructions than the victim are plotted in grey.

Our measurements confirm that timing short sequences
of instructions is feasible: for a vast majority of sequence-
length combinations the victim sequences were SMOTHER-
differentiable using the Student’s t-test on the attacker’s
running time distributions. While timing popcnt, 83% of all
combinations plotted in Figure 2a showed significant differ-
ences in means between the victim’s sequences of popent and
ror.

The measured differences vary from close to 0% to 40%.
Longer sequences of instructions in the victim lead to higher
differences and less variability in measurements. Only 48%
of popent measurements with sequence of 1 victim instruc-
tion are SMOTHER-differentiable, as opposed to 83% for a
sequence of 4, and 100% for a sequence of 32 victim instruc-
tions. This means that distinguishing a sequence of one victim
instruction (max. 9% difference and more variability) is much
harder than a sequence of 32 victim instructions (max. 38%
difference and less variability).

We observe that there is an optimal number of attacker
instructions to measure a victim instruction sequence of a
given length, which increases with the number of victim
instructions: from 10 attacker instructions for one victim in-
struction to 45 instructions for 32 victim instructions. This is
explained by the following observations: contention for longer
instruction sequences in the attacker is easier to time, since
attacker and victim sequences are more likely to overlap. This
effect fades when the attacker sequence becomes significantly
longer than the victim’s, at which point only a small portion
of the executed instructions will contend, thereby leading to
a smaller difference.

To show the breadth of possible SMOTHER-differentiability
results, we perform a second experiment, with a victim run-
ning instructions which may be scheduled to more than one
port. Specifically, the victim runs either cmovz (port 06) or

popent (port 1). The attacker times a sequence of bts in-
structions (port 06) to measure the contention on ports zero
and six. Figure 2b shows that multiport instructions are still
SMoTHER-differentiable. However, variance is higher, and we
notice a steeper cut-off point beyond the optimal number of
attacker instructions. Indeed, intuitively, with more execution
ports available, the instructions are less likely to contend.
In practice, this means the attacker may need more runs to
extract information, and the choice of the number of attacker
instructions is more important than in the previous exper-
iment. As in the previous experiment, we observe that the
optimal number of attacker instructions increases with the
number of victim instructions. Beyond this number, most ex-
periments show lower SMOTHER-differentiability, with most
between 0 and 5%.

While our results show that the SMOTHER side channel
exists and can be measured even for a small sequence of
instructions, we have noted a number of takeaways and pitfalls
to avoid during measurements, namely:

e Synchronisation of the target code sequence in the
victim and the timed code sequence in the attacker is
extremely important, more so when the target code
sequence in the victim is short;

e Pipeline bottlenecks other than port contention may
occur and overshadow the side channel. One such ex-
ample is read-after-write hazards;

e The CPU may eliminate the execution of some in-
structions based on their operands (one such case is
zero idioms). This results in those operands not being
executed, and removing contention;

e Some instructions (e.g., those from the SSE and AVX
extensions) are subject to aggressive power-saving fea-
tures on modern CPUs. This makes measuring port
contention more difficult (and the power savings may

in fact serve as its own side channel [29] separately
from SMOTHER).

Finally, we note that practical instruction sequences are
unlikely to be identical repeated instructions. However, this
is not required for practical SMOTHER side channels: it is
only required that, among a sequence of instructions, they
exercise different degees of port pressure on the port that
the attacker is measuring. We further expand on this idea in
Section 5 for practical SMOTHER-differentiable sequences.

4 SMOTHERSPECTRE

SMOTHERSPECTRE is a speculative code-reuse attack tech-
nique which starts at an indirect jump on the victim’s usual
execution path. The attacker leverages Branch Target Injec-
tion (BTI) to “poison” the CPU’s branch predictor such that
when the victim’s fetch unit asks for the target of the indirect
jump, it is sent the address of a separate data-dependent
conditional jump within the victim’s binary with SMOTHER-
differentiable fall-through and target sequences. During the
period of the speculative execution, the victim evaluates
the condition and jumps to either the target or fall-through
sequences. The attacker times a sequence of relevant in-
structions to identify which sequence is run on the victim
(SMOTHER), thereby inferring the outcome of the condition
and learning some information about the victim’s data.

SMOTHERSPECTRE complements and extends existing at-
tacks [5, 23, 24] which use cache-based side channels to exfil-
trate secrets. Using such channels implies that these exploits
1) require the presence of special gadgets in the victim code,
or the ability to inject them; and i) depend on speculative
execution leaving persistent, measurable microarchitectural
side-effects.

Calls using function pointers in C/C++ are traditionally
implemented by indirect calls in assembly. While exploitable
indirect jumps are prevalent in most programs, the first ob-
servation limits the set of available gadgets for ultimately
leaking secrets. This scarcity, along with the overheads of
some software-only mitigations, justifies the use of user-space
programs to not deploy countermeasures such as retpolines or
STIBP by default. In contrast, SMOTHER-differentiable gad-
gets are easily found (as we demonstrate in Section 5). Almost
every conditional jump can be part of a SMOTHER-gadget,
requiring only its fall-through and target to be SMOTHER-
differentiable. For example, libcrypto from the OpenSSL
library contains more than 12,000 readily usable gadgets.

The second observation has lead to the proposal of defenses
that ensure that all changes to microarchitectural state be
undone [21]. However, the port-contention based side-channel
persists even if the CPU were able to perform a perfect roll-
back of changes caused by non-retired instructions. The very
fact that instructions are speculatively executed remains a
measurable quantity. These characteristics allow SMOTHER-
SPECTRE to present a more powerful avenue of attack.

In this section, we first present the attacker model and
objectives for SMOTHERSPECTRE. We then explain the basic
premise of the attack, the conditions required and how we

Attacker

BTl gadget Poison BTB
load rdi, (secret) i:zd . rax, smother
load rax, (pointer) ——— 9P
. jmp [rax]
jmp [rax] jmp <loop>
Smother gadget Time smother gadget
cmp rdi, 0 rdtscp
j1l <mark> ror
popent ror
e | ¢—— ror
mark: ror
ror ror
rdtscp

Figure 3: Overview of the SMoTherSpectre components.

ensure these are met in our proof-of-concept. We then present
a characterization of the SMOTHERSPECTRE side channel.
Finally, we discuss the characteristics of some SMOTHER-
gadgets we found in common system libraries, and what
information they may be used to leak.

4.1 Attacker model

The objective of a SMOTHERSPECTRE adversary is to extract
secret information from a victim process and we make the
following assumptions about the attacker:) they control
code in a process co-located with the victim process; i) they
can launch branch target injection attacks.

The first assumption is justified: if the attacker can execute
code on the same machine of the victim, the scheduler may
schedule the attacker and victim on two different threads of
the same physical core. An example of such colocation may
exist in public cloud offerings where compute resources are
shared at a fine granularity between tenants: for IaaS, virtual
cores for different customers may map to the same physical
core, for PaaS/SaaS processes for different tenants may be
similarly scheduled [4, 13].

Existing mitigations against BTI include software (ret-
polines) and a set of hardware interfaces for flushing the
indirect branch predictors at the appropriate times and for
not sharing them across SMT threads (IBRS, IBPB and
STIBP in Intel). These mitigations come with a potentially
severe performance impact [31]. As such, these controls have
been enabled only for selected system components such as
the kernel, and none of the user-space programs we have
analysed make use of them. The adversary also needs to
know the victim’s code base, which is possible through the
use of common libraries and open-sourced applications, and
where it is located in memory. It must be able to circumvent
ASLR and similar controls: the literature contains several
examples [9, 19, 30] of how this is achievable in practice,
including an approach using the same BTB weaknesses that
make BTI possible.

4.2 Attack principle

Figure 3 shows a side-by-side layout of the code of a victim
and an attacker in the SMOTHERSPECTRE setting. As the

figure shows, the attack requires two types of gadgets in the
victim code:

e A BTI gadget: Stores secret data into memory or a
register (called the SMOTHERSPECTRE target) followed
by an indirect branch that can be poisoned by the
attacker;

e A SMOTHER gadget: A data-dependent conditional
jump whose control variable is the SMOTHERSPECTRE
target, with SMOTHER-differentiable (see Section 3.2)
target and fall-through code paths.

The example BTT gadget in Figure 3 stores the secret into the
register rdi, a pointer into rax and finally jumps to the loca-
tion pointed to by rax. The corresponding SMOTHER gadget
contains an rdi-dependent conditional branch where the jump
target and fall-through contain SMOTHER-differentiable in-
struction sequences (popent and ror).

Note an important difference between traditional data-
dependent control flow sequences and SMOTHERSPECTRE.
Data-dependent control flow sequences over confidential data
are considered vulnerabilities, especially when found in cryp-
tographic libraries. SMOTHERSPECTRE does not require such
a vulnerability to be present in the victim. It connects the
loading of a secret variable to a register or memory location
(BTI gadget) with an altogether independent, speculatively
executed sequence, which happens to perform a compare-and-
jump over that same register or memory location (SMOTHER
gadget). The two sets of instructions may well be entirely un-
correlated from a software development perspective, making
the pattern harder, if not entirely impossible, to eliminate.

The attacker proceeds in two main steps, as shown in
Figure 3: in the first phase the attacker performs traditional,
Spectre v2 style BTT and then enters in a busy wait sequence,
for instance a sequence of nop instructions. The purpose of
the latter is to align the second phase of the attack with the
speculative execution of the mark or fall-through sequence
in the victim. In the second phase the attacker performs a
SMoOTHER-style timing of a carefully selected sequence of
instructions — ror in the example. The attacker then proceeds
to a statistical analysis of the gathered timing information
to learn one bit of information. This entire process can be
repeated with different gadgets to leak different bits, and
thereby reconstruct the secret. Note that while the example
utilizes the indirect-branch prediction hardware to steer spec-
ulative execution to gadgets, any existing branch redirection
method may be used for this purpose (for example the return
stack buffer).

4.3 Characterization of the Side Channel

In our experimental testbed to characterize the SMOTHER-
SPECTRE side channel, an orchestrator process forks a victim
and an attacker process, pins them to two threads on the
same physical core and executes an attacker and a victim
process (similar to the testbed in Section 3.2). Attacker and
victim processes execute the body of a loop after synchroniza-
tion using atomic operations on shared memory. The body
of the loop is constructed as described in Figure 3.

In our proof-of-concept, we leverage the branch target
buffer to redirect an indirect branch in the BTT gadget of the
victim to the SMOTHER gadget. In order to maximize the
success rate, we 1) insert a series of N always-taken branches
just prior to the indirect branch; i) ensure that the addresses
of the branches (including the target of BTI) are located at
congruent addresses between attacker and victim; 1) disable
ASLR; i) evict the cache-line containing the indirect jump
pointer. As other works have shown, the random ASLR offset
can be leaked in a real-life attack [9, 30], and BTI can be
performed by aliasing addresses (in the BTB) with very
high success rates [18]. Therefore, we disregard these factors
while creating our proof-of-concept (PoC). Evicting the jump
pointer allows us to extend the duration of the victim’s
speculative execution, in order to establish an upper bound
for accuracy and throughput for the channel. In alternate
settings, we have noticed that usual victim computation can
evict the pointer from the L1 cache. The resulting period of
speculation is enough for our attack to work.

Further, we introduce instrumentation to obtain informa-
tion about the success of the BTI attack. This information is
supplied by the Performance Counter Monitor (PMC) infras-
tructure and can be obtained by using the msr kernel module.
We use it to program the PMC counters to retrieve sam-
ples for the BR_MISP_EXEC.TAKEN_INDIRECT_JUMP_NON_CALL_RET
event, which is triggered every time the target of a taken
indirect jump is mispredicted. PMC counters are sampled at
the start of every loop and once more at their end. BTT is
successful whenever the difference in the value of the counter
is 1, given that the victim code contains only one indirect
jump.

The timed instruction sequence in the attacker consists
of a series of 42 crc32 instructions operating over randomly
chosen, nonzero values. The victim process contains an equiv-
alent sequence of crc32 instructions at the fall-through of
the branch: given that crc32 instructions execute exclusively
on port 1, if BTI is successful and the speculated condi-
tional branch is not taken, the victim will be competing for
execution on port 1 with the attacker. The target of the
branch instead contains a sequence of instruction designed to
be executable on more ports (0,1,5,6) and thus display less
contention with the attacker.

We collect two sets of samples: one when the victim’s
secret is set to zero, and one where it is set to a nonzero
value. Figure 4 shows the results of the experiment on a
Skylake platform (i7-6700K). As we can see, the distributions
obtained when the victim has a non-zero secret generates
more contention on port 1 and thus causes the attacker
to measure a higher time-stamp counter difference. This is
justified by the fact that a nonzero secret causes speculative
execution to be directed to the fall-through of the branch,
which we have designed with a competing sequence crc32
instructions.

In the next phase of the attack, we use the results of
this experiment as profiling information to read the side
channel. To this end, a bit sequence is generated and set -
bit by bit - as the secret value on the victim. Based on the

0.2 - T T T -
secret

=1
secret = 0

1k I \ g

Probability
°

Timestamp counter difference

Figure 4: Probability density function (estimated using
kernel density estimation) for the timing information
of an attacker measuring crc32 operations when run-
ning concurrently with a victim speculatively executing
a SMoTher-gadget.

results of Figure 4 we choose a time-stamp counter difference
of 89 as a threshold: if the mean of the samples is higher
than the threshold we conclude that the secret is 1, and 0
otherwise. The experiment is run, 5 samples each are collected
for 20, 000 secret bits. The attacker is able to correctly guess
the victim’s secret with a success rate of over 98%. The
entire experiment takes 0.83s as reported by time yeilding a
sample rate of 120,000 samples/second, and a leakage rate of
24,0000it/s. A similar experiment with guesses based on 1, 2,
3 and 4 samples result in accuracies of 72%, 78%, 83%, and
90% respectively. As expected, there is a trade-off between
accuracy and leakage rate.

We repeated this experiment on a Haswell processor (i7-
4790) using the same attacker-timed sequence and victim’s
SMoOTHER-gadget. With a threshold of 85 cycles, the attacker
was able to guess the victim’s secret bit with an accuracy
of 53%, 62%, 69%, 70% and 76% based on 1, 2, 3, 4 and
5 samples respectively. We also validated the attack on a
Broadwell processor (i3-5005u).

4.4 Discussion about SMoTher-gadgets

A SMOTHER gadget is defined by two attributes: the condi-
tion on which the jump depends and the sequences on both
paths following the jump. The latter determines whether
the gadget can be used in a SMOTHERSPECTRE attack: the
sequences must be SMOTHER-differentiable. The former de-
termines the information leaked by the gadget. In this section,
we shall discuss some of the SMOTHER-gadgets found in real
libraries, and what they can leak.

Common instructions which set the condition flags in
SMoOTHER-gadgets we found are cmp, test, add, sub. cmp-jxx
sequences compare a value in a register (or loaded from mem-
ory) against other registers or against a constant. Each gadget

glibc ssl pthread Id crypto z stdc++ Together

rax 14 12 9 7 11 8 8 21
rbx 6 2 0 1 6 1 1 9
rex 8 1 2 1 5 1 2 8
rdx 10 2 5 6 7 2 3 14
rsi 8 4 1 2 3 1 1 10
rdi 8 2 0 2 3 1 0 11
rsp 2 0 0 0 0 0 2 3
rbp 5 3 0 0 9 0 0 13

Table 2: Number of different leakable register bits (out
of 64) using SMoTher gadgets from common system li-
braries, specifically test-jxx one at a time, on multiple
iterations of the victim with the same register state.

reveals a constraint on the value. test-jxx and and-jxx se-
quences perform a bitwise-and of two values, setting flags
based on the result. When one of the values is a constant
with a single bit set, the gadget can be used to test whether
specific bits are set in the first operand. Such gadgets reveal
the corresponding bits to the attacker. When the second
operand is not a constant, but a register whose value may be
predicted or controlled, the attacker gains the power to check
bits other than those specified by the constant gadgets.

Of the over 12,000 gadgets found in libcrypto, approxi-
mately:

e 2,800 are cmp operations
e 3,900 are test operations
e 1,500 are add operations
e 970 are or operations

There are around 350 cmp-jump gadgets which compare a
value in a register or in memory against zero. Around a 100
gadgets, which check for greater-than/lesser-than conditions
against zero, can be used to leak whether the value is positive
or negative. Another 294 gadgets compare against (the con-
stant) one, and 807 gadgets compare against other constants.
Around 370 cmp-jump gadgets have a memory operand of
which 118 compare with non-zero constants. 300+ gadgets
compare with values on the stack, of which 33 are against
non-zero constants. Of all cmp-jump gadgets, more than 400
check for signed or unsigned greater-than. The number of
signed or unsigned lesser-than is about the same.

For victims running in a loop, there are cases where the
register/memory state of interest will be the same across
iterations. For example, a register/memory location storing
a secret, cryptographic key can be expected to hold the same
value across multiple calls to the encryption function. The
attacker can leverage the BTI gadget to redirect the victim
to different SMOTHER-gadgets on different iterations, each
time leaking different information about the secret. Over
multiple iterations, the attacker can effectively leak multiple
bits of the same secret, chaining the leaks from different
SMOTHER-gadgets. In Table 2, we show how many bits we
can leak from the registers by chaining SMOTHER-gadgets
found in commonly used system libraries. To illustrate this

for one specific register, Appendix A lists the gadgets which
can be chained to leak 21 bits from rax.

5 GADGET DISCOVERY

As described in Section 4.2, we require two gadgets to be
present in the victim code for SMOTHERSPECTRE. We investi-
gate the characteristics of ideal gadgets and how to find them
in a given piece of code. We introduce port fingerprinting to
summarize the port utilization of an instruction sequence and
assess the potential to be detected using SMOTHER. Port fin-
gerprinting enables a comparison of the port utilization of two
instruction sequences and rank combinations of instruction
sequences based on their difference in port utilization.

BTI Gadget. The purpose of the BTI gadget is to pass
the secret through a register to an arbitrary code target in
the same process. Depending on the attack scenario, the BTI
gadget is the only piece of code that is strictly required to be
present in the victim. Ideally, it just consists of two instruc-
tions: one that moves the secret into a register and an indirect
control-flow transfer. In order to maximize the speculative ex-
ecution window, the target of the indirect control-flow transfer
should be retrieved from uncached memory. An archetype
of an ideal BTI gadget is a virtual function call in C++,
with the secret value being an argument to such a function
call. In the System V x86_64 calling convention, the first six
parameters of a function are passed in registers. Further, the
typical implementation of a virtual function call uses indirec-
tion through a vtable to resolve the binding at runtime. Since
the vtable is stored in memory, the target of the call needs
to be loaded, which can cause a speculation window of upto
a few hundred (7200) cycles if the vtable has been evicted
from the cache prior to the call. We can reasonably assume
that this will happen in practice if objects are created by an
early initialisation phase and used (potentially much) later
in response to external events. Similarly, calls to functions in
dynamically-loaded ELF (Executable and Linkable Format)
libraries also employ an indirect jump, using a pointer from
the Global Offset Table (GOT) to facilitate dynamic symbol
resolution. Arguments in such calls may contain sensitive
information which can be compromised by an attacker using
these jumps as BTI gadgets.

SMoTher Gadget. A SMOTHER gadget is the receiving
end of a BTI gadget. Depending on the attack scenario, it
is either already part of the victim, or can be supplied via
an additional attack vector. It starts with an instruction
that compares the register to a known value. The known
value can either be a known immediate in the code, or, more
powerfully, an attacker-controlled value specified via an ad-
ditional attack vector. The next instruction needs to be a
conditional control flow transfer based on this comparison
leading to SMOTHER-differentiable sequences. To maximize
the chances of SMOTHER-differentiability, the instruction
sequences should each have a distinct port fingerprint such
that they can be clearly distinguished from one another. This
depends on the layout of the execution engine: on Intel Sky-
lake, a prime example would be one branch with a sequence

of AES instructions (only port 0) and another branch with a
sequence of MMX instructions, predominantly limited to port
five. Besides, the instructions should ideally not load from or
store to memory, as potential cache misses introduce noise.
Further, the more generic the instructions in the sequence
are, the more likely it is that their execution unit does not
require a warm-up phase during which execution is slow,
again introducing noise.

5.1 Ranking SMoTher-gadgets

The instruction sequences we consider consist of basic blocks
that start at the respective branch targets. To identify in-
struction sequences that are ideal for SMOTHER and com-
pare them against one another, we need to measure their
suitability for SMOTHER. The primary criterion is that the
compare instruction operand has to match the register that
is loaded with the secret in the BTI gadget. Further, we
evaluate the instruction sequence at the branch target and
fall-through by quantifying three properties:) the port uti-
lization difference of the two branch targets (rp), 1) the
difference of the two branch targets in terms of the length of
the branches (r;), and #7) the amount of memory operations
in both branches (). To compare instruction sequences
based on these properties, we combine them using the rank
product RP(g) = ([1¥_, 74:)"/* for our k(= 3) properties.

To compare the port utilization, we first use Intel’s Archi-
tecture Code Analyzer (IACA) to obtain a port fingerprint
P for a given instruction sequence. The port fingerprint is a
summary that lists the total number of cycles spent on every
port for a given instruction sequence P = pyg...p7. [ACA
internally uses a microarchitecture-specific model of the pro-
cessor to compute the cycles, taking out-of-order execution
into account. It also models the divider pipe on Skylake,
allowing port zero, which handles the complex div instruc-
tion, to be ready for the next pop in the next cycle, while
the div is still being executed. As it cannot know better,
TACA assumes all CPU resources to be fully available prior
to execution of the sequence. An open-source alternative to
TACA, OSACA [25] also supports AMD processors.

To compare two port fingerprints P and @, we subtract
them and then calculate the utilization difference as the sum
over the vector: 7, = b -(|pi — qi|). The larger 7, the
higher the difference in port utilization of the two instruc-
tion sequences. The utilization difference will be high for
long instruction sequences that do not share a port. Such
instruction sequences lend themselves well to SMOTHER.

While a ranking based on the port utilization difference
already captures the most important aspect, it has one draw-
back: gadgets where the branch instruction sequences are of
different length, such as 2 instructions vs. 20 will rank high,
whereas we prefer sequences of equal length for the timing.
Therefore, we also include the inverse of the length difference
r; = abs(l1 — l2) between the sequences of a gadget in the
ranking.

Finally, we also take the potential noise into account that
can be caused by memory operations. On our targeted Skylake

RDI RSI RDX RCX R8 R9

glibc 2.23 1155 1502 3864 4256 568 615
1040 932 257 1029 135 29
stdc++ 6.0 189 400 869 1399 97 73
209 65 98 276 58 14
Id 2.23 105 130 412 350 41 31
46 47 29 110 6 0
pthread 2.23 23 56 70 82 25 8
23 2 7 34 3 0
z1.211 76 85 138 338 66 80
24 29 8 96 16 5
crypto 1.1 1132 1048 1659 2566 45 29
310 319 224 1036 239 167
ssl 1.1 243 239 376 500 39 21
95 32 29 239 12 1

Table 3: SMoTher-gadgets we found in common system
libraries, for the registers used to pass arguments in the
System V x86_64 calling convention. First line: number
of SMoTher-gadgets that use the value in the register,
second line: number of gadgets that use its pointee.

processors, the ports 2, 3, 4 and 7 are used for scheduling these.
We include the inverse of the sum, r,,, of the cycles spent
on these ports in both branches as an additional ranking
for the gadget. The final rank of a gadget g; is given by
RP(gi) = (rp, - (maw(ry) —r1,) - (maz(rm) —rm,))"">.

5.2 Finding Gadgets

We develop a tool to aid gadget discovery based on the pop-
ular distorm3 disassembler and Intel’s Architecture Code
Analyzer, and use it to analyze a number of common system
libraries that are likely to be linked to a victim executable. For
the analysis we only consider gadgets with a branch length
between 3 and 70 instructions, with 3 instructions being a
reasonably low bound for smothering and 70 instructions
being an upper bound for speculative execution. Our search
looks for valid instruction sequences starting at every offset in
the binary. Therefore, it would detect any SMOTHER-gadget
resulting from an unintended sequences of bytes (starting
from the middle of an intended instruction) which might de-
code to valid instructions. We show the results in Table 3, the
libraries analyzed are taken from a regular Ubuntu 18.04 LTS
installation. We focus on SMOTHER-gadgets that compare
against the registers used in the x86_64 calling convention
and either use the value in the register directly, or use it
as a pointer and compare to a value pointed to in memory.
The rationale behind this is that BTI gadgets are typically
indirect calls that pass a secret, such as a cryptographic key,
as a parameter. The results show that we can find enough
SMoOTHER-gadgets even in a single common library such as
glibc alone. Note that this method applies irrespective of
whether the library is loaded at runtime or is statically linked
into the victim’s binary. However, none of the gadgets found
were formed from instructions decoded from unintended byte
sequences.

One under-approximating limitation of our gadget search
algorithm is that it assumes that gadgets start from the latest
flag-setting instruction before the jump. Suppose a sequence
in the victim’s code is shl 8, rax; test 1, rax; jz Oxadd;.
Our tool will find test 1, rax; jz Oxadd; as a SMOTHER
gadget which leaks the least significant bit (LSB) of rax.
However, the instructions preceding this might perform com-
putations which cause the gadget to leak different information.
The entire sequence is a different SMOTHER gadget which
leaks the 9-th least significant bit of rax. The space of us-
able SMOTHER-gadgets exceeds the ones we have found, and
depend on the particular victim’s code.

6 REAL WORLD ATTACK

We demonstrate real-world attacks on OpenSSH and
OpenSSL, two commonly used programs handling sensitive
secrets that have been extensively hardened against regular
and side-channel attacks.

6.1 OpenSSH attack

OpenSSH is widely used to securely and privately connect
to servers over untrusted networks. The confidentiality of
the server’s private key is essential to the security of the
overall system. Leaking the private server key allows an
attacker to impersonate the server, acting as a man in the
middle. In the OpenSSH attack, we find a BTT gadget in the
default OpenSSH (version 7.2) SSH server binary available
on Ubuntu 16.04 LTS, together with four SMOTHER gadgets
in glibc version 2.23, and leak bits of the host key. As shown
by Heninger and Shacham [17], leaking a small fraction of
bits enables recovery of the entire key.

The threat model for this attack assumes a local attacker
that is able to initiate TCP connections to the ssh daemon.
As before, we assume that ASLR is disabled (or can be
bypassed through other means). Since the target BTI gadget
runs pre-authentication, the attacker only needs to connect
and does not need to authenticate to the server. In our PoC,
the local attacker is running on the same host. However, the
same attack can be run from a colocated VM, assuming the
VMM schedules both attacker and victim VMs on the same
physical core. We also assume that the attacker is able to
spawn processes on the same physical core as the victim SSH
process: the assumption is realistic, as shown for example by
Zhang et al. [37].

Our BTI gadget resides in the explicit_bzero function (Fig-
ure 5¢) which clears regions of memory. The function is ex-
tensively used to zero out sensitive data before memory is
released as a countermeasure against data leakage if that
memory region is reused for another purpose. To eliminate
the possibility of dead-store optimization by the compiler,
explicit_bzero calls the standard bzero function using a
volatile function pointer. We exploit the indirect jump gener-
ated for this function pointer call as the BTI gadget, knowing
that the first argument to the function (stored in register rdi
according to the System V calling convention).

0x6£f8dc:
0x6£8e2: je 6f8ef
0x6f8e4: mov
0x6£8e8: sub
0x6f8ec: sub
0x6f8ef: mov

.rept 8;

addl r8d, rod;
addl r10d, riid;
addl r8d, r9d;
addl r10d, riid;
.endr;

rax,rsi
rbx,rdi

(a) Attacker-timed code (b) Victim SMoTher gadget (glibc)

testl 0x100, (rdi)

0x10(rbx),rax
0x8(rbx) ,rax

static void (* volatile ssh_bzero)
(void *, size_t) = bzero;
void explicit_bzero(void *p, size_t n) {

ssh_bzero(p, n);

(¢) Victim BTI gadget (OpenSSH)

Figure 5: Gadgets from real-world libraries used in our SMoTherSpectre exploit for leaking the 7th least significant bit

of rdx’s pointee

In particular, we exploit an invocation of the BTI gadget
where the pointer refers to the server’s private host key
(e.g., RSA key). This invocation is present in the code path
handling new connections, when the server loop forks new
processes for each incoming connection and loads the private
host key from disk with the key_load_private function. The
cryptographic values (e.g., the exponents and modulus of
the RSA key) are kept in memory to later perform the ssh
handshake but the buffer used to read out the file from disk is
zeroed out and freed. This gadget is particularly convenient
since the attacker gets an arbitrary number of attempts at
discovering different bits of the same private key. Also, the
attacker can control when the victim process is spawned by
initiating connections to the ssh daemon.

An abridged version of the SMOTHER gadget is shown in
Figure 5b (see Appendix C for the full assembly listing). Our
chosen SMOTHER gadget differs slightly from that described
in Section 4.2 in that it compares the value of a memory
location pointed to by a register, not the value of the register
itself. The target and fall-through path differ in utilization
of execution ports 0156. This gadget is taken from glibc
and demonstrates the availability of SMOTHER-gadgets in
commonly linked libraries. The attacker times a sequence of
add instructions with register operands (port 0156) shown in
Figure 5a to specifically target the same ports.

We ran our attack on a slightly-modified sshd server. The
ssh server is modified to setup relevant performance counters
to be used for statistical and monitoring purposes. These
counter values are ignored by the actual attack. The other
modification is to synchronize the attacker with the BTI
gadget (as in Section 4.3). For other targets (i.e., OpenSSL),
we have investigated alternate synchronization mechanisms
that do not require victim modification and have good results.
The server was compiled using the default options for Linux
on x86-64.

In the PoC of the attack, an orchestrator process randomly
sets the bit to be leaked before launching the server and
attacker on colocated logical cores. The attacker process is
responsible for “poisoning” the BTB to cause mis-speculation
on the victim process handling the incoming ssh connection.
Prior to BTI, the attacker also performs a series of cache
accesses that result in the eviction of the server’s cache line
containing the function pointer ssh_bzero. This forces the

victim’s indirect call instruction to miss in the cache and
speculate for a few cycles, increasing the BT success rate.
The attacker process is otherwise identical to the victim and
follows the same code path, increasing the probability of the
attacker having the same branching history as the victim at
the call site, thereby increasing the success rate of BTI. The
orchestrator launches an ssh client on a separate physical core
to connect to the server and trigger the creation of the victim
and attacker processes. Victim and attacker process execute
and the attacker is able to collect a SMOTHER-timing sample
correlated to the value the LSB in byte 1 of the host private
key.

The attack can be extended in two ways. First, we can
pair our BTI gadget with other SMOTHER gadgets in the
victim, enabling us to leak other bits of the host private key.
Second, we can find other occurrences of the explicit_bzero
BTI gadget (or other BTI gadgets) where different secrets
are held in registers or in memory.

In the explicit_bzero BTI gadget, we found that the value
of the register r12 equals the value of rdi, both pointing to the
host key in memory at the point of attack. Therefore, we are
able to use three other SMOTHER-gadgets which dereference
r12. These gadgets allow us to leak extra bits from the host
key, specifically the 4** LSB in byte 13, the 4" LSB in byte
14 and the 5" LSB in byte 56. The corresponding assembly
listings are shown in Appendix C.2.

Additionally, we can also find other BTI gadgets, or invo-
cations of explicit_bzero with different secrets. Other secrets
erased by this function include contents of the /etc/shadow
file and client passwords in cleartext received during login
attempts.

6.2 OpenSSL attack

For OpenSSL, we target a BTI gadget in the libcrypto library
(version 1.1.1b, dated 26-Feb-2019) which is widely used for
performing cryptographic functions and a SMOTHER gadget
from glibc version 2.27.

Over the years, considerable effort was devoted to thwart-
ing potential attackers and to protect OpenSSL from side-
channel attacks, primarily by removing data-dependent
memory-access or control flow. Our attack, however, tar-
gets BTT gadgets (indirect jumps or calls) that are found in
code used to choose between encryption modes, allowing for

0x£5393:
0xf539a: je
0x£539c: mov

.rept 8;

btrl r8d, r9d;
btrl r10d, riid;
btsl r8d, r9d;
btsl ri10d, riid;
.endr;

£5382

0x£5382: add 0x1,rax

(a) Attacker-timed code (b) Victim SMoTher gadget (glibc)

testq 0x400, (rdx)

-0xb0 (rbp) ,rdi

if (ctx->cipher->do_cipher(ctx, out, in, inl))
{

*outl = inl;

return 1;

(¢) Victim BTI gadget (OpenSSL)

Figure 6: Gadgets from real-world libraries used in our SMoTherSpectre exploit for leaking the 3"¢ LSB of byte 1 of

rdx’s pointee

multiple modes of operation (such as ECB, CBC, GCM) with
the same block cipher. OpenSSL uses a context variable that
stores function pointers for encryption/decryption. These
pointers are set during the initialization phase depending on
the user-specified cipher mode.

As a result, cryptographic applications using libcrypto
execute an indirect call (the BTT gadget) during every block
encryption or decryption. Such gadgets are the result of
commonly used coding practices, and do not directly perform
any data-dependent actions based on the secret value. As
in the OpenSSH attack, the use of function pointers leads
to indirect calls in the compiled binary. While security was
the motivating factor for OpenSSH, OpenSSL uses function
pointers to support polymorphic-like behavior, enabling our
transient execution attack.

Our BTI gadget is contained in EVP_EncryptUpdate, and
is shown in Figure 6¢. The third argument (in) contains a
pointer to the plaintext to be encrypted (and is therefore a
secret). In accordance with the System V calling convention,
this pointer is stored in register rdx prior to the call. The
secret in our chosen SMOTHER gadget is the 3" LSB in
byte 1 of the plaintext, referenced through rdx. An abridged
version of the SMOTHER gadget is shown in Figure 6b (see
Appendix B for the full assembly listing).

In our attack, we model a victim that encrypts text using
OpenSSL’s EnVeloP (EVP) API. After performing the neces-
sary initializations, it performs a series of encryptions using
calls to EVP_EncryptUpdate. We have also instrumented the
victim to setup relevant performance counters which are only
used for statistical and monitoring purposes and are not used
in the attack. The victim library does not contain any code
to help the attacker synchronize with the execution of the
BTI gadget.

The attacker triggers the encryptions on the victim. It also
runs code that is almost identical to the victim apart from
the following differences. First, it loads the call pointer with
the location of the SMOTHER gadget on the victim to trigger
BTI on the victim process. Second, it replaces the code at
the target location by a delay sequence and the SMOTHER
timing. The delay sequence consists of a series of dependent
instructions that allows the attacker to delay for a controlled
number of cycles, synchronizing with the victim’s SMOTHER
gadget, before measuring the timing sample. Otherwise, the
attacker runs code that mimics the victim: it performs the

Pointer register Byte Offset Bit mask A SMOTHER timing
rdi 0x01 0x01 0.32% + 0.21%
ri2 0x38 0x10 0.64% + 0.62%
ri2 0x0d 0x08 0.66% + 0.47%
ri2 0x0c 0x08 0.42% + 0.33%

Table 4: SMoTherSpectre results leaking the sshd pri-
vate key. Four gadgets, each targeting a different key bit
identified by its byte offset and bit mask, were used. We
also show the mean timing difference percentage for the
attacker’s SMoTher timing, separated according to the
value of the randomly-set target bit: all show a difference
at 95% confidence.

same call to the encryption function where it follows the
same sequence of checks and jumps. It also runs in a loop per-
forming the same number of iterations, thus maximising the
success of BTI. In each iteration, the attacker gets one timing
measurement. Between iterations, the attacker performs a
series of memory accesses designed to evict the victim’s cache
line holding the pointer to the encryption function from the
L1 cache to increase the BTT success rate. We observed that
other usual work being performed on the core can have the
same effect.

6.3 Experimental results

We run the OpenSSH attack on a quad-core, hyper-threaded
Skylake CPU (i7-6700K) with the server and attacker pinned
on logical cores 0 and 4 respectively (running on physical
core 0). For each connection attempt to the server, the or-
chestrator randomly sets or resets the target bit, logs its
value and the attacker measures a SMOTHERSPECTRE tim-
ing sample. We run the attack 10,000 times and separate
the collected samples based on the value of the target bit
on that particular run, yielding two sets of attacker timings
corresponding to the target bit being zero or one. Finally,
we run the Student’s t-test to check whether the sets are
statistically distinguishable. We used this methodology on
four SMOTHER-gadgets described in Section 6.1. Table 4
shows the results: the distributions are differentiable with
at-least 95% confidence for each of the four gadgets. The
attack does not require extremely high BTI success rate: in
our samples, we observe BTI success rates ranging between
16% and 25%. The whole experiment takes about 75 seconds

0.08
---secret=1

—secret=0

0.06 [/
/
0.05 H v

0.04 [

Probability

0.03 [

0 . \ .
20 30 40 50 60 70 80
Timestamp counter difference

Figure 7: Probability density function (estimated using
kernel density estimation) for the attacker’s timing run-
ning our SMoTherSpectre attack on OpenSSL, for when
the victim’s secret bit is one versus zero.

of real-time, of which a total of 20 seconds are spent by the
orchestrator waiting for the server to be fully setup before
launching the client.

We run the OpenSSL attack on an i5-6200u CPU. A run
of 100,000 encryptions is performed by the victim for each
value of the secret bit. The large number of encryptions is
necessary to estimate the probability density function for
this SMOTHER-gadget. A practical attack can confidently
leak a bit with fewer encryptions. The attack takes about
950 ms of userspace time, leading to a measurement rate of
more than 200,000 samples/second. The attacker succeeded
in BTI with a success rate up to around 80%. We have
found the time taken by the victim to reach the indirect call
from the call triggering encryption entry to be highly pre-
dictable. The attacker is thus able to run the timing sequence
concurrently with the victim’s SMOTHER-gadget without
additional synchronization. Figure 7 shows the distribution
of timestamp counter difference measured by the attacker for
the SMOTHER gadget. The distributions show a significant
variation, with that corresponding to the zero-secret tending
towards higher values. The Student’s t-test is able to suc-
cessfully distinguish between them with 95% confidence. The
test reports a timing difference of 10.69% =+ 6.31%.

6.4 Mitigating SMoTherSpectre

Mitigations for SMOTHERSPECTRE can be subdivided in two
categories: mitigations for SMOTHER and mitigations for
BTIL

SMoTher mitigations. The general idea of preventing
SMOTHER attacks is to ensure that two threads with different
privileges (in the general sense) do not compete for the same
execution port.

Currently available software SMOTHER mitigations are
limited. Apart from the straightforward but performance-
costly possibility of disabling SMT in its entirety (up to
10-15% overhead on Intel), the OS scheduler can employ a
side-channel aware strategy. For example, the OS scheduler
can decide to only colocate (on threads on the same core)
processes from the same user [12].

Finally, CPU-level mitigations could be deployed in the fu-
ture, possibly improving both security and performance over
existing mitigations. For instance, alternatives to SMT can be
considered to achieve thread-level parallelism within a core.
These include coarse-grained and interleaved multithreading.

BTI mitigations. Mitigations against branch target injec-
tion are also known as Spectre v2 mitigations. These include
retpolines, which rewrite code to remove indirect calls [33],
as well as CPU-based controls. Intel has exposed to develop-
ers a set of security controls that limit an attacker’s ability
to perform BTI. While they have been applied in selected
cases, they have not been widely adopted because of their
overhead [7], and because in many cases, the required gad-
gets were simply not present [23]. Wide adoption of these
mitigations may limit the SMOTHERSPECTRE attack.

Summary. Fully mitigating the attack in either of these
two categories is sufficient to stop the attack presented in
this paper. However, SMOTHERSPECTRE does not necessarily
need to employ BTI: it can be generalized to use any other
form of speculative control flow hijack, e.g., Return Stack
Buffer (RSB) overflow [27] or speculative return address over-
write [22]. In those cases, corresponding mitigations would

apply.

7 RELATED WORK

Transient Execution Attacks. Transient execution at-
tacks exploit instructions that are executed, yet not necessar-
ily retired and thus cover both attacks based on speculative
execution as well as out-of-order execution [5].

At the beginning of 2018, two security issues exploiting
speculative execution were revealed under the name “Spec-
tre” [18, 23]. Spectre V1 (“Bounds Check Bypass”) exploits
branch prediction on a conditional branch to achieve an
out-of-bounds access during speculative execution: given a
conditional branch that performs a bounds-check on an array,
the branch predictor is trained to the in-bounds case by per-
forming multiple executions of the corresponding code with
a benign index. When the code is then executed with an out-
of-bounds index, a misprediction occurs and the array access
with the malicious index is performed. If the result is used in
further computation such as another array access, it can be
leaked through a side channel. Spectre V2 (“Branch Target
Injection”) exploits branch prediction on indirect control-
flow transfers. To this end the attacker first trains the branch
predictor for a given address to transfer control to an ad-
dress of the attacker’s choosing. The predictor will then use
the branch history created by the attacker for a spatially or
temporally co-located victim. Again, a cache side-channel
can be used to leak data of the attackers choosing in the

following. The return stack buffer, which is used for return
statements in a similar fashion as the branch history is used
for indirect jumps has also been leveraged as a speculative
execution trigger [24, 27]. The return address on the stack
has also been the target of other work, showing that through
load-to-store forwarding it can be speculatively overwritten,
leading to a speculative execution sibling of the classic stack
buffer overflow [22].

Meltdown [26] (“Rogue Data Cache Load”), which was
also revealed in early 2018 exploits out-of-order execution:
a memory load instruction immediately after a high latency
instruction might fetch data into the cache even if it is not
permitted to access the actual memory location. The reason
is that on certain CPUs, the corresponding permission check
is not on the critical path for the data fetch and the excep-
tion is only triggered after the data fetch. On such CPUs
this allows reading arbitrary kernel memory from userspace.
Similarly, also privileged system register can be read (“Rogue
System Register Read”). The more recent Foreshadow [34]
attacks a similar phenomenon, “Li1 Terminal Fault” in Intel
nomenclature. If an instruction accesses a virtual address
that is not in the translation lookaside buffer (TLB) and the
corresponding page table entry’s (PTE) present bit is not set,
this is referred to as a “terminal fault”. During out-of-order
execution, the processor computes a physical address from the
PTE, which is used for a lookup in the L1 data cache. Until
the instruction retires and a page fault is raised, cached data
is forwarded to dependent instructions, which can be used
in an attack. This bypasses various access checks, including
SGX protection, extended page table address translation and
system management mode (SMM) checks, thus affecting vir-
tualization and SGX enclaves (enclave data is not encrypted
in L1D). Also related to out-of-order execution is the specu-
lative store bypass [3, 20]: for a code sequence of a dependent
store and a load instruction, the load instruction, if executed
out-of-order before the store might retrieve stale data from
memory that can be used in a side channel. This happens in
cases where the CPU cannot detect the dependency in the
code sequence.

Transient execution attacks are not only a local secu-
rity issue that requires a victim device to execute attacker-
controlled code. As Netspectre [29] demonstrates they also
work remotely. While being less effective, they are still pow-
erful enough to break, for example, address space layout
randomization.

Cache Side Channels. Cache side channels leverage
timing differences in accesses to different tiers of the memory
hierarchy. Accesses to cached locations will be faster, whereas
accesses to uncached locations will be slower, as the data
needs to be fetched from main memory. This principle applies
to both data and instructions: Execution of code whose
instructions are not cached will take longer than execution
of cached code.

To use an evict-and-time cache side channel, one first
primes the cache by executing a victim function and then
measures how long the function takes to execute — this is
the baseline run. One can now compare this baseline against

further executions of the function, with different cache sets
evicted. If the time the function takes to execute is slower
than the baseline, the victim function depends on the evicted
cache set.

To use a prime-and-probe cache side channel, one first
primes the cache with known attacker-controlled addresses.
One then waits for the victim code to run. Afterwards, one
measures the access time to addresses used for probing: it will
be low for addresses touched by the victim code and high for
others. The difference to evict-and-time is that the attacker
measures her own operation in contrast to the execution of
victim code. Both evict-and-time and prime-and-probe have
been extensively used to attack AES implementations [28, 32].

Another technique that became popular with attacks lever-
aging a shared last-level cache (LLC) is flush-and-reload. It
requires an instruction that allows an attacker to flush a cer-
tain cache line, such as c1flush on x86_64. In a corresponding
attack, the attacker first flushes a cache line and then waits
for the victim code to execute. Afterwards the attacker times
the access to the address, which will be fast if the victim
accessed (reloaded) it and slow otherwise. Flush-and-reload
is similar to prime-and-probe, but much more fine-grained
as individual cache lines can be targeted. It has been used
to leak information from the LLC, which is typically shared
among multiple CPU cores [36]. Related to flush-and-reload,
flush-and-flush [16] is based on the observation, that clflush
will take less time to execute when it is run on a location
that is not cached. The advantage over flush-and-reload is
that no actual access that would pull data into the cache is
performed, making the attack stealthier.

Finally, prime-and-abort leverages Intel’s transactional
memory mechanism to detect when a cache set has been
evicted without the need to probe the cache [8]. In contrast
to all previous cache side channels, it does not need to time
an operation. Transactional memory operations require trans-
actional data to be buffered in the cache which has limited
space. A transaction set up by the attacker will abort if the
victim accesses a critical address.

Other Side Channels. Mitigations against cache-based
side channels have led researchers to explore other shared
resources as well. TLBleed [14] shows how the TLB can be
used as a side channel to leak a cryptographic key. Afore-
mentioned Netspectre-AVX [29] uses a side channel based on
AVX instructions. This side channel exploits the fact that
the execution unit processing those instructions employs ag-
gressive power saving. When such units have not been used
for a long time, they execute much slower.

In particular, execution-unit-sharing-based side channels
in the SMT settings have been studied as early as in 2006:
Wang and Lee [35] demonstrate a multiply-based covert chan-
nel making use of contention on execution units. Aciicmez
and Seifert [1] extend this work by analyzing its applicability
as a side channel. Anders Fogh [11] proposes a generalized
result by analyzing contention results of the cross product
of 12 curated instructions. Finally, Portsmash [2], concur-
rently and independently demonstrates how port contention
can be used to leak sensitive cryptographic material from

OpenSSL. Portsmash relies on a known vulnerable imple-
mentation of OpenSSL, and therefore does not require any
mitigation beyond avoiding vulnerable code patterns. In con-
trast, SMOTHERSPECTRE does not require a secret-dependent
control flow by combining port contention with BTI, and
thereby showing broader applicability of the port contention
side channel. Finally, in contrast with all previous works,
this work provides a characterization of this side channel,
including an analysis for low number of victim instructions.

8 CONCLUSION

We further our understanding of possible attacks in the space
of speculative execution. This is crucial to design suitable
defenses and to apply them to the right systems. In partic-
ular, we show that Branch Target Injection attacks against
applications that do not load attacker-provided code are
feasible, by crafting an exploit for the OpenSSH server and
encryption using OpenSSL. To this end, we present a precise
characterisation of port contention, the non cache-based side
channel we use for the attack, and develop a tool to help us
find suitable gadgets in existing code. We will open-source
our proof of concept implementation, gadget finder, as well
as the data of our measurements to enable others to study
this interesting side channel. As a consequence, it is now
clear that in SMT environments defenses solely relying on
mitigating cache side channels, or solely relying on revert-
ing microarchitectural state after speculative execution, are
insufficient.

In the immediate future, implementing existing BTT mitiga-
tions is sufficient to prevent SMOTHERSPECTRE. Future work
may mitigate such attacks with lower performance overhead
and better security guarantees, for instance through side-
channel resistant ways of designing thread-level parallelism
in upcoming CPUs.

REFERENCES

[1] Onur Aciicmez and Jean-Pierre Seifert. 2007. Cheap hardware

parallelism implies cheap security. In Fault Diagnosis and Toler-

ance in Cryptography, 2007. FDTC 2007. Workshop on. IEEE,

80-91.

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,

Cesar Pereida Garcia, and Nicola Tuveri. 2018. Port Contention

for Fun and Profit. Cryptology ePrint Archive, Report 2018,/1060.

https://eprint.iacr.org/2018/1060.

[3] AMD. 2018. Speculative Store Bypass Disable. https:
//developer.amd.com/wp-content/resources/124441_AMD64_
SpeculativeStoreBypassDisable_Whitepaper_final.pdf.

[4] Zack Bloom. 2018. Cloud Computing without Containers. https:
//blog.cloudflare.com/cloud-computing- without-containers/.

[5] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. 2018. A Systematic Evaluation of
Transient Execution Attacks and Defenses. https://arxiv.org/abs/
1811.05441.

[6] Intel Coorporation. 2016. Intel 64 and IA-32 architectures opti-
mization reference manual.

[7] Jonathan Corbet. [n.d.]. Taming STIBP. https://lwn.net/Articles/
773118/.

[8] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean
Tullsen. 2017. Prime+Abort: A Timer-Free High-Precision L3
Cache Attack using Intel TSX. In USENIX Security Symposium.

[9] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
2016. Jump over ASLR: Attacking branch predictors to bypass

S

(10]

(11]

(12]

(13]

(14]

(15]

16]

(17]

18]

(19]

[20]

[21]

(22]

(23]

(24]

(2]

[26]

[27]

(28]

[29]

ASLR. In The 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE Press, 40.

Agner Fog. [n.d.]. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for Intel, AMD
and VIA CPUs. https://www.agner.org/optimize/instruction_
tables.pdf.

Anders Fogh. [n.d.]. Covert Shotgun. https://cyber.wtf/2016/09/
27 /covert-shotgun/.

Anders Fogh and Christopher Ertl. [n.d.]. Wran-
gling with the Ghost: An inside story of mitigat-
ing speculative execution side channel vulnerabilities.

https://i.blackhat.com/us-18/Thu- August-9/us-18-Fogh-
Ertl-Wrangling- with-the- Ghost- An-Inside-Story-of- Mitigating-
Speculative- Execution-Side- Channel- Vulnerabilities.pdf.

Google [n.d.]. Google Compute Engine FAQ. https://
cloud.google.com/compute/docs/faq. Accessed: 2019-02-13.
Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
2018. Translation Leak-aside Buffer: Defeating Cache Side-channel
Protections with TLB Attacks. In USENIX Security Symposium.
Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. 2017. Kaslr is dead:
long live kaslr. In International Symposium on Engineering
Secure Software and Systems. Springer, 161-176.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. 2016. Flush+Flush: A Fast and Stealthy Cache At-
tack. In Detection of Intrusions and Malware, and Vulnerability
Assessment.

Nadia Heninger and Hovav Shacham. 2009. Reconstructing RSA
Private Keys from Random Key Bits. In Advances in Cryptol-
ogy - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Pro-
ceedings (Lecture Notes in Computer Science), Shai Halevi (Ed.),
Vol. 5677. Springer, 1-17. https://doi.org/10.1007/978-3-642-
03356-8_1

Jann Horn. 2018. Reading privileged memory with a
side-channel. https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side . html. Project Zero 3
(2018).

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical
timing side channel attacks against kernel space ASLR. In 2013
IEEE Sympostum on Security and Privacy. IEEE, 191-205.
Secure Windows Initiative. 2018. Speculative Store Bypass.
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-
and-mitigation-of-speculative-store-bypass-cve-2018-3639/.
Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghagzaleh. 2018. SafeSpec: Banishing the Spectre of a Meltdown
with Leakage-Free Speculation. arXiv preprint arXiv:1806.05179
(2018).

Vladimir Kiriansky and Carl Waldspurger. 2018. Specu-
lative Buffer Overflows: Attacks and Defenses. https://
people.csail.mit.edu/vlk/spectrell.pdf.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. 2018. Spectre Attacks: Ex-
ploiting Speculative Execution. In IEEE Symposium on Security
and Privacy.

Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation
Attacks using the Return Stack Buffer. In USENIX Workshop
On Offensive Technologies.

Jan Laukemann, Julian Hammer, Johannes Hofmann, Georg
Hager, and Gerhard Wellein. 2018. Automated Instruction Stream
Throughput Prediction for Intel and AMD Microarchitectures.
https://arxiv.org/abs/1809.00912.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
‘Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018.
Meltdown: Reading Kernel Memory from User Space. In USENIX
Security Symposium.

Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Specu-
lative Execution Using Return Stack Buffers. In Conference on
Computer and Communications Security.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache
Attacks and Countermeasures: The Case of AES. In Topics in
Cryptology.

Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
2018. NetSpectre: Read Arbitrary Memory over Network. https:

https://eprint.iacr.org/2018/1060
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://blog.cloudflare.com/cloud-computing-without-containers/
https://blog.cloudflare.com/cloud-computing-without-containers/
https://arxiv.org/abs/1811.05441
https://arxiv.org/abs/1811.05441
 https://lwn.net/Articles/773118/
 https://lwn.net/Articles/773118/
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
 https://cyber.wtf/2016/09/27/covert-shotgun/
 https://cyber.wtf/2016/09/27/covert-shotgun/
https://i.blackhat.com/us-18/Thu-August-9/us-18-Fogh-Ertl-Wrangling-with-the-Ghost-An-Inside-Story-of-Mitigating-Speculative-Execution-Side-Channel-Vulnerabilities.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Fogh-Ertl-Wrangling-with-the-Ghost-An-Inside-Story-of-Mitigating-Speculative-Execution-Side-Channel-Vulnerabilities.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Fogh-Ertl-Wrangling-with-the-Ghost-An-Inside-Story-of-Mitigating-Speculative-Execution-Side-Channel-Vulnerabilities.pdf
https://cloud.google.com/compute/docs/faq
https://cloud.google.com/compute/docs/faq
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-642-03356-8_1
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://people.csail.mit.edu/vlk/spectre11.pdf
https://people.csail.mit.edu/vlk/spectre11.pdf
https://arxiv.org/abs/1809.00912
https://arxiv.org/abs/1807.10535
https://arxiv.org/abs/1807.10535

//arxiv.org/abs/1807.10535. £5393: testq 0x400, (rdx)

[30] Alexander Sot'}rov_. 2009. Bypassing memory protections: The £539a: je £5382
future of exploitation. In USENIX Security. A
[31] Linus Torvalds. 2018. Linus on Spectre/Meltdown mitigations. £539c: mov -0xb0(rbp), rdi
https://lkml.org/lkml/2018,/1/21/192. £53a3: mov -0xf0(rbp), edx

[32] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient

Cache Attacks on AES, and Countermeasures. Journal of Cryp- £5329: mov (rdi, rax, 8), rax
tology (2010). f53ad: test edx, edx
[33] Paul Turner. 2018. Retpoline: a software construct for preventing f53af: mov rax, 0x50(rbx)
branch-target-injection. https://support.google.com/faqs/answer/
7625886. te
[34] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris £5382: add 0x1, rax
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, £5386: add 0x20, rdx
Yuval Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting ’
the Keys to the Intel SGX Kingdom with Transient Out-of-Order £538a: cmp rax, -0x100 (I‘bp)

Execution. In USENIX Security Symposium.

[35] Zhenghong Wang and Ruby B. Lee. 2006. Covert and Side Chan-
nels Due to Processor Architecture. In Proceedings of the 22Nd
Annual Computer Security Applications Conference (ACSAC C OPENSSH ATTACK GADGETS
’06). IEEE Computer Society, Washington, DC, USA, 473-482. . .
https://doi.org/10.1109/ ACSAC.2006.20 C.1 SMoTher gadget with r4i pointer
[36] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A .
High Resolution, Low Noise, L3 Cache Side-channel Attack. In The fOHOWHl.g gad'get leaks the LSB from the byte at offset 1
USENIX Security Symposium. from the pointer in rdi.
[37] Yingian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. 2012. Cross-VM side channels and their use to extract e
private keys. In the ACM Conference on Computer and Commu- 6f8dc: testl 0x100, (rdi)
nications Security, CCS’12, Raleigh, NC, USA, October 16-18, . .
2012, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM, 6£8e2: je 6£8ef
305-316. https://doi.org/10.1145/2382196.2382230 6£8ed4: mov 0x10(rbx), rax
6£8e8: sub 0x8(rbx), rax
6f8ec: sub rax, rsi
A GADGETS LEAKING 21 BITS OF RAX ¢rover wov oo ot
The following table lists parts of SMOTHER-gadgets which 6£8f2: mov ecx, 0xc(rsp)
can be used to leak 21 bits of information from rax. We also 6£8£f6: mov edx, 0x8(rsp)
show which library the gadget was found in. 6f8fa: mov rsi, (rsp)

Address Comparison instruction Library

0xd3900 test 0x1, al glibc C.2 SMoTher gadgets with r12 pointer
0x1101cb test 0x2, al gl%bc The following gadget leaks the 5" LSB from the byte at
0x12f779 and 0x4, al gl%bc offset 56 from the pointer in r12.
0x29709 ~ and 0x8, al glibe e8577: testb 0x10, 0x38(r12)
0x126500 and 0x10, al glibc .
e857d: je 8608
0x7e83 and 0x20, al 1d
. e8583: sub 0x8, rsp
0xc378e and 0x40, al glibc
. e8587: push rbx
0xd7e50 and 0x80, eax glibc 8588: pusha Ox0
0x12cad9 test 0x2, ah stde++ pushq
. e858a: pushq 0x0
0xf1794 test 0x307, ax libcrypto
. e858c: mov edx, r8d
0x5f661 and 0x2100, eax glibc
. e858f: mov edx, r9d
0x11c7f6 and Ox2abd, eax glibc
. e8592: mov r10d, ecx
0x10call and 0x8000, eax glibc 08595: sub r10d. r8d
0x17bcd4 test 0x100000, eax liberypto ’ P
e8598: mov r13, rsi
0x268de test 0x200000, eax ssl 0859b: mov r12. rdi
0xbe656 and 0x3084ab, eax glibc ’ ’
0x26£20 test 0x800000, eax ssl o
0xb3ba0 test 0x1000000, eax glibe e8608: sub 0x8,rsp

e860c: push rbx
e860d: push ri4d
e860f: push rib

0xb7db test 0x40000000, eax pthread
0x50e7b test 0x80000000, eax ssl
0xa6133 test 0x83000002, eax libcrypto

. th
B OPENSSL ATTACK GADGETS The following gadget legks the 4" LSB from the byte at
offset 12 from the pointer in ri2.

B.1 SMoTher gadget 5220e: testb 0x8, 0xd(ri2)

The following gadget leaks the 3"¢ LSB from the byte at 52214: je 52221
offset 1 from the pointer in rdx. 52216: xor edx, edx

https://arxiv.org/abs/1807.10535
https://lkml.org/lkml/2018/1/21/192
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1145/2382196.2382230

52218: xor esi, esi
5221a: xor edi, edi

52221: mov rl3, rcx
52224: add 0x3, r13
52228: sar 0x2, rcx
5222c: cmp 0x6, ri13

The following gadget leaks the 4** LSB from the byte at
offset 13 from the pointer in ri12.

529a2: testb 0x8, O0xc(ri2)

529a8: je 523da

529ae: mov -0x100(rbp), rcx
529b5: 1lea Oxc(rcx), rdx
529b9: cmp rax, rdx

523da: mov -0x£8(rbp), r13d
523el: mov (rax), edx
523e3: add -0xe8(rbp), ri3d

D RESPONSIBLE DISCLOSURE

The attacks presented in this paper were disclosed to Intel,
OpenSSL and AMD in late 2018.

(©Copyright International Business Machines Corporation and EPFL
2019

All Rights Reserved

Printed in the United States of America (09/19/2019)

The following are trademarks of International Business Machines
Corporation in the United States, or other countries, or both.

IBM

IBM Research

IBM Z

POWER

Other company, product, and service names may be trademarks or
service marks of others. All information contained in this document
is subject to change without notice. The products described in this
document are NOT intended for use in implantation, life support, space,
nuclear, or military applications where malfunction may result in injury
or death to persons. The information contained in this document does
not affect or change IBM product specifications or warranties. Nothing
in this document shall operate as an express or implied license or
indemnity under the intellectual property rights of IBM or third parties.
All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained
in other operating environments may vary. THE INFORMATION
CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN ”AS IS”
BASIS. In no event will IBM be liable for damages arising directly or
indirectly from any use of the information contained in this document.
IBM Corporation
New Orchard Road
Armonk, NY 10504

	Abstract
	1 Introduction
	2 Background
	3 Smother
	3.1 Ideal covert channel
	3.2 Characterization of the side channel

	4 SMoTherSpectre
	4.1 Attacker model
	4.2 Attack principle
	4.3 Characterization of the Side Channel
	4.4 Discussion about SMoTher-gadgets

	5 Gadget discovery
	5.1 Ranking SMoTher-gadgets
	5.2 Finding Gadgets

	6 Real world attack
	6.1 OpenSSH attack
	6.2 OpenSSL attack
	6.3 Experimental results
	6.4 Mitigating SMoTherSpectre

	7 Related Work
	8 Conclusion
	References
	A Gadgets leaking 21 bits of rax
	B OpenSSL attack gadgets
	B.1 SMoTher gadget

	C OpenSSH attack gadgets
	C.1 SMoTher gadget with [style=inline,breaklines=false]@rdi@ pointer
	C.2 SMoTher gadgets with [style=inline,breaklines=false]@r12@ pointer

	D Responsible disclosure

