
ar
X

iv
:1

90
4.

08
46

8v
1 

 [
cs

.L
O

] 
 1

7 
A

pr
 2

01
9

Towards Evolutionary Theorem Proving for Isabelle/HOL

Yutaka Nagashima∗

University of Innsbruck, Czech Technical University

ABSTRACT

Mechanized theorem proving is becoming the basis of reliable sys-

tems programming and rigorous mathematics. Despite decades of

progress in proof automation, writing mechanized proofs still re-

quires engineers’ expertise and remains labor intensive. Recently,

researchers have extracted heuristics of interactive proof develop-

ment from existing large proof corpora using supervised learning.

However, such existing proof corpora present only one way of

proving conjectures, while there are often multiple equivalently

effective ways to prove one conjecture. In this abstract, we iden-

tify challenges in discovering heuristics for automatic proof search

and propose our novel approach to improve heuristics of automatic

proof search in Isabelle/HOL using evolutionary computation.

CCS CONCEPTS

• Software and its engineering→ Search-based software en-

gineering; Formal software verification;

KEYWORDS

Theorem Proving, Isabelle/HOL, Genetic Algorithm

ACM Reference Format:

Yutaka Nagashima. 2019. Towards Evolutionary Theorem Proving for Is-

abelle/HOL. In Proceedings of the Genetic and Evolutionary Computation

Conference 2019 (GECCO ’19). ACM, New York, NY, USA, 2 pages.

1 BACKGROUND

1.1 Interactive Theorem Proving

Interactive theorem provers (ITPs) are forming the basis of reli-

able software engineering. Klein et al. proved the correctness of

the seL4 micro-kernel using Isabelle/HOL [3]. Leroy developed a

verified opimizing C compiler, CompCert, in Coq [6]. Kumar et al.

built a verified compiler for a functional programming language,

CakeML, in HOL4 [5]. In mathematics, mathematicians are substi-

tuting their pen-and-paper proofswithmechanized proofs to avoid

human-errors in their proofs: Hales et al.mechanically proved the

Kepler conjecture using HOL-light and Isabelle/HOL [2], whereas

Gonthier et al. proved of the four colour theorem in Coq [1]. In the-

oretical computer science, Paulson proved Gödel’s incompleteness

theorems using Nominal Isabelle [11].

1.2 Meta-Tool Approach for Proof Automation

To facilitate efficient proof developments in large scale verification

projects, modern ITPs are equipped with many sub-tools, such as

proof methods and tactics. For example, Isabelle/HOL comes with

∗Supported by the European Regional Development Fund under the project AI & Rea-

soning (reg. no.CZ.02.1.01/0.0/0.0/15_003/0000466)

GECCO ’19, July 13–17, 2019, Prague, Czech Republic

2019. .
This is a pre-print of our poster-only paper of the same title presented at GECCO’19.
Visit the ACM website for the final version.

160 proof methods defined in its standard library. These sub-tools

provide useful automation for interactive proof development.

PSL. Nagashima et al. presented PSL, a proof strategy language

[9], for Isabelle/HOL. PSL is a programmable, extensible, meta-tool

based framework, which allows Isabelle users to encode abstract

descriptions of how to attack proof obligations.

Given a PSL strategy and proof obligation, PSL’s runtime sys-

tem first creates various versions of proofmethods specified by the

strategy, each of which tailored out for the proof obligation, and

combine them both sequentially and non-deterministically, while

exploring search space by applying these created proof methods.

The default strategy, try_hard, outperformed, sledgehammer,

the state-of-the-art proof automation for Isabelle/HOL, by 16 per-

centage points when tested against 1,526 proof obligations for 300

seconds of timeout; However, the dependence on the fixed default

strategy impairs PSL’s runtime system: try_hard sometimes pro-

duces proof methods that are, for human engineers, obviously in-

appropriate to the given proof obligations.

PaMpeR. Nagashima et al. developed PaMpeR [8], a proofmethod

recommendation tool, trying to further automate proof develop-

ment in Isabell/HOL. PaMpeR learns when to use which proofmeth-

ods from human-written large proof corpora called the Archive of

Formal Proofs (AFP)[4]. The AFP is an online journal that hosts

various formalization projects and mechanized proof scripts. Cur-

rently, theAFP consists of 460 articles with 126,100 lemmas written

by 303 authors in total.

PaMpeR first preprocess this data base: it applies 108 assertions

to each (possibly intermediate) proof obligation appearing in the

AFP and converts each of them into a vector of boolean values. This

way, PaMpeR creates 425,334 data points, each of which is tagged

with the name of proof method chosen by a human engineer to at-

tack the obligation represented by the corresponding vector. Then,

PaMpeR applies a multi-output regression tree construction algo-

rithm to the database. This process builds a regression tree for each

proof method. For instance, PaMpeR builds the following tree for

the induct method:

(1, (10, expectation 0.0110944442872,

expectation 0.00345987448177),

(10, expectation 0.0510162518838,

expectation 0.0102138733024))

where each of 1 and 10 in the first elements of the pairs repre-

sent the number of the corresponding assertion. For example, this

tree tells that for proof obligations to which the assertion 1 returns

false but the assertion 10 returns true, the chance of an experienced

proof engineer using the induct method is about 5.1%.

When a user of PaMpeR seeks for a recommendation, PaMpeR

transforms the proof obligation at hand into a vector of boolean

values and looks up the trees and presents its recommendations.

PaMpeR’s regression tree construction is based on a problem

transformation method, which handles a multi-output problem as

http://arxiv.org/abs/1904.08468v1


GECCO ’19, July 13–17, 2019, Prague, Czech Republic Yutaka Nagashima

a set of independent single-output problems: For each obligation,

PaMpeR attempts to provide multiple promising proof methods to

attack the obligation, by computing how likely each proof method

is useful to the obligation one by one.

PaMpeR is not optimal to guide PSL. One would imagine that it is

natural step forward to improve PSL’s default strategy by allowing

PaMpeR to choose the most promising strategy for a given problem

instead of always applying the fixed strategy, try_hard, naively.

Despite the positive results of cross-validation reported by Na-

gashima et al., PaMpeR’s recommendation is not necessarily opti-

mal to guide an automatic meta-tool based proof search for two

reasons. First, PaMpeR recommends only one step of proof method

application, even though many proof methods, such as induction,

can discharge proof obligations only when followed by appropri-

ate proof methods, such as auto, which is a general purpose proof

method in Isabelle/HOL. Second, when PaMpeR transforms a multi-

output problem to a set of single-output problems, PaMpeR pre-

process the database introducing a conservative estimate of the

correct choice of proof methods. In the above example, PaMpeR’s

pre-processor produces the following data point for all databases

corresponding to proof methods that are not induction.

not, [1,0,0,1,0,0,0,0,1,0,0,1,0,...]

We know that this conservative estimate wrongfully lowers the

expectation for other proof methods for this case. For example,

Isabelle/HOL has multiple proof methods for induction, such as

induct and induct_tac. Experienced engineers know induction

is a valid choice for most proof obligations where induct is used.

Unfortunately, it is not computationally plausible to find out all al-

ternative proofs for a proof obligation, since many proof methods

return intermediate proof obligations that have to be discharged

by other methods and even equivalently effective methods for the

same obligationmay return distinct intermediate proof obligations.

In the above example, even though both induct and induction

are the right choice formany proof obligations, they return slightly

different intermediate proof goals for most of the cases, making

it difficult to decide systematically if induct was also the right

method where human engineers used induction method.

2 EVOLUTIONARY PROVER IN

ISABELLE/HOL

We propose a novel approach based on evolutionary computation

to overcome the aforementioned limitations of method recommen-

dation based on supervised learning. Our objective is to discover

heuristics to choose the most promising PSL strategy out of many

hand written default strategies when applied to a given proof goal,

so that PSL can exploit computational resources more effectively.

We represent programs as a sequence of floating point numbers,

each of which corresponds to a combinations of results of applying

assertions to a proof obligation. PaMpeR leaned 239 proof methods

from the AFP and built a tree of height of two for each of them;

Therefore, we represent a program as a sequence of floating num-

ber of length 956, which is the total number of leaf nodes in all

regression trees. Then, we assign such sequence to each default

proof strategy. Our prover first applies assertions to categorize a
proof obligation, then determines and applies the most promising

strategy for that obligation.

As a training data set, we randomly picks up a set of proof obli-

gations from large proof corpora. And we measure how many obli-

gations in this data set each version of our prover can discharge

given a fixed timeout for each obligation. The more proof goals in

the data set a prover can discharge, the better the prover is.

After each iteration, we mutate the program, which is a map-

ping function from a combination of results of assertions to the

likelihood of each strategy being promising to the corresponding

proof obligations. After each evaluation, we select provers with

higher success rates and leave them for the next iteration, while

discarding those with lower success rates.

We are still designing the details of the aforementioned experi-

ment. We expect that when combined with the goal-oriented con-

jecturing mechanism [10] this project leads to the meta-tool based

smart proof search in Isabelle/HOL initially proposed in 2017 [7].

REFERENCES
[1] Georges Gonthier. 2007. The Four Colour Theorem: Engineering of a For-

mal Proof. In Computer Mathematics, 8th Asian Symposium, ASCM 2007, Singa-
pore, December 15-17, 2007. Revised and Invited Papers (Lecture Notes in Com-
puter Science), Deepak Kapur (Ed.), Vol. 5081. Springer, Berlin, Heidelberg, 333.
https://doi.org/10.1007/978-3-540-87827-8_28

[2] Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harri-
son, Truong Le Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin,
Thang TatNguyen, TruongQuang Nguyen, TobiasNipkow, Steven Obua, Joseph
Pleso, Jason M. Rute, Alexey Solovyev, An Hoai Thi Ta, Trung Nam Tran,
Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. 2015. A formal
proof of the Kepler conjecture. CoRR abs/1501.02155 (2015). arXiv:1501.02155
http://arxiv.org/abs/1501.02155

[3] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and SimonWinwood. 2010. seL4: formal
verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115.
https://doi.org/10.1145/1743546.1743574

[4] Gerwin Klein, Tobias Nipkow, Larry Paulson, and Rene Thiemann. 2004. .
https://www.isa-afp.org/

[5] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: a verified implementation of ML. In The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014, Suresh Jagannathan and Peter Sewell (Eds.).
ACM, New York, NY, USA, 179–192. https://doi.org/10.1145/2535838.2535841

[6] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM
52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[7] Yutaka Nagashima. 2017. Towards Smart Proof Search for Isabelle. CoRR
abs/1701.03037 (2017). arXiv:1701.03037 http://arxiv.org/abs/1701.03037

[8] Yutaka Nagashima and Yilun He. 2018. PaMpeR: Proof Method Recommenda-
tion System for Isabelle/HOL. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE 2018). ACM, New York, NY,
USA, 362–372. https://doi.org/10.1145/3238147.3238210

[9] Yutaka Nagashima and Ramana Kumar. 2017. A Proof Strategy Lan-
guage and Proof Script Generation for Isabelle/HOL. In Automated Deduc-
tion - CADE 26 - 26th International Conference on Automated Deduction,
Gothenburg, Sweden, August 6-11, 2017, Proceedings (Lecture Notes in Com-
puter Science), Leonardo de Moura (Ed.), Vol. 10395. Springer, Cham, 528–545.
https://doi.org/10.1007/978-3-319-63046-5_32

[10] Yutaka Nagashima and Julian Parsert. 2018. Goal-Oriented Conjectur-
ing for Isabelle/HOL. In Intelligent Computer Mathematics - 11th Interna-
tional Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018, Proceed-
ings (Lecture Notes in Computer Science), Florian Rabe, William M. Farmer,
Grant O. Passmore, and Abdou Youssef (Eds.), Vol. 11006. Springer, 225–231.
https://doi.org/10.1007/978-3-319-96812-4_19

[11] Lawrence C. Paulson. 2015. A Mechanised Proof of Gödel’s Incompleteness
Theorems Using Nominal Isabelle. J. Autom. Reasoning 55, 1 (2015), 1–37.
https://doi.org/10.1007/s10817-015-9322-8

https://doi.org/10.1007/978-3-540-87827-8_28
http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155
https://doi.org/10.1145/1743546.1743574
https://www.isa-afp.org/
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
http://arxiv.org/abs/1701.03037
http://arxiv.org/abs/1701.03037
https://doi.org/10.1145/3238147.3238210
https://doi.org/10.1007/978-3-319-63046-5_32
https://doi.org/10.1007/978-3-319-96812-4_19
https://doi.org/10.1007/s10817-015-9322-8

	Abstract
	1 Background
	1.1 Interactive Theorem Proving
	1.2 Meta-Tool Approach for Proof Automation

	2 Evolutionary Prover in Isabelle/HOL
	References

