
A Mathematical Analysis of
EDAs with Distance-based

Exponential Models
Imanol Unanue

University of the Basque Country UPV/EHU

imanol.unanue@ehu.eus
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Abstract

Estimation of Distribution Algorithms have been successfully used for
solving many combinatorial optimization problems. One type of problems
in which Estimation of Distribution Algorithms have presented strong
competitive results are permutation-based combinatorial optimization prob-
lems. In this case, the algorithms use probabilistic models specifically
designed for codifying probability distributions over permutation spaces.
One class of these probability models is distance-based exponential mod-
els, and one example of this class is the Mallows model. In spite of the
practical success, the theoretical analysis of Estimation of Distribution
Algorithms for permutation-based combinatorial optimization problems
has not been extensively developed. With this motivation, this paper
presents a first mathematical analysis of the convergence behavior of Es-
timation of Distribution Algorithms based on the Mallows model by using
an infinite population to associate a dynamical system to the algorithm.
Several scenarios, with different fitness functions and initial probability
distributions of increasing complexity, are analyzed obtaining unexpected
results in some cases.

1 Introduction

Estimation of Distribution Algorithms (EDAs) [6, 9], is a class of Evolutionary
Algorithms introduced by Mühlenbein and Paaβ [8]. The main characteristic of
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EDAs is that they learn a probability distribution from a database containing
the selected solutions from the previous generation at each iteration. The new
set of solutions is sampled from the learned probability distribution.

Recently, EDAs have been successfully used to solve permutation-based com-
binatorial optimization problems [1, 10]. In order to do that, these EDAs
use probabilistic models specifically designed for codifying probability distri-
butions over permutation spaces. In particular, the authors of [1] used a Mal-
lows model. This model can be included in a more general class of probability
models: distance-based exponential models. However, it is still not clear which
mechanisms allow these algorithms to obtain these results.

Similar to Genetic Algorithms, the first theoretical studies on EDAs were
focused on the convergence behavior of algorithms such as UMDA [11] and
PBIL [4]. Nonetheless, several works have been presented recently in the liter-
ature with the aim of attaining new theoretical results about the runtime, the
population sizing or the model accuracy of EDAs. For a current state-of-the-art,
see [5]. However, the previous theoretical studies are designed for binary and
continuous search spaces.

Our objective in this work is to present a mathematical model to analyze the
behavior of an EDA based on a Mallows model in some scenarios with different
fitness functions and initial probability distributions of increasing complexity,
and obtain the first theoretical results over the permutation space.

2 The Mallows model

The Mallows model [7] is a distanced-based exponential probability model over
permutations, considered as the analogous of the Gaussian distribution. The
probability value of every permutation σ ∈ Σn depends on two parameters: a
central permutation σ0 and a spread parameter θ. The Mallows model is defined
as

P (σ) =
1

ϕ(θ)
e−θd(σ,σ0) (1)

where d(σ, σ0) is the distance from σ to σ0, and ϕ(θ) is the normalization con-
stant. By definition, any two solutions at the same distance from the central
permutation have the same probability.

The most used distance in the literature for Mallows model is Kendall’s-τ
distance, and we will use it during this work. Kendall’s-τ distance d(σ, π) is the
minimum number of adjacent transpositions needed to bring σ−1 to π−1.

3 EDAs based on Mallows models

An EDA can be considered as a sequence of probability distributions, each one
given by a stochastic transition rule G. So, Pi = G(Pi−1) = Gi(P0), ∀i ∈ N.
Hence, the convergence behavior is described as follows: limi−→∞ Gi(P0).

2



The application of the EDA schema to deal with optimization problems can
involve an unapproachable variety of situations and behaviors. To study the
behavior of an EDA, we assume that the population is infinite [2]. In EDAs
with infinite populations, the empirical probability distribution induced by the
solutions in the current population and the selected population converge to their
underlying probability distributions Pi and PSi , and they could be thought of
as the population and the selected proportions of each individual at iteration
i. At each iteration of the algorithm a probability distribution Pi+1 is obtained
(see Algorithm 2 from [2]).

Hence, Pi = G(Pi−1) = Gi(P0), where G returns the expected probability
vector for the next iteration: G(Pi) = E[G(Pi)]. So, when the population size
tends to infinity,

lim
i−→∞

Gi(P0) = lim
i−→∞

Gi(P0). (2)

In order to study the convergence behavior of the algorithm with infinite
population, a composition of the selection operator φ and the approximation
step a used to learn the probability distribution is used: G = a ◦ φ.

The selection operator used in this work has been the widely used 2-tournament
selection (adapted to an infinite population):

pSi (σ) = 2
∑

π|f(σ)>f(π)

pi(σ)pi(π) +
∑

π|f(σ)=f(π)

pi(σ)pi(π). (3)

In addition, in our mathematical model, at each generation of the algorithm a
new Mallows model will be learnt from PSi by using the maximum likelihood

estimators of σ0 and θ, σ̂0 and θ̂, adapted from [3] to an infinite population:

σ̂0 = arg min
σ∈Σn

∑
π∈Σn

d(π, σ) · pS(π) (4)

∑
π∈Σn

d(π, σ̂0) · pS(π) =
n− 1

eθ̂ − 1
−
n−1∑
i=1

n− i+ 1

e(n−i+1)θ̂ − 1
. (5)

4 Limiting behavior in some scenarios

Our mathematical modeling is applied and proved to some scenarios. Each
scenario is defined by a fitness function f and an initial probability distribution
P0. The different fitness functions f used for the scenarios have been the uniform
function, needle in a haystack function and Mallows probability distribution.
The following results have been proven:

• When f is a constant function, for any P0 Mallows distribution, the algo-
rithm keeps the same model forever.
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• When f is a needle in a haystack function and P0 a Mallows distribution
centered in the optimal solution, the algorithm converges to the optimal
solution.

• When f is a Mallows model centered in the optimal solution (θ > 0) and
P0 a uniform distribution, the algorithm converges to a Mallows model
centered in the optimal distribution.

Moreover, when f is a Mallows model centered in the optimal solution
(θ > 0) and P0 another Mallows model centered in a solution σ0, we have made
some conjectures:

• G operator can only estimate central permutations between the optimal
solution and σ0.

• The algorithm can only converge to solutions at distance d ≤ bn(n−1)/4c
(with a single exception).

5 Conclusions

We have presented a mathematical model to study an EDA with infinite popula-
tions using discrete dynamical systems and distance-based exponential models.
Several problems have been presented and studied, combining the formal results
and some conjectures (based on some experiments). In general, the presented
theoretical model has shown that in most cases it converges to the optimal
solution.
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