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ABSTRACT
Real-world optimization problems often have expensive objective
functions in terms of cost and time. It is desirable to find near-
optimal solutions with very few function evaluations. Surrogate-
assisted optimizers tend to reduce the required number of function
evaluations by replacing the real function with an efficient mathe-
matical model built on few evaluated points. Problems with a high
condition number are a challenge for many surrogate-assisted opti-
mizers including SACOBRA. To address such problems we propose
a new online whitening operating in the black-box optimization par-
adigm. We show on a set of high-conditioning functions that online
whitening tackles SACOBRA’s early stagnation issue and reduces
the optimization error by a factor between 10 to 1012 as compared
to the plain SACOBRA, though it imposes many extra function eval-
uations. Covariance matrix adaptation evolution strategy (CMA-ES)
has for very high numbers of function evaluations even lower er-
rors, whereas SACOBRA performs better in the expensive setting
(≤ 103 function evaluations). If we count all parallelizable function
evaluations (population evaluation in CMA-ES, online whitening in
our approach) as one iteration, then both algorithms have compa-
rable strength even on the long run. This holds for problems with
dimension D ≤ 20.
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1 INTRODUCTION
Optimization problems can often be defined as minimization of
a black-box objective function f (®x). An optimization problem is
called black-box if no analytical information about itself or its
derivatives are given.

Many nature-inspired derivative-free optimizers are weak in opti-
mizing functions with high conditioning, despite all their significant
contributions in addressing large sets of black-box problems [6, 7].
However, CMA-ES is very successful in tackling high-conditioning
problems. The advantage of CMA-ES when solving problems with
high conditioning stems from the fact that in each iteration the
covariance matrix of the new distribution is adapted according to
the evolution path which is the direction with highest expected
progress. In other words, the covariance matrix adaptation aims to
learn the Hessian matrix of the function in an iterative way.

Evolutionary-based algorithms including CMA-ES often require
too many function evaluations which are not affordable in practice.
One common approach to address expensive optimization problems
efficiently is to employ surrogate models as a replacement for the
expensive-to-evaluate functions in order to reduce the number of
functions evaluations as much as possible [2, 3, 5].

The SACOBRA [2] optimization framework uses RBF interpo-
lation as surrogate. Although this algorithm is very successful in
handling the commonly used constrained optimization problems,
the so-called G-function benchmark [2], it performs poorly when
optimizing functions with a large condition number1. This poor
performance is mainly because RBFs fail to provide a useful model
for functions with high conditioning. This modeling issue is not
exclusive to RBFs. A surrogate-assisted CMA-ES [5] using different
modeling approaches addresses this modeling challenge by means
of an orthogonal transformation of the evaluated points.

In this work we propose an online whitening approach for the
SACOBRA framework to transform objective functions with high
conditioning to improve the modeling phase. The proposed method
is evaluated on the noiseless single-objective BBOB benchmark [4]
and compared to the results of CMA-ES and differential evolution
(DE) implementations in R. The detailed description of the algo-
rithm, experimental setup and results can be found in [1].

2 ONLINE WHITENING (OW)
The online whitening scheme is described in Algorithm 1: We seek
to transform the objective function f (®x) with high conditioning to
another function д(®x) which is easier to model by surrogates:
1 A function, that has a high ratio of steepest slope in one direction to flattest slope
in another direction, has a large condition number. We call this a function with high
conditioning.
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Algorithm 1 Online whitening algorithm. Input: Function f to
minimize, population X =

{
®x(k ) |k = 1, . . . ,n

}
of evaluated points,

®xbest : best-so-far point from SACOBRA.
1: H← Hessian matrix of function f (®x) at ®xbest
2: M← H−0.5 {see Eq. (3)}
3: Update ®xbest with the function evaluations from Hessian cal-

culation
Transformation :

4: д(®x) ← f (M(®x − ®xbest ))
5: G ←

{(
®x(k ),д(®x(k))

)
|k = 1, . . . ,n

}
{evaluate all the points in

X on the new function д(®x)}
6: s (®x) ← build surrogate model from G
7: return s (®x) {surrogate model for next SACOBRA step}

д(®x) = f (M(®x − ®xc )), (1)
whereM is a linear transformation matrix and ®xc is the transforma-
tion center. The ideal transformation center is the optimum point
which is clearly not available. As a substitute, we use the best so-far
solution ®xbest in each iteration as the transformation center. The
transformation matrix M is chosen in such a way that the Hessian
matrix of the new function becomes the identity matrix:

∂2д(®x)

∂®x2
= I (2)

As shown in [1], a solution for Eqs. (1) and (2) is given by:

M = H−0.5 (3)
where H denotes the Hessian matrix of the objective function f .
The transformationmatrixM in Eq. (1) is similar to the so-calledMa-
halanobis whitening or sphering transformation, commonly used
in statistical analysis. The Hessian matrix is determined by means
of Richardson’s extrapolation which requires 4D + 4D2 function
evaluations. We call the online whitening scheme only every 10
iterations, since the initial experiments have shown that a more
frequent update is not necessary.

3 RESULTS
As shown in Fig. 1, SACOBRA+OW can solve about two times
more problems comparing to the plain SACOBRA, but this is only
achieved after a significant increase in the number of function
evaluations required by OW scheme. CMA-ES outperforms SACO-
BRA+OW and DE for higher number of function evaluations. How-
ever, as shown in Fig. 2, SACOBRA+OW can compete with CMA-ES
in an optimistic parallelizable case, where enough computational
resources allow parallel computation of the Hessian matrix dur-
ing OW steps as well as parallel evaluation of new population of
solutions in each generation of CMA-ES and DE.
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Figure 1: Comparing the overall performances of the algo-
rithms SACOBRA, SACOBRA+OW, DE and CMA-ES, on 12
BBOB problems with D = 10 . The x-axis has the number of
function evaluations, divided by D. The results are shown
for two different optimization error tolerances τ = {0.01, 1}.
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Figure 2: Same as Fig. 1, but now for the ’optimistic paral-
lelizable’ case: The x-axis shows the number of iterations
(or generations), divided by D.
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