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ABSTRACT

Mechanized theorem proving is becoming the basis of reliable sys-

tems programming and rigorous mathematics. Despite decades of

progress in proof automation, writing mechanized proofs still re-

quires engineers’ expertise and remains labor intensive. Recently,

researchers have extracted heuristics of interactive proof develop-

ment from existing large proof corpora using supervised learning.

However, such existing proof corpora present only one way of

proving conjectures, while there are often multiple equivalently

effective ways to prove one conjecture. In this abstract, we iden-

tify challenges in discovering heuristics for automatic proof search

and propose our novel approach to improve heuristics of automatic

proof search in Isabelle/HOL using evolutionary computation.
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1 BACKGROUND

1.1 Interactive Theorem Proving

Interactive theorem provers (ITPs) are forming the basis of reli-

able software engineering. Klein et al. proved the correctness of

the seL4 micro-kernel using Isabelle/HOL [3]. Leroy developed a

verified opimizing C compiler, CompCert, in Coq [6]. Kumar et al.

built a verified compiler for a functional programming language,

CakeML, in HOL4 [5]. In mathematics, mathematicians are substi-

tuting their pen-and-paper proofswithmechanized proofs to avoid

human-errors in their proofs: Hales et al.mechanically proved the

Kepler conjecture using HOL-light and Isabelle/HOL [2], whereas

Gonthier et al. proved of the four colour theorem in Coq [1]. In the-

oretical computer science, Paulson proved Gödel’s incompleteness

theorems using Nominal Isabelle [11].

1.2 Meta-Tool Approach for Proof Automation

To facilitate efficient proof developments in large scale verification

projects, modern ITPs are equipped with many sub-tools, such as

proof methods and tactics. For example, Isabelle/HOL comes with
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160 proof methods defined in its standard library. These sub-tools

provide useful automation for interactive proof development.

PSL. Nagashima et al. presented PSL, a proof strategy language

[9], for Isabelle/HOL. PSL is a programmable, extensible, meta-tool

based framework, which allows Isabelle users to encode abstract

descriptions of how to attack proof obligations.

Given a PSL strategy and proof obligation, PSL’s runtime sys-

tem first creates various versions of proofmethods specified by the

strategy, each of which tailored out for the proof obligation, and

combine them both sequentially and non-deterministically, while

exploring search space by applying these created proof methods.

The default strategy, try_hard, outperformed, sledgehammer,

the state-of-the-art proof automation for Isabelle/HOL, by 16 per-

centage points when tested against 1,526 proof obligations for 300

seconds of timeout; However, the dependence on the fixed default

strategy impairs PSL’s runtime system: try_hard sometimes pro-

duces proof methods that are, for human engineers, obviously in-

appropriate to the given proof obligations.

PaMpeR. Nagashima et al. developed PaMpeR [8], a proofmethod

recommendation tool, trying to further automate proof develop-

ment in Isabell/HOL. PaMpeR learns when to use which proofmeth-

ods from human-written large proof corpora called the Archive of

Formal Proofs (AFP)[4]. The AFP is an online journal that hosts

various formalization projects and mechanized proof scripts. Cur-

rently, theAFP consists of 460 articles with 126,100 lemmas written

by 303 authors in total.

PaMpeR first preprocess this data base: it applies 108 assertions

to each (possibly intermediate) proof obligation appearing in the

AFP and converts each of them into a vector of boolean values. This

way, PaMpeR creates 425,334 data points, each of which is tagged

with the name of proof method chosen by a human engineer to at-

tack the obligation represented by the corresponding vector. Then,

PaMpeR applies a multi-output regression tree construction algo-

rithm to the database. This process builds a regression tree for each

proof method. For instance, PaMpeR builds the following tree for

the induct method:

(1, (10, expectation 0.0110944442872,

expectation 0.00345987448177),

(10, expectation 0.0510162518838,

expectation 0.0102138733024))

where each of 1 and 10 in the first elements of the pairs repre-

sent the number of the corresponding assertion. For example, this

tree tells that for proof obligations to which the assertion 1 returns

false but the assertion 10 returns true, the chance of an experienced

proof engineer using the induct method is about 5.1%.

When a user of PaMpeR seeks for a recommendation, PaMpeR

transforms the proof obligation at hand into a vector of boolean

values and looks up the trees and presents its recommendations.

PaMpeR’s regression tree construction is based on a problem

transformation method, which handles a multi-output problem as
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a set of independent single-output problems: For each obligation,

PaMpeR attempts to provide multiple promising proof methods to

attack the obligation, by computing how likely each proof method

is useful to the obligation one by one.

PaMpeR is not optimal to guide PSL. One would imagine that it is

natural step forward to improve PSL’s default strategy by allowing

PaMpeR to choose the most promising strategy for a given problem

instead of always applying the fixed strategy, try_hard, naively.

Despite the positive results of cross-validation reported by Na-

gashima et al., PaMpeR’s recommendation is not necessarily opti-

mal to guide an automatic meta-tool based proof search for two

reasons. First, PaMpeR recommends only one step of proof method

application, even though many proof methods, such as induction,

can discharge proof obligations only when followed by appropri-

ate proof methods, such as auto, which is a general purpose proof

method in Isabelle/HOL. Second, when PaMpeR transforms a multi-

output problem to a set of single-output problems, PaMpeR pre-

process the database introducing a conservative estimate of the

correct choice of proof methods. In the above example, PaMpeR’s

pre-processor produces the following data point for all databases

corresponding to proof methods that are not induction.

not, [1,0,0,1,0,0,0,0,1,0,0,1,0,...]

We know that this conservative estimate wrongfully lowers the

expectation for other proof methods for this case. For example,

Isabelle/HOL has multiple proof methods for induction, such as

induct and induct_tac. Experienced engineers know induction

is a valid choice for most proof obligations where induct is used.

Unfortunately, it is not computationally plausible to find out all al-

ternative proofs for a proof obligation, since many proof methods

return intermediate proof obligations that have to be discharged

by other methods and even equivalently effective methods for the

same obligationmay return distinct intermediate proof obligations.

In the above example, even though both induct and induction

are the right choice formany proof obligations, they return slightly

different intermediate proof goals for most of the cases, making

it difficult to decide systematically if induct was also the right

method where human engineers used induction method.

2 EVOLUTIONARY PROVER IN

ISABELLE/HOL

We propose a novel approach based on evolutionary computation

to overcome the aforementioned limitations of method recommen-

dation based on supervised learning. Our objective is to discover

heuristics to choose the most promising PSL strategy out of many

hand written default strategies when applied to a given proof goal,

so that PSL can exploit computational resources more effectively.

We represent programs as a sequence of floating point numbers,

each of which corresponds to a combinations of results of applying

assertions to a proof obligation. PaMpeR leaned 239 proof methods

from the AFP and built a tree of height of two for each of them;

Therefore, we represent a program as a sequence of floating num-

ber of length 956, which is the total number of leaf nodes in all

regression trees. Then, we assign such sequence to each default

proof strategy. Our prover first applies assertions to categorize a
proof obligation, then determines and applies the most promising

strategy for that obligation.

As a training data set, we randomly picks up a set of proof obli-

gations from large proof corpora. And we measure how many obli-

gations in this data set each version of our prover can discharge

given a fixed timeout for each obligation. The more proof goals in

the data set a prover can discharge, the better the prover is.

After each iteration, we mutate the program, which is a map-

ping function from a combination of results of assertions to the

likelihood of each strategy being promising to the corresponding

proof obligations. After each evaluation, we select provers with

higher success rates and leave them for the next iteration, while

discarding those with lower success rates.

We are still designing the details of the aforementioned experi-

ment. We expect that when combined with the goal-oriented con-

jecturing mechanism [10] this project leads to the meta-tool based

smart proof search in Isabelle/HOL initially proposed in 2017 [7].
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