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ABSTRACT

Constrained optimization problems are often characterized by mul-
tiple constraints that, in the practice, must be satisfied with different
tolerance levels. While some constraints are hard and as such must
be satisfied with zero-tolerance, others may be soft, such that non-
zero violations are acceptable. Here, we evaluate the applicability of
MAP-Elites to “illuminate” constrained search spaces by mapping
them into feature spaces where each feature corresponds to a dif-
ferent constraint. On the one hand, MAP-Elites implicitly preserves
diversity, thus allowing a good exploration of the search space. On
the other hand, it provides an effective visualization that facilitates a
better understanding of how constraint violations correlate with the
objective function. We demonstrate the feasibility of this approach
on a large set of benchmark problems, in various dimensionali-
ties, and with different algorithmic configurations. As expected,
numerical results show that a basic version of MAP-Elites cannot
compete on all problems (especially those with equality constraints)
with state-of-the-art algorithms that use gradient information or
advanced constraint handling techniques. Nevertheless, it has a
higher potential at finding constraint violations vs. objectives trade-
offs and providing new problem information. As such, it could be
used in the future as an effective building-block for designing new
constrained optimization algorithms.
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1 INTRODUCTION

Several real-world applications, for instance in engineering design,
control systems and healthcare, can be described in the form of
constrained continuous optimization problems, i.e. problems where
a certain objective/cost function must be optimized within a cer-
tain search space, subject to some problem-dependent constraints.
Without loss of generality, these problems can be formulated as:

minimize f(x)
xeD
subject to: gi(x) <0, i=12,...,m
hj(x)=0, j=12,....p

where; 1) x € D C R" is a candidate solution to the problem, being
n the problem dimensionality, and D the search space, typically
defined in terms of bounding box constraints [by. < xp < uby Vk €
{1,2,...,n}, where Ib; and ubj are the lower and upper bound,
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respectively, for each k-th variable; 2) f(x) : R” — R is the ob-
jective function; 3) g;(x) and hj(x) (both defined as: R" — R) are
respectively, inequality and equality constraints.

In the past three decades, a large number of computational tech-
niques has been proposed to solve efficiently this class of problems,
among which Evolutionary Algorithms (EAs) [17] have shown
a great potential due to their general applicability and effective-
ness. So far, most of the research in the field has focused on how
to improve the feasible results obtained by EAs, for instance de-
veloping ad hoc evolutionary operators, specific constraint repair
mechanisms, or constraint handling techniques (CHTs). However,
in various real-world applications it could be desirable, or at least
acceptable, to consider also infeasible solutions. This could be ob-
tained for instance by defining different tolerance levels for each
constraint, so to reason on the effect of relaxing a certain constraint
(and, if so, how much to do that) in order to obtain an improvement
on the objective function, and therefore find different trade-offs
in terms of constraint violations vs. objective. Despite these ap-
plication needs, to date little research effort has been put on how
to allow EAs to identify, rather than a single optimal solution, a
diverse set of solutions characterized by different trade-offs of this
kind. In this sense, the most notable exceptions that explicitly ad-
dressed this problem -although with contrasting results— have
focused on multi-objective approaches, where the constraint vio-
lations were considered as additional objectives to be minimized
[6, 11, 25, 32, 34], or surrogate methods [2].

In this paper, our goal is to evaluate the applicability of the
Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [3,
19], an EA recently introduced in the literature in the context of
robotic tasks, for tackling these problems, specifically to provide
trade-off solutions in constrained optimization. Differently from
conventional EAs, MAP-Elites conducts the search by mapping the
highest-performing solutions found during the search (elites) into
another multi-dimensional discretized space, defined by problem-
specific features (the latter space is separate from the original search
space, and typically of a lower dimensionality). These features are
uncorrelated to the actual objective function, and describe some
domain-specific properties of the candidate solutions. By means
of this mapping, the algorithm “illuminates” the search space by
showing the potential value of each area of the feature space, and
the corresponding trade-off between the objective and the features
of interest.

The functioning of MAP-Elites is simple and intuitive. First, the
multi-dimensional feature space is discretized into a multi-dimen-
sional grid, where each bin (i.e., a cell in the grid, which is in general
a hyper-rectangle) represents a different “niche”. Then, an EA-like
search is performed by means of selection and variation (mutation
and crossover), but instead of keeping a population of solutions
which may or may not be diverse, MAP-Elites explicitly maintains



diversity by keeping in each niche one elite, which identifies the
best solution characterized by the corresponding feature values.
At the end of the optimization procedure, a full map of possible
solutions is provided (rather than a single optimal solution, as in
conventional single-objective EAs), each characterized by different
features. This map is shown in the form of a multi-dimensional
heatmap, which allows for an easy visual inspection of how the
objective function changes across the feature space.

In order to apply MAP-Elites to constrained optimization, the
main idea we propose here is to define the feature space based on a
discretization of the constraint violations. It is worth noting that
in practical applications the discretization has a concrete, domain-
dependent meaning: it can be seen as a set of tolerance levels, which
as we mentioned can be different for each constraint. With this
approach, we are able to produce a visual representation of the
objective values in the feature space (in this case, space of con-
straint violations), thus uncovering possible correlations between
the constraints and the objective. Thanks to this visualization, it is
indeed easy to understand “where”, with respect to the constraints
boundaries, the best solutions lie. It also is easy to inspect the best
overall solution, and check if the algorithm was able to produce
particularly interesting solutions violating some of the constraints.
As said, this insight can be helpful in cases where the violation
of some constraints (within a certain tolerance level) can be an
acceptable trade-off for a better overall performance.

As we will see in detail in the paper, despite its simplicity the
proposed approach has various advantages: 1) it can be easily
adapted/extended to include custom evolutionary operators; 2) it
does not necessarily need explicit CHTs, but it can also include
them; 3) it implicitly preserves diversity; 4) it allows the user to
easily define custom tolerance levels, different for each constraint;
5) it “illuminates” the search space as it provides additional infor-
mation on the correlation between constraints and objective, which
might be of interest in practical applications; 6) it facilitates the
interpretation of results through an intuitive visualization.

The rest of the paper is structured as follows. In the next Section,
we will briefly summarize the most recent works on MAP-Elites
and constrained optimization. Then, Section 3 describes the basic
MAP-Elites algorithm and how it can be applied to constrained
optimization. In Section 4, we describe the experimental setup
(benchmark and algorithmic settings), followed by the analysis
of the numerical results, reported in Section 5. Finally, Section 6
concludes this work and suggests possible future developments.

2 RELATED WORK

The study of MAP-Elites and, more in general, EAs explicitly driven
by novelty [13, 18, 24] or diversity [4, 20], rather than the objec-
tive alone, is a relatively new area of research in the Evolutionary
Computation community. Among these algorithms, MAP-Elites
[3, 19] has attracted quite some attention in the field, due to its
simplicity and general applicability. Since its introduction in 2015,
MAP-Elites has been mostly used as a means to identify repertoires
of different agent behaviors e.g. in evolutionary robotics setups. Var-
ious examples of applications to maze navigation, legged robot gait
optimization, and anthropomorphic robot trajectory optimization
can be found in [1, 3, 4, 19, 23, 29-31]. More recently, MAP-Elites

has been applied also to Workforce Scheduling and Routing Prob-
lem (WSRP) [28] and Genetic Programming [7]. To the best of our
knowledge, no prior work exists on the explicit use of MAP-Elites
for solving constrained optimization problems.

Evolutionary constrained optimization is, on the other hand, a
much more mature area of research: hundreds of papers have shown
in the past three decades various algorithmic solutions and real-
world problems where EAs were successfully applied to constrained
optimization. Summarizing all the recent advances in this area
would be impossible, and is obviously outside the scope of this
paper. A thorough survey of the literature is performed, for instance,
in [14], to which we refer the interested reader for a comprehensive
analysis of the state-of-the-art updated to 2016. Another interesting
study, published at the end of 2018 by Hellwig and Beyer [10],
covers all the aspects related to benchmarking EAs for constrained
optimization, including a thorough analysis of the most important
benchmark suites available in the literature. Among these, the CEC
2010 benchmark [16] has attracted in the past few years a large body
of works that showed how to solve its functions efficiently, and is
often used nowadays for benchmarking new algorithms. Currently,
the state-of-the-art results on this benchmark have been obtained
by ¢DEag, an ¢ constrained Differential Evolution algorithm with
an archive and gradient-based mutation proposed by Takahama and
Sakai [27], and ECHT-DE, another variant of Differential Evolution
that includes an ensemble of four constraint handling techniques,
proposed by Mallipeddi and Suganthan [15]. These two works are
also good examples of two of the most successful recent trends in
the field, that are the use of gradient-based information (if available,
or at least approximable), and the combination of multiple CHTs
into a single evolutionary algorithm.

3 METHODOLOGY

The basic version of MAP-Elites, as introduced in [3, 19], is shown
in Algorithm 1. In the pseudo-code, x and x” are candidate solutions
(i.e., n-dimensional vectors defined in the search space D); b’ is a
feature descriptor, that is a location in a user-defined discretized
feature space, corresponding to the candidate solution x’, (i.e., an
N-dimensional vector of user-defined features that characterize
x’, typically with N < n); p’ is the performance of the candidate
solution x’ (i.e., the scalar value returned by the objective function
f(x’); the function itself is assumed to be a black-box, that is its
mathematical formulation, if any, is unknown to the algorithm);
P is a <feature descriptor, performance> map (i.e. an associative
table that stores the best performance associated to each feature
descriptor encountered by the algorithm); X is a <feature descriptor,
solution> map (i.e. an associative table that stores the best solution
associated to each feature descriptor encountered by the algorithm);
P(b’) is the best performance associated to the feature descriptor
b’ (it can be empty); X(b’) is the best solution associated to the
feature descriptor b’ (it can be empty).

Following the pseudo-code, the algorithm first creates the two
maps P and X, which are initially empty. Then, a loop of I itera-
tions (i.e., function evaluations) is executed. For each of the first G
iterations, G solutions are randomly sampled in the search space
D, which are used for initializing the two maps £ and X. Then,
starting from the iteration G + 1, a solution x is randomly selected



Algorithm 1 MAP-Elites algorithm, taken from [19]

Pe—0,X—0
for iter =1 — I do
if iter < G then
x’ « random_solution()
else
x « random_selection(X)
x’ « random_variation(x)

b’ « feature_descriptor(x’)
p’ « performance(x”)
if P(b’) =0V P(D’) > p’ then
Pb) «p’
X(b') —x’
return # and X

from the current map X, and a randomly modified copy of it, x’, is
generated. The feature descriptor b’ and performance p’ associated
to this new, perturbed solution are then evaluated. At this point,
the two maps P and X are updated: if the performance associated
tob’, P(b’), is empty (which can happen if this is the first time that
the algorithm generates a solution with that feature descriptor), or
if it contains a value that is worse than the performance p’ of the
newly generated solution (in Algorithm 1, we assume a minimiza-
tion problem, therefore we check the condition P(b’) > p’), the
new solution x’ and its performance p’ are assigned to the elements
of the maps corresponding to its feature descriptor b’, namely P(b”)
and X(b’). Once the loop terminates, the algorithm returns the two
maps # and X, which can be later analyzed for further inspection
and post-processing.

It can be immediately noted how simple the algorithm is. With
reference to the pseudo-code, in order to apply MAP-Elites to a
specific problem the following methods must be defined:

random_solution(): returns a randomly generated solution;
random_selection(X): randomly selects a solution from X;
random_variation(x): returns a modified copy of x;
feature_descriptor(x): maps a candidate solution x to its rep-
resentation in the feature space, b;

o performance(x): evaluates the objective function correspond-
ing to the candidate solution x.

The first three methods are rather standard, i.e., they can be based on
general-purpose operators typically used in EAs. However, it is pos-
sible to customize them according to the specific need. For instance,
the basic version MAP-Elites randomly selects at each iteration
one solution, and applies only Gaussian mutation operator; on the
other hand, the algorithm can be easily configured to use a different
selection mechanism (e.g. an informed operator that introduces
some selection pressure/bias) or select multiple solutions at each
iteration so to apply a recombination operator (crossover) or some
other search mechanism such as a local search. We will see in the
next Section the details of three different algorithm configurations
that we have used in our experimentation.

As for what concerns the last two methods, feature_descriptor(x)
and performance(x), these are obviously problem-dependent: the
first one, being dependent on how the user defines the features

of interest and the corresponding feature space; the latter, being
dependent on the specific objective function at hand.

The application of MAP-Elites to constrained optimization is
then quite straightforward: here, we map each constraint of a con-
strained optimization problem to a different feature in the feature
space explored by MAP-Elites, such that each candidate solution
is associated to a feature descriptor that is basically a vector of
constraint violations. In this specific case then, the user does not
necessarily have to define any additional feature, but the features
themselves are already part of the problem definition. Leaving aside
the algorithmic details (selection and variation) and parameters
(the only two parameters of the algorithm are the total and initial
number of iterations, respectively I and G, which can be easily set
by the user based on computing resources and/or time constraints),
the only input required from the user is the discretization of the
features (constraint violations) space.

An intuitive way of discretizing this space is to define, for each
constraint, a certain number of tolerance levels, i.e. amounts of
constraint violation used as discretization steps. These can be easily
expressed in absolute terms (based on the values of g;(x) and h;(x)
in case of violations), or normalized w.r.t. known minimum and
maximum violations. A simple example of discretization steps is
{0,¢,2¢,...}, where ¢ is a user-defined parameter. However, as
we will show in the next Section, also non-linear discretization
is possible. In general, the discretization strategy should be based
on domain knowledge and defined in such a way that solutions
whose violations are equivalent, from a practical point of view,
are grouped in the same bin. This would allow to “illuminate” the
relation between objective function and constraint violations in a
significant, meaningful way. Finally, we must note that while in
general a different set of tolerance levels can be defined for each
constraint (especially if these are expressed in absolute terms), if
all constraints have the same codomain (or, if they are normalized),
the same tolerance levels can be used for all of them.

4 EXPERIMENTAL SETUP

We evaluated the performance of the proposed approach on the
benchmark functions defined for the CEC 2010 Competition on
Constrained Real-Parameter Optimization [16]. This benchmark
presents 18 problems with different landscape characteristics, sub-
ject to a varying number (up to four) of equality and/or inequality
constraints. To assess the scalability of MAP-Elites, we tested these
problems in 10 and 30 dimensions. All the details of the experimen-
tal setup were set according to the CEC indications [16]. In short,
the experiments were run with the following parameters:

Number of benchmark problems: 18 {C1, C2, ..., C18}

Number of dimensions, for each problem: 10D and 30D

Number of runs, for each problem/dimensionality: 25

Number of function evaluations (NFEs), per run: I = 2.0e5

for 10D, I = 6.0e5 for 30D

e Number of function evaluations (NFEs) for map initialization,
per run: G = 2000

e Discretization steps for every feature: {0,0.01, 0.0001, 1}.

This means that each feature is discretized into 5 bins, namely:

{0}, (0,0.0001], (0.0001, 0.01], (0.01, 1.0] and (1.0, inf).



This last aspect deserves more attention, since as we have seen in the
previous Section this is what allows the application of MAP-Elites
to constrained optimization. Here, we have defined as discretization
steps the three tolerance levels defined in [16], i.e. 0.0001, 0.01, and
1.0 (see the next Section), in addition to an explicit step correspond-
ing to zero-tolerance (corresponding to solutions with g;(x) < 0
and h;j(x) = 0, respectively for inequality and equality constraints).

The features used in MAP-Elites follow the same order as they
appear in the corresponding problem definition, with inequality
constraints considered before equality constraints. Since the prob-
lems contained in the the CEC 2010 benchmark have a variable
number of equality/inequality constraints, we define a variable-
sized feature space, where for each problem there are as many
MAP-Elites features as constraints. For visualization purposes, we
represent the map P (b’) obtained in each run of MAP-Elites in the
form of a multi-dimensional heatmap, as explained in [3, 19]. The
color represents the objective value corresponding to the solution
contained in each bin. The 1st axis (abscissa) corresponds to the
1st constraint violation, the 2nd axis (ordinate) corresponds to the
2nd constraint violation, and so on for the 3rd and 4th constraints.
Feature dimensions are “nested” such that the feature space is first
discretized along the 1st and 2nd axes (so to obtain a 2D grid of bins),
while the following features (if any) are represented by an “inner”
(1D or 2D) discretization inside each bin in the “outer” grid. Obvi-
ously, this visualization procedure can be easily extended to handle
more than four constraints, although the visual interpretability of
the results tends to decrease with the number of features shown in
the heatmap.

It should be noted that, according to the CEC 2010 benchmark
definition [16], a solution x is considered feasible iff g;(x) < 0 Vi €
{1,2,...,m} and |hj(x)| —€ < 0Vj € {1,2,...,p}, where € is the
equality constraint tolerance, set to 0.0001. Otherwise, the solu-
tion is considered infeasible. From what we have just discussed, it
follows then that feasible solutions in the sense of the CEC 2010
definition can be found: 1) for what concerns inequality constraints,
in the first bin ({0}) along each feature dimension; 2) for what con-
cerns equality constraints, in the first two bins ({0}, (0,0.0001]). In
plain terms, this means that we can easily identify feasible solutions
found by MAP-Elites by simply looking at the lower-left corner of
the heatmap, while solutions with increasing constraint violations
are found scanning the heatmap (and each inner bin in case of more
than two constraints) towards the upper-right side. Some examples
of heatmaps obtained by MAP-Elites are shown in Figure 1.

As for the evolutionary operators (selection and variation, as
shown in Algorithm 1), we defined three different algorithmic set-
tings. In all cases, selection is performed according to a uniform
distribution over the current map. Variation is instead applied ac-
cording to the following configurations:

e Configuration 1: mutation (¢ = 0.1), without crossover
e Configuration 2: mutation (o = 0.5), without crossover
o Configuration 3: mutation (o = 0.1), with crossover

In all three cases, mutation is implemented by applying to the
selected solution (with probability 0.5 for each variable) a Gaussian
mutation with ¢ = 0 and the given value of o. Boundary constraints
are handled according to a toroidal mechanism: given a decision
variable x constrained to the interval [a, b], if the corresponding

mutated variable x” exceeds the upper bound b (i.e., x” = b + {), x’
is transformed into x” = a + ¢, { > 0. Similarly, if x’ = a -, x’ is
transformed into x’ = b -, { > 0.

In Configuration 3, at each iteration two solutions are randomly
selected from the current map, after which uniform crossover (with
probability 0.5 for each variable) is applied by swapping the corre-
sponding variables from the two parents. Then, the first of the two
offspring generated by crossover undergoes Gaussian mutation,
as in Configurations 1 and 2, and is evaluated in terms of feature
descriptor and performance, as shown in Algorithm 1.

The entire experimental setup was implemented in Python 3!,
and the experimentation was performed on a Ubuntu 18.10 worksta-
tion, with a CPU Intel Core 19-7940X @3.10GHz and 64GB DDR4.

5 NUMERICAL RESULTS

We present here the results obtained on the experimental setup
described in the previous Section. In Tables 1-6, we report the results
for all the CEC 2010 functions in 10 and 30 dimensions, for the three
algorithm settings described above?. In the tables, we report the
results as suggested in [16], where for each function we show:

(1) The objective value corresponding to the best, worst, and
median solution® (over 25 runs) obtained at the end of the
computational budget; next to each objective value, we show
in parenthesis the no. of violated constraints corresponding
to each of these three solutions.

(2) The number of violated constraints at the median solution,
¢ = (c1,¢2, c3) (Where each element ¢;, i = 1, 2,3 represents
the number of violations higher than three tolerance levels
setto 1,0.01, and 0.0001, respectively), and the corresponding
mean violation 9, calculated as:

Z;Zl Gi(x) + Z.Ii)zl H](X)

o= p—— o)

where Gi(x) = gi(x) if gi(x) > 0 (otherwise zero), and
Hj(x) = |hj(x)| if |hj(x)] — € > 0 (otherwise zero), being
€ is the equality constraint tolerance (as seen earlier, 0.0001).

(3) The average objective value (over 25 runs) of the final solu-
tions obtained at the end of the budget, and its std. dev.

(4) The Feasibility Rate (FR), that is, for each function, the ra-
tio between the number of runs during which at least one
feasible solution was found within the budget, and the total
number of runs (in our case, 25).

From the tables, we can observe that in all three configurations,
MAP-Elites solves with 100% FR C1, C7, C8, C14, C15 in 10D, i.e. all
the functions with inequality constraints only (except C13, that is
however the only function with inequality constraints only whose
volume of the feasible region is approximately zero); in 30D, it also
finds feasible solutions on C18 in 100% of the runs in all configu-
rations (92% in 10D for Configuration 3). The peculiarity of this
function is that, despite it has one equality constraint, the volume

! Code available at: https://github.com/StefanoFioravanzo/MAP-Elites.

2 The complete set of numerical results and the final heatmaps for each problem and
dimensionality are available as Supplementary Material at: https://bit.ly/2WwgeTU.
3 The final solutions are sorted according to these three criteria: 1) feasible solutions
are sorted in front of infeasible solutions; 2) feasible solutions are sorted according to
their objective value; 3) infeasible solutions are sorted according to their mean value
of constraint violation, calculated as in Eq. (1).
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Figure 1: Final heatmaps found in a single run of MAP-Elites on C1, Configuration 1 (left), C2, Configuration 1 (center), C16,
Configuration 3 (right) in 10D. The three benchmark functions are characterized, respectively, by 2I, 2I-1E, and 2I-2E, where
‘T and ‘E’ stand for inequality and equality constraints respectively. In each heatmap, the color of each bin is proportionate
to the objective value corresponding to the solution present in it (assuming minimization, the lower the better), while the
red bin indicates the solution with the best objective value (regardless its feasibility). It can be observed that the maps easily
allow to “illuminate” the search space of each problem, identifying various trade-off solutions in terms of objective value vs.
constraint violations, such as solutions with a high performance but with some violated constraints. Note that in case of 3 or 4
constraints the discretization along the first two (outer) dimensions of the heatmap is indicated by a thicker black line, while
the discretization along the “nested” (inner) dimensions is indicated by a thinner black line.

of its feasible region is non-zero. The only other functions on which
a non-zero FR is obtained, although not in all configurations and
dimensionalities, are: C2, C9, C10, C16, C17. Except C10 that has
1 "rotated" equality constraint, all other functions have only sepa-
rable constraints, which could explain why in some cases even by
Gaussian mutation only (which acts independently on each vari-
able) it is possible to reach the feasible region. Overall, among the
3 configurations Configuration 3 has the highest FR across all the
tests, while it results that an excessively high value of o in Gaussian
mutations (as in Configuration 2) is detrimental.

From these observations, we can conclude that the basic MAP-
Elites algorithm we have used in our experimentation is not able
to solve efficiently either problems with non-separable equality
constraints, or with an approximately zero-volume feasibile region.
This is not surprising though, as the algorithm is only based on sim-
ple genetic operators (Gaussian mutations and uniform crossover
in our case) that do not use any information about the constraints.
In contrast, the two best-performing algorithms on the CEC 2010
benchmark, eDEag [27] and ECHT-DE [15], encapsulate highly effi-
cient CHTs (and, in the case of eDEag, gradient information about
constraints) that allow them to reach an 100% FR on all functions
in 10D and 30D (except, respectively for the two algorithms, C12 in
30D, and C11-C12 in both 10D and 30D), as reported in the original
papers.

This comparison encourages though the idea to explore in the
future the possibility to include into the MAP-Elites scheme at least
one dedicated technique for better handling equality constraints,
such as the ¢ constrained method, initially introduced in [26] and
since then used in most of the state-of-the-art algorithms for con-
strained optimization. Notably, the strength of this method is that

it guides the search by allowing ¢ level comparisons with a pro-
gressively shrinking relaxation (defined by the ¢ parameter) of the
constraint boundaries.

Considering the objective values, similar considerations can be
drawn: limiting the analysis on the functions with 100% FR, it results
that MAP-Elites is less efficient at finding optimal values than eDEag
[27] (the best algorithm on the CEC 2010 benchmark). In all cases
MAP-Elites is several orders of magnitude worse than eDEag, except
C1 in 10D where instead the configuration with crossover finds a
better optimal value*. Once again, this conclusion is not surprising
and is also in line with what was observed by Runarsson and Yao
[22], who identified the reason for the sometimes poor results
obtained by multi-objective approaches (such as [11, 25, 32, 34]): in
fact, when applied to constrained optimization, the Pareto ranking
leads to a “bias-free” search that is not able to properly guide the
search towards (and within) the feasible region. In other words,
allowing the search to spend too many evaluations in the infeasible
region makes it harder to find feasible solutions, but also to find
feasible solutions with optimal values of the objective function.
This might be the case also of MAP-Elites, where some form of bias
(such as the ¢ constrained method) might be needed.

6 CONCLUSIONS

In this paper we have explored the use of MAP-Elites for solving
constrained continuous optimization problems. In the proposed

4 We refer the interested reader to the Supplementary Material online, where we
present the results after I = 2.0e5 and I = 6.0e5 NFEs, respectively for 10D and 30D,
obtained by eDEag (taken from [27]). We also show a detailed report of the MAP-Elites
results focused on a fitness-based rank, rather than the rank based on the sorting
criteria described in the text. These results are omitted here due to space limitations.



approach, each feature in the feature space explored by MAP-Elites
corresponds, quite straightforwardly, to the violation of each con-
straint, discretized according to user-defined steps (tolerance levels).
In this way, the algorithm allows to “illuminate” the search space
and thus uncover possible correlations between the constraints and
the objective. The visualization of MAP-Elites also gives users the
possibility to focus on different solutions characterized by different
values of constraint violations. We have tested this approach on
a large number of benchmark problems in 10 and 30 dimensions,
characterized by up to four equality/inequality constraints. Our
numerical results showed that while MAP-Elites obtains results
that are not particularly competitive with the state-of-the-art on all
problems (especially those with equality constraints), it is still able
to provide new valuable, easy-to-understand information that can
be of great interest for practitioners. Additionally, the algorithm
can be easily implemented and applied without any specific tuning
to various real-world problems, for instance in engineering design,
where different tolerance levels can be defined depending on the
specific constraints.

Since our goal was to evaluate the performance of the basic
MAP-Elites on constrained optimization, the proposed approach is
purposely quite simplistic, but clearly it can be extended in various
ways. First of all, the basic MAP-Elites algorithm we used in this
work (as shown in Algorithm 1 can be replaced with some more
advanced variants recently proposed in the literature. In particular,
the version of MAP-Elites based on centroidal Voronoi tessellation
(CVT-MAP-Elites) [30] can be used instead of the basic one in order
to scale the algorithm to a larger number of constraints. In order to
better handle the unbounded feature spaces (thus avoiding the need
for an explicit “upper” bin, (1.0, inf) in our case), the “expansive”
MAP-Elites variants introduced in [29] can be employed instead,
which are able to expand their bounds (in the feature space) based
on the discovered solutions. Other possibilities will be to use the
“directional variation” operator introduced in [31], that exploits
inter-species (or inter-elites) correlations to accelerate the search,
add, most of all, specific constraint handling techniques (especially
for handling equality constraints, which as we have seen is the
main weakness of this approach) [8, 15]. It is also worth consider-
ing the use of surrogate models, such as in [33], in order to further
speed up the the search and guide it towards the feasible region,
still allowing the algorithm to keep infeasible solutions as part
of the map. Another improvement can be obtained by using an
explicit Quality Diversity measure [1, 4, 20, 21], so to enforce at
the same time a better coverage of the feature space and a further
improvement in terms of optimization results. It is also possible to
hybridize the basic MAP-Elites algorithm with local search tech-
niques (such that MAP-Elites explores the feature space and local
search is applied within one bin to further refine the search), or to
devise memetic computing approaches based on combination of
MAP-Elites and other metaheuristics, such as CMA-ES, that has
been recently applied successfully also to constrained optimization
[5,9, 12].

Finally, on the application side it will be interesting to evaluate
the applicability of this approach on combinatorial constrained
optimization problems, which can be obtained by simply modifying

the variation operators, or multi-objective constrained optimization,
which can be obtained by adding a Pareto-dominance check, as

recently shown in the context of robotic experiments [23].
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Table 1: Numerical results obtained from 25 independent of MAP-Elites (Configuration 1) on 10D problems

Function ‘ Best Worst Median c 0 Mean Std FR
Co1 -5.900e-01(0) -3.500e-01(0) -4.400e-01(0) (0,0, 0) 0 -4.600e-01 7.000e-02 1.0
€02 8.900e-01(0)  2.860e+00(2)  1.290e+00(0) (0, 0, 0) 0 1.780e+00  1.870e+00  0.52
Co3 1.254e+14(1)  9.654e+14(1)  5.118e+14(1)  (0,0,1)  2477e+06  5.208e+14  2.730e+14 0.0
Co4 -1.512e+01(4)  3.930e+01(4)  1.646e+01(3)  (0,0,3)  7.993e+03  1.487e+01  1.249e+01 0.0
Co5 -1.795e+02(2)  3.301e+02(2)  8.052e+01(2)  (1,0,1) -8.064e+01  6.719e+01  1.716e+02 0.0
Co6 -1.222e+02(2) 5.043e+02(1) 1.705e+02(1) (0,0,1)  -1.300e+02 1.885e+02 1.669e+02 0.0
Co7 1.761e+09(0)  3.347e+11(0)  7.117e+09(0) (0,0, 0) 0 6.854e+10  9.030e+10 1.0
Co8 2.610e+04(0) 1.504e+08(0) 3.490e+06(0) (0,0, 0) 0 1.690e+07  3.667e+07 1.0
C09 2752e+13(0)  2.327e+15(1)  4.526e+13(1)  (0,1,0) -2.950e+01  3.607e+14  6.492e+14  0.12
C10 7.187e+12(1)  8.964e+14(1)  3.631e+13(1)  (0,0,1) -6.560e+02  1.805e+14  3.008e+14 0.0
C11 -5.486e+01(1)  -3.766e+01(1)  -4.441e+01(1) (0,0, 1) 2.183e+12 -4.561e+01  4.870e+00 0.0
C12 -5.327e+03(2)  1.704e+03(2)  -3.904e+03(2) (0,0,2) 150le+12  -3.008e+03  2.173e+03 0.0
C13 -3.702e+02(2)  -1.721e+02(2)  -2.804e+02(2) (0,0,1)  5.853e+02  -2.823e+02  5.116e+01 0.0
C14 2.141e+14(0)  4.448e+15(0)  1.304e+15(0) (0,0, 0) 0 1.555e+15  1.018e+15 1.0
C15 9.018e+12(0)  1.041e+15(0)  4.145e+14(0) (0,0, 0) 0 4449e+14  2.936e+14 1.0
C16 4.900e-01(0) 1.100e+00(2) 6.500e-01(4) 0,1,3)  -4.585e+06 6.200e-01 3.000e-01 0.16
C17 1.310e+00(0)  4.958e+02(1)  1.784e+01(1)  (0,1,0) -8.500e+05  6.456e+01  1.025e+02 0.4
c18 3.365e+01(0)  3.542e+03(1)  5.894e+02(0) (0,0, 0) 0 1.478e+03  2.594e+03  0.88

Table 2: Numerical results obtained from 25 independent of MAP-Elites (Configuration 2) on 10D problems

Function ‘ Best Worst Median c 0 Mean Std FR
Co1 -6.700e-01(0) -4.300e-01(0) -4.800e-01(0) (0, 0,0) 0 -5.100e-01 6.000e-02 1.0
Co2 1.700e+00(0)  4.980e+00(1)  2.500e+00(2)  (1,1,0) -1.046e+01  2.230e+00  1.930e+00  0.36
Co3 4516e+13(1)  7.934e+14(1)  4.101e+14(1)  (0,0,1)  2.642e+06  3.827e+14  1.928e+14 0.0
Co4 -1.654e+01(4)  3.941e+01(4)  1.958e+01(4)  (1,0,3) 3.074e+03  1.224e+01  1.789e+01 0.0
Co05 -3.516e+02(2) 5.255e+02(2) -9.369e+01(2)  (1,1,0) -6.720e+01  -3.35le+01  2.121e+02 0.0
C06 -2519e+02(2)  5.891e+02(2)  -1.068e+02(2) (0,1,1)  1.434e+01  -2.237e+01  2.178e+02 0.0
Co7 4.191e+08(0)  2.371e+11(0)  4.222e+09(0) (0, 0, 0) 0 2.836e+10  5.798e+10 1.0
Co8 8.302e+05(0)  2.420e+08(0)  1.664e+07(0) (0,0, 0) 0 4818e+07  6.160e+07 1.0
C09 8.585e+11(1)  7.835e+13(1)  1.933e+13(1)  (1,0,0) -1.388e+02  2.804e+13  2.302e+13 0.0
C10 5.666e+12(0) 3.540e+14(1) 1.854e+13(1) (1,0,0)  -2.489e+02 5.046e+13 7.657e+13  0.16
C11 -5.366e+01(1)  -3.885e+01(1)  -4.573e+01(1) (0,0,1)  1.894e+12  -4.589e+01  3.750e+00 0.0
C12 -6.849e+03(2) 5.433e+02(2) -4.272e+03(2) (0, 0,2) 7.650e+11 -3.843e+03 1.779e+03 0.0
c13 -3.849e+02(2)  -4.087e+01(2)  -3.048¢+02(2) (1,0,1)  4.854e+02  -2.916e+02  7.552e+01 0.0
C14 1.004e+07(0)  9.089e+13(0)  8.365e+08(0) (0, 0, 0) 0 3.681e+12  1.780e+13 1.0
C15 3.640e+06(0) 1.594e+14(0) 4.011e+10(0) (0,0, 0) 0 7.150e+12 3.112e+13 1.0
C16 1.060e+00(0)  1.080e+00(4)  9.900e-01(4)  (1,1,2) -5.208e+07  8.700e-01  2.300e-01  0.08
c17 9.251e+01(0)  6.959%e+02(3)  3.041e+01(3)  (0,2,1) -3.098e+08  2.108e+02  2.661e+02  0.36
c18 2.253e+02(0)  2.242e+04(1)  8.008e+03(0) (0,0, 0) 0 9.665¢+03  8.152e+03 0.8

Table 3: Numerical results obtained from 25 independent of MAP-Elites (Configuration 3) on 10D problems

Function ‘ Best Worst Median c 0 Mean Std FR
Co1 -8.300e-01(0)  -4.500e-01(0)  -5.500e-01(0) (0, 0, 0) 0 -5.700e-01  1.000e-01 1.0
Co02 8.000e-01(0) 3.050e+00(2) 2.870e+00(2)  (1,1,0) -8.750e+00  1.850e+00  2.230e+00  0.44
Co3 1.154e+14(1)  9.250e+14(1)  4.362e+14(1)  (0,0,1) 1.310e+06  5.005e+14  2.213e+14 0.0
Co4 -4.441e+01(4)  5.003e+01(4)  3.800e-01(4)  (0,2,2)  9.570e+01  1.270e+00  2.920e+01 0.0
Co5 -4.801e+02(2)  1.527e+02(1)  -2.316e+02(2) (0,1,1)  1.188e+01  -2.181e+02  1.804e+02 0.0
€06 -4.275e+02(2)  4.210e+02(2)  -1.927e+02(1)  (0,0,1) -1.397e+02  -1.363e+02  2.086e+02 0.0
co7 6.152e+03(0)  5.908¢+07(0)  3.171e+05(0) (0,0, 0) 0 4.070e+06  1.251e+07 1.0
Co8 4.550e+03(0)  1.391e+06(0)  1.518e+05(0) (0,0, 0) 0 4.183¢+05  4.949e+05 1.0
C09 1.690e+07(0)  1.600e+15(1)  8.227e+07(1)  (0,1,0) -6.704e+01  1.612e+14  4.344e+14 0.2
C10 9.235e+06(0)  7.494e+14(1)  7.169%e+07(1)  (1,0,0) -3527e+01  3.833e+13  1.490e+14  0.44
C11 -5.242e+01(1)  -3.835e+01(1)  -4.532e+01(1) (0,0,1)  3.883e+12  -4.474e+01  3.120e+00 0.0
C12 -7.742e+03(2)  3.236e+02(2)  -5.923e+03(2) (1,0,1)  1.573e+12  -5.795e+03  1.603e+03 0.0
c13 -4.474e+02(2)  -2.925e+02(2)  -3.952e+02(2)  (0,1,1)  8.816e+02  -3.900e+02  3.742e+01 0.0
C14 1.033e+05(0) 3.280e+14(0) 1.724e+09(0) (0,0, 0) 0 3.958e+13 8.132e+13 1.0
C15 4.980e+03(0)  4.08%e+11(0)  9.060e+07(0) (0, 0, 0) 0 1.863¢+10  8.010e+10 1.0
C16 1.020e+00(0)  1.100e+00(4)  2.900e-01(3)  (2,1,0) -3.723e+05  5.100e-01  3.800e-01  0.12
C17 3.610e+00(0) 1.560e+01(3) 1.123e+01(3) (2,1,0) -8.454e+05 6.054e+01 1.196e+02  0.52
C18 7.190e+00(0)  1.480e+01(2)  5.091e+01(0) (0,0, 0) 0 1.078e+02  1.165¢+02  0.92




Table 4: Numerical results obtained from 25 independent of MAP-Elites (Configuration 1) on 30D problems

Function ‘ Best Worst Median c 0 Mean Std FR
Co1 -2.800e-01(0) -2.000e-01(0) -2.200e-01(0) (0, 0,0) 0 -2.300e-01 2.000e-02 1.0
€02 3.880e+00(0)  4.320e+00(2)  3.760e+00(1)  (1,0,0) -2.570e+00  3.210e+00  1.480e+00  0.36
Co3 6.664e+15(1) 1.887e+16(1) 1.472e+16(1)  (0,0,1)  1.798e+07 1.463e+16  3.100e+15 0.0
Co4 1.869e+01(4)  4.507e+01(4)  3.239e+01(4) (1,1,2) 1.527e+06  3.235e+01  5.850e+00 0.0
Co5 1.739e+02(2)  4.920e+02(1)  2.784e+02(1)  (0,1,0) -1.224e+01  3.036e+02  8.686e+01 0.0
Co6 2.237e+02(2) 5.782e+02(1) 3.076e+02(2) 0,1,1) 5.920e+00 3.545e+02 1.043e+02 0.0
Co7 3.226e+10(0)  6.284e+12(0)  9.281e+11(0) (0,0, 0) 0 1.328e+12  1.386e+12 1.0
Co8 6.346e+07(0)  6.746e+10(0)  1.811e+09(0) (0,0, 0) 0 7.092e+09  1.399e+10 1.0
C09 7.159e+14(0)  3.818e+15(1)  8.511e+14(1) (0,0,1) -1.028e+03  1.323e+15  9.556e+14 0.2
C10 6.189e+14(0)  3.359e+15(1)  7.702e+14(1)  (1,0,0) -1.984e+02  9.456e+14  7.034e+14  0.16
C11 -3.289e+01(1)  -2.454e+01(1)  -2.802e+01(1) (0,0, 1) 5.83%e+12 -2.833e+01  2.180e+00 0.0
C12 -1.363e+04(2)  2.778e+03(2)  -8.056e+03(2) (0,1,1)  3.562e+12  -7.862e+03  3.439e+03 0.0
c13 -3.129e+02(2)  -1.248e+01(2)  -2.373e+02(2)  (0,1,1)  5.074e+02  -2.253e+02  5.712e+01 0.0
C14 6.971e+15(0)  2.152e+16(0)  1.160e+16(0) (0,0, 0) 0 1.203e+16  3.312e+15 1.0
C15 1.754e+15(0)  2.898e+16(0)  6.434e+15(0) (0,0, 0) 0 7.380e+15  5.067e+15 1.0
C16 9.100e-01(0) 1.050e+00(3) 8.500e-01(4) (1,2,1)  -1.920e+19 8.200e-01 1.700e-01 0.08
C17 6.822e+01(0)  1.316e+03(2)  8.772e+02(0) (0,0, 0) 0 9.761e+02  8.256e+02  0.64
c18 1.228e+03(0)  1.276e+04(0)  3.849e+03(0) (0,0, 0) 0 4380e+03  2.752e+03 1.0

Table 5: Numerical results obtained from 25 independent of MAP-Elites (Configuration 2) on 30D problems

Function ‘ Best Worst Median c 0 Mean Std FR
Co1 -2.600e-01(0) -2.100e-01(0) -2.300e-01(0) (0, 0,0) 0 -2.400e-01 1.000e-02 1.0
Co2 3.510e+00(0)  4.940e+00(2)  3.760e+00(2)  (0,2,0) -5310e+00  3.440e+00  1.030e+00  0.24
co3 6.155e+15(1)  1.970e+16(1)  1.396e+16(1)  (0,0,1) 1.316e+07  1.378e+16  3.582e+15 0.0
Co4 1.892e+01(4)  4.564e+01(4)  3.525e+01(4)  (0,1,3) 1.317e+06  3.429e+01  6.280e+00 0.0
Co05 -2.140e+00(2) 5.772e+02(1) 2.484e+02(2) 0,1,1) -2.131e+01 2.570e+02 1.174e+02 0.0
C06 1.318e+02(2)  5.961e+02(1)  2.776e+02(1)  (0,0,1) -1.296e+02  3.380e+02  1.436e+02 0.0
Co7 6.860e+10(0)  6.957e+12(0)  2.374e+12(0) (0,0, 0) 0 2560e+12  1.740e+12 1.0
Co8 4.992e+08(0)  1.523e+12(0)  6.357e+10(0) (0,0, 0) 0 1.370e+11  2.923e+11 1.0
C09 1.715e+15(0)  1.520e+15(1)  7.103e+14(1)  (1,0,0) 4.026e+02  7.63de+14  4.300e+14  0.08
C10 1.375e+14(1) 1.511e+15(1) 7.229e+14(1) 0,0,1) -5.762e+02 7.34%e+14 3.095e+14 0.0
C11 -3339e+01(1)  -2.650e+01(1)  -2.925e+01(1)  (0,0,1)  5.776e+12  -2.991e+01  2.060e+00 0.0
C12 -1.146e+04(2)  -4.734e+01(2) -7.854e+03(2) (0,1,1)  3.687e+12  -6.797e+03  3.248e+03 0.0
C13 -3.302e+02(2)  2.444e+01(2)  -2.143e+02(2) (1,0,1)  5.036e+02  -1.960e+02  8.269e+01 0.0
C14 2752e+10(0)  4.214e+13(0)  3.568e+12(0) (0,0, 0) 0 7.098e+12  1.00le+13 1.0
C15 1.921e+09(0) 2.006e+15(0) 1.110e+13(0) (0,0, 0) 0 1.083e+14 3.901e+14 1.0
C16 1.030e+00(4)  1.300e+00(2)  1.110e+00(4)  (0,2,2) -6.197e+17  1.130e+00  8.000e-02 0.0
C17 1.110e+03(0) 2.864e+03(3) 1.417e+03(0) (0, 0, 0) 0 1.539e+03  7.542e+02  0.44
c18 5037e+03(0)  4.064e+04(0)  3.043e+04(0) (0,0, 0) 0 2.847e+04  9.539e+03 1.0

Table 6: Numerical results obtained from 25 independent of MAP-Elites (Configuration 3) on 30D problems

Function ‘ Best Worst Median c 0 Mean Std FR
Co1 -3.100e-01(0)  -2.300e-01(0)  -2.600e-01(0) (0, 0, 0) 0 -2.600e-01  2.000e-02 1.0
Co2 4.590e+00(0)  5.160e+00(2)  3.150e+00(1)  (1,0,0) -1.940e+00  2.610e+00  2.260e+00  0.32
Co3 1.033e+16(1)  2.03%e+16(1)  1.521e+16(1)  (0,0,1) 9.516e+06  1.53de+16  2.809e+15 0.0
Co4 -1.859e+01(4)  4.163e+01(4)  1.518e+01(4)  (0,2,2) 3.534e+05  1.215e+01  1.744e+01 0.0
Co05 -2.304e+02(1) 5.599e+02(2) -7.310e+01(1)  (0,0,1)  -6.470e+00 9.960e+00 1.769e+02 0.0
€06 -1.678e+02(1)  5.736e+02(1)  -1.477e+01(1)  (0,0,1) -8.221e+01  7.093e+01  2.096e+02 0.0
co7 7.226e+05(0)  2.288¢+09(0)  2.058e+07(0) (0,0, 0) 0 1.503e+08  4.498¢+08 1.0
Co8 6.173e+05(0)  3.216e+07(0)  2.674e+06(0) (0,0, 0) 0 6.223¢+06  7.284e+06 1.0
C09 5770e+09(0)  6.548¢+10(1)  1.463e+10(0) (0,0, 0) 0 2.184e+13  1.050e+14  0.48
C10 1.301e+08(0)  1.153e+11(1)  4.820e+09(1)  (1,0,0) -2.706e+01  4.18%e+13  1.970e+14  0.48
ci1 -3.475e+01(1)  -2.439%e+01(1)  -2.780e+01(1)  (0,0,1)  5.744e+12  -2.825e+01  2.340e+00 0.0
C12 -1.818e+04(2)  2.716e+03(2)  -1.583e+04(2) (0,0,2) 3.737e+12  -1.36%e+04  5.767e+03 0.0
c13 -3.659e+02(2)  -2.891e+02(2)  -3.336e+02(2) (1,0,1)  6.148e+02  -3.291e+02  2.01le+01 0.0
C14 2.949e+06(0) 9.116e+15(0) 3.783e+08(0) (0,0, 0) 0 6.363e+14 2.134e+15 1.0
C15 9.592e+05(0)  4.604e+09(0)  1.375¢+07(0) (0, 0, 0) 0 2319e+08  8.981e+08 1.0
C16 9.600e-01(0)  1.040e+00(4)  8.100e-01(4)  (1,0,3) -1.020e+20  8.300e-01  1.400e-01  0.04
c17 6.458¢+01(0)  1.234e+02(3)  8.320e+01(3)  (1,1,1) -1.291e+20  5.433e+02  7.307e+02  0.48
C18 1.570e+02(0)  2.793e+04(0)  4.208e+02(0) (0, 0, 0) 0 1.896e+03  5.424e+03 1.0
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