

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 23, 2024

Theory of estimation-of-distribution algorithms

Witt, Carsten

Published in:
Proceedings of 2019 Genetic and Evolutionary Computation Conference

Link to article, DOI:
10.1145/3319619.3323367

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Witt, C. (2019). Theory of estimation-of-distribution algorithms. In Proceedings of 2019 Genetic and Evolutionary
Computation Conference (pp. 1197-1225). Association for Computing Machinery.
https://doi.org/10.1145/3319619.3323367

https://doi.org/10.1145/3319619.3323367
https://orbit.dtu.dk/en/publications/7675dc9f-9724-4aa6-b102-13296fbd625e
https://doi.org/10.1145/3319619.3323367

Theory of EDAs › Introduction 1 of 63

Theory of Estimation-of-Distribution Algorithms

Carsten Witt
DTU Compute
Technical University of Denmark

Tutorial at GECCO 2019
Updated version: https://tinyurl.com/eda2019

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic.

© 2019 Copyright is held by the author/owner(s).

ACM ISBN 978-1-4503-6748-6/19/07.

https://doi.org/10.1145/3319619.3323367

Theory of EDAs › Introduction 2 of 63

Instructor

Carsten Witt is an associate professor at the
Technical University of Denmark. He received his
M. Sc. in 2000 and Ph. D. degree in 2004, both in
Computer Science from the Technical University of
Dortmund, Germany. His main expertise is in the
algorithmic analysis of metaheuristics, including
evolutionary algorithms, ant colony optimization
and estimation-of-distribution algorithms. Carsten
has over 80 peer-reviewed publications and has
given tutorials about bio-inspired computation in
combinatorial optimization at previous GECCO and
PPSN conferences. He is member of the editorial
boards of Evolutionary Computation Journal and
Theoretical Computer Science.

Theory of EDAs › Introduction 3 of 63

Overview

I Introduction to estimation-of-distribution algorithms (EDAs)
I What do we mean by theory?
I Presentation of important EDAs in theory
I Main results: from convergence to runtime analysis
I Conclusions

Theory of EDAs › Introduction 4 of 63

Evolutionary vs. Estimation-of-Distribution
Algorithms

Evolutionary Algorithms (EAs)
I Work with populations of

search points
I Modify the search points

through, e. g., mutation and
crossover

I Select promising search points
based on fitness

EDAs
I Work with probability

distributions
I Sample search points based on

current distribution
I Adjust distribution based on the

most promising search points

1197

https://tinyurl.com/eda2019
https://doi.org/10.1145/3319619.3323367

Theory of EDAs › Introduction 5 of 63

A Classical Evolutionary Algorithm
Theory of EDAs › Introduction 6 of 63

An Estimation-of-Distribution Algorithm

Initialize
probabilistic

model
of good
solutions

Uniformly at random or ed-
ucated guess

Sample a
number of
solutions

Evaluate
solutions
and select
good ones

Termination
criterion
met?

Update
probabilistic

model

Stop

no

yes

Theory of EDAs › Introduction 7 of 63

How an EA Approaches the Optimum
Theory of EDAs › Introduction 7 of 63

How an EA Approaches the Optimum

1198

Theory of EDAs › Introduction 7 of 63

How an EA Approaches the Optimum
Theory of EDAs › Introduction 7 of 63

How an EA Approaches the Optimum

Theory of EDAs › Introduction 7 of 63

How an EA Approaches the Optimum
Theory of EDAs › Introduction 8 of 63

How an EDA Adjusts the Probabilistic Model

1199

Theory of EDAs › Introduction 8 of 63

How an EDA Adjusts the Probabilistic Model
Theory of EDAs › Introduction 8 of 63

How an EDA Adjusts the Probabilistic Model

Theory of EDAs › Introduction 8 of 63

How an EDA Adjusts the Probabilistic Model
Theory of EDAs › Introduction 8 of 63

How an EDA Adjusts the Probabilistic Model

1200

Theory of EDAs › Preliminaries 9 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

Theory of EDAs › Preliminaries 10 of 63

Important EDAs

Domain: discrete optimization, e. g., find maximum for f : {0, 1}n → R.
Important distinction: univariate vs. multivariate EDAs.
For example: f (x1, x2, x3) = −x1 + 2x1x2 + x3. Good to learn learn
dependency between x1 and x2.
Univariate
I cGA

I UMDA

I PBIL

I MMAS

I …

Multivariate
I FDA

I ECGA

I MIMIC, BMDA

I BOA

I …
Most theoretical results concern univariate EDAs.

Theory of EDAs › Preliminaries 11 of 63

Some Benchmark Functions

Theoretical results often consider simple problems, which we have to
understand first.

I OneMax (x1, . . . , xn) :=
∑n

i=1 xi

I BinVal (x1, . . . , xn) :=
∑n

i=1 2n−ixi

I LeadingOnes (x1, . . . , xn) :=
∑n

i=1
∏i

j=1 xj 111010101101

Illustrate simple but fundamental properties; re-appear in more complex
scenarios.
Write OneMax but mean n−Ham(x , a) for unknown string a ∈ {0, 1}n.

Theory of EDAs › Preliminaries 12 of 63

Univariate Algorithms

Common concept: the frequency vector (aka. marginal probabilities)

1
n

1− 1
n

I Probabilities (p1, . . . , pn) for setting the individual bits to 1.
I Usually initialized as pi = 1/2 for all i .
I Independently sampled.
I Frequency vector adjusted over time.

1201

Theory of EDAs › Preliminaries 13 of 63

Compact GA (cGA) (Harik et al., 1999)
Simulates behavior of a GA with population size K in a compact way.

t ← 0;
pt,1 ← pt,2 ← · · · ← pt,n ← 1/2;
while termination criterion not met do

Create x (i. e., xi ← 1 with prob. pt,i and xi ← 0 with prob. 1− pt,i);
Create y ;
if f (x) < f (y) then swap x and y ;
for i ∈ {1, . . . , n} do

if xi > yi then pt+1,i ← pt,i + 1/K ;
if xi < yi then pt+1,i ← pt,i − 1/K ;
if xi = yi then pt+1,i ← pt,i ;
Restrict pt+1,i to be within [1/n, 1− 1/n] (“borders”);

t ← t + 1;

1 1 1 0 0 1 1x

1 0 0 0 1 1 0
(f (x) ≥ f (y))

yy
pt

Parameter K determines preciseness of model.
Big K = fine model = small update strength.

Theory of EDAs › Preliminaries 14 of 63

2-MMASib (Neumann et al., 2010)

Max-Min Ant System (Stützle and Hoos, 2000) with iteration-best
update

t ← 0;
pt,1 ← pt,2 ← · · · ← pt,n ← 1/2;
while termination criterion not met do

Create x ;
Create y ;
if f (x) < f (y) then swap x and y ;
for i ∈ {1, . . . , n} do

if xi = 1 then pt+1,i ← pt,i(1− ρ) + ρ;
else pt+1,i ← pt,i(1− ρ);
Restrict pt+1,i to be within [1/n, 1− 1/n] ;

t ← t + 1;

1 1 1 0 0 1 1x

1 0 0 0 1 1 0
(f (x) ≥ f (y))

yy
pt

Here 1/ρ reflects preciseness.

Theory of EDAs › Preliminaries 15 of 63

UMDA (Mühlenbein and Paaß, 1996)

t ← 0, pt,1 ← pt,2 ← · · · ← pt,n ← 1
2 ;

while termination criterion not met do
Pt ← ∅;
for j ∈ {1, . . . , λ} do

for i ∈ {1, . . . , n} do
x (j)

t,i ← 1 with prob. pt,i ,
x (j)

t,i ← 0 with prob. 1− pt,i ;

Pt ← Pt ∪ {x (j)
t };

Sort individuals in P descending by fitness (s. t.
f (x (1)

t) ≥ · · · ≥ f (x (µ)
t)), breaking ties u. a. r.;

for i ∈ {1, . . . , n} do

pt+1,i ←
∑µ

j=1 x(j)t,i
µ

;
Restrict pt+1,i to be within [1

n , 1−
1
n];

t ← t + 1;

µ

λ

If, e. g., µ = λ/2, then λ reflects preciseness of model.

Theory of EDAs › Preliminaries 16 of 63

Adjustment of frequencies: a general
challenge

Frequencies may walk into the wrong direction
I if the fitness function gives wrong hints w. r. t. single bits,
I if the function gives no hints but algorithm must update,
I even if the fitness function overall gives the right hints.

Think of OneMax:

1 1 1 0 0 1 1 ∗x

1 0 0 0 1 1 0 ∗

>

y

p8

y

p8

y

p8

y

p8

y

p8

y

p8

y

p8

p8 can go up, down or stay the same.

1202

Theory of EDAs › Preliminaries 17 of 63

Genetic Drift

If the fitness function is constant/flat (does not give a signal),
frequencies move randomly to a border (DEMO).

1
n

1− 1
n

Frequencies that move to the wrong border are problematic – even
disastrous if the border is not there.
Even if the expected value of a frequency converges to optimal value
(Höhfeld and Rudolph, 1997), this does not say much about runtime.

Theory of EDAs › Preliminaries 17 of 63

Genetic Drift

If the fitness function is constant/flat (does not give a signal),
frequencies move randomly to a border (DEMO).

1
n

1− 1
n

Frequencies that move to the wrong border are problematic – even
disastrous if the border is not there.
Even if the expected value of a frequency converges to optimal value
(Höhfeld and Rudolph, 1997), this does not say much about runtime.

Theory of EDAs › OneMax 18 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

Theory of EDAs › OneMax 19 of 63

Early Results (< 2000)
Models of cGA, UMDA and others, allowing estimations of the dynamical
behavior (e. g., Thierens et al., 1998; Mühlenbein and Mahnig, 1999).
Two effects:
1. Overall progress of probabilistic model (roughly:

∑
pi) and time to

convergence to good distribution (
∑

pi ≈ n),
2. time for single frequencies to drift to wrong border by genetic drift
→ should be bigger than convergence time.

Avoiding genetic drift requires precise enough model → lower bound on
runtime. Models of EDAs estimated progress of frequencies:

Mühlenbein and Mahnig (1999)

pt+1,i ≈ pt,i +
I√
n

√
pt,i

(
1− pt,i

)
,

which was made rigorous recently.

1203

Theory of EDAs › OneMax 20 of 63

First Steps Towards Runtime Analyses

Genetic drift recurrent issue in analysis of GAs and EDAs, e. g., Asoh and
Mühlenbein (1994); Shapiro (2003, 2005). Models proposed to make
frequencies “stable” (Friedrich et al., 2016a) → later.

Lower bound on preciseness of model
For different EDAs on OneMax, same threshold identified multiple
times (Thierens et al., 1998; Lobo et al., 2000; Shapiro, 2005): need at
least K = Ω(

√
n) different frequency values to prevent genetic drift.

Upper bound on time to convergence
Time for the EDA to converge to optimal solution ≈ K

√
n.

⇒ Best possible time complexity Θ(n)?

Theory of EDAs › OneMax 21 of 63

Rigorous vs. Non-Rigorous Analyses

All (?) analyses of convergence speed of EDAs before 2005 made some
simplifying assumptions.
Pros
I Unimportant details ignored
I Insights possible that rigorous

analyses cannot achieve

Cons
I No estimation of errors:

verification by experiments
I No theorem: may only hold for

small problem sizes

Since 2005: rigorous runtime analyses of EDAs, following the same
principle as runtime analysis of EAs.

Theory of EDAs › OneMax 22 of 63

First runtime analysis of EDAs

Droste (2006) considered cGA on OneMax (and other functions).
Studied runtime = no. iterations until optimum found.

Main results
I Upper bound O(K

√
n) on OneMax, for K = Ω(n1/2+ε)

→ runtime O(n1+ε) (with high probability)
I General lower bound Ω(K

√
n).

Recent refinement: Upper bound O(n log n) (Sudholt and W., 2016) for
K = c

√
n log n, big constant c

⇒ competitive with simple EAs (e. g., (1+1) EA).

Best lower bound until 2016: Ω(n) from general black-box complexity
(Doerr and Lengler, 2015)

Theory of EDAs › OneMax 23 of 63

Demo and Landscape

Expected runtime of cGA depending on n and K

K0 √
n log n

runtime

Θ(K
√n)

Ω(n)

1204

Theory of EDAs › OneMax 24 of 63

Proof Idea in the “Large K” Regime

I Show limits on genetic drift: with high prob. all frequencies stay
above 1/3 in a phase of Θ(K

√
n) steps.

I Frequencies move smoothly upwards (DEMO).

I To analyze speed: consider Φt =
∑n

i=1 pt,i and analyze its drift.
Important: how does a single frequency evolve?

I Consider the two offspring x and y and look into bit i .

Theory of EDAs › OneMax 25 of 63

Dynamics on Bit i
If xi = yi then pt,i is unchanged.
If xi 6= yi then pt,i is changed depending on f (x) vs. f (y):

f (x) < f (y)
reinforce yi

f (x) > f (y)
reinforce xi

0

fitness difference
on other bits:
f (x)− f (y)− xi + yi

Red area: bit i is irrelevant in this step
⇒ genetic drift moves pt,i in a random direction ±1/K (rw-step)

Blue area: bit i decides the outcome of f (x) vs. f (y)
⇒ increase pt,i (b-step, learning that 1s are better than 0s)

Slide kindly provided by D. Sudholt

Theory of EDAs › OneMax 26 of 63

Probability of a Biased Step at Bit i

0

Prob(b-step) ∼ 1/
√

n
1
n

1− 1
n

1/3

I Biased step occurs with probability at least Ω(1/
√

n). If offspring
differ in the bit (prob. 2pi(1− pi)) then raised by 1/K .

I Otherwise, frequency is expected to stay put.
I Altogether:

pt+1,i = pt,i +Ω(pt,i(1− pt,i)/
√

n)

Note similarity to pt+1,i ≈ pt,i +
I√
n

√
pt,i

(
1− pt,i

)
by Mühlenbein and

Mahnig (1999)

Theory of EDAs › OneMax 26 of 63

Probability of a Biased Step at Bit i

0

Prob(b-step) ∼ 1/
√

n
1
n

1− 1
n

1/3

I Biased step occurs with probability at least Ω(1/
√

n). If offspring
differ in the bit (prob. 2pi(1− pi)) then raised by 1/K .

I Otherwise, frequency is expected to stay put.
I Altogether:

pt+1,i = pt,i +Ω(pt,i(1− pt,i)/
√

n)

Note similarity to pt+1,i ≈ pt,i +
I√
n

√
pt,i

(
1− pt,i

)
by Mühlenbein and

Mahnig (1999)

1205

Theory of EDAs › OneMax 27 of 63

What Happens for Small K

Now look into K <
√

n log n:
I Lower bound Ω(n) until 2015.
I Improved to Ω(n log n) (Sudholt and W., 2016).
I Heavy genetic drift occurs.

DEMO.

Whether optimum can be found at all, depends very much on the borders
on the frequencies.
I If no borders, with high probability frequencies locked to 0 ⇒

infinite runtime.
I If borders {1/n, 1− 1/n} used, optimum can still be found in

polynomial time! No proof for cGA, but for UMDA (Lehre and
Nguyen, 2017; W., 2017).

⇒ Borders may make the algorithm efficient despite genetic drift.

Theory of EDAs › OneMax 28 of 63

Idea for the Lower Bound

Coupon collector
You have to collect n different coupons. In
each round, you are given one coupon
chosen uniformly at random with
replacement. In expectation, it takes
Ω(n log n) rounds to collect all of them.

CC-BY-SA-4.0 by Jarek Tuszyński, 2015

Here the coupons are the frequencies at the lower border. Each of them
has probability 1/n of being raised.

If many frequencies move to the lower border before optimum is found,
we cannot be faster than n log n.

Theory of EDAs › OneMax 29 of 63

Medium and Large K : Overview

K0 log n √
n log n

runtime

to
be

di
sc
us
se
d

Ω(n
log

n) a
nd O(Kn)

Θ(K
√n)

I Phase transition between smooth behavior and strong genetic drift
at K ∼

√
n log n

I If no borders, algorithm fails at K = o(
√

n log n)
I With borders, efficient behavior as long as K = ω(log n).

Upper bound O(Kn) only conjectured here.

Theory of EDAs › OneMax 30 of 63

Small K

What happens if K = o(log n)?
Known for 2-MMASib (Neumann et al., 2010), similar to cGA: landslides
of frequencies occur.

DEMO.

Frequency that have attained their maximum 1− 1/n are nevertheless
likely to drop down to minimum.
Very unstable behavior, exponential optimization time.

1206

Theory of EDAs › OneMax 31 of 63

Runtime of cGA on OneMax: Complete
Picture

K0 log n √
n log n

runtime

ex
po

ne
nt
ia
l

Ω(n
log

n) a
nd O(Kn)

Θ(K
√n)

Theory of EDAs › OneMax 32 of 63

Analysis of UMDA

How does UMDA perform on OneMax?
Surprisingly, in terms of runtimes (no. of iterations · λ), not very
differently from cGA.

Obstacles in analysis:
I frequencies can change drastically, even from minimum to maximum

in one generation,
I two parameters: µ and λ.

The first runtime analysis of UMDA on OneMax stems from 2015!

Theory of EDAs › OneMax 33 of 63

Results for UMDA: Upper bounds

First runtime result (Dang and Lehre, 2015): expected runtime of UMDA
on OneMax is O(nλ log λ) for λ > 13eµ and λ = Ω(log n). Bound is
O(n log n log log n) for best possible parameter setting.

Bound independently improved to O(n log n) by Lehre and Nguyen
(2017) and W. (2017):

Theorem (Expected runtime of UMDA on OneMax)

1. For constant a > 0 and constant c ∈ (0, 1), assume
a ln n ≤ µ ≤

√
n(1− c), λ ≥ (13e)µ/(1− c) ⇒ runtime O(λn).

2. Assume λ = (1+ β)µ for constant β > 0, µ ≥ c log n for large
constant c > 0, as well as µ = o(n) ⇒ runtime O(λn).

3. Assume λ = (1+ β)µ for constant β > 0, µ ≥ c
√

n log n for large
constant c > 0 ⇒ runtime O(λ

√
n).

Theory of EDAs › OneMax 34 of 63

Results for UMDA: Lower Bounds

We also obtain similar bounds as with cGA:

Theorem (Krejca and W., 2017)
Let λ = (1+ β)µ for some constant β > 0 and λ = nO(1). Then the
expected optimization time of UMDA on OneMax is Ω(λ

√
n + n log n).

Proof idea again: at a very high level, we estimate
1. progress (drift) of sum of frequencies per iteration
2. time for genetic drift to move frequencies to wrong border

both for upper and lower bounds. Especially 2. is challenging.

1207

Theory of EDAs › OneMax 35 of 63

Overview of Runtime Bound for UMDA on
OneMax

λ0 log n √
n log n

runtime
ex
po

ne
nt
ia
l

Ω(n
log

n) a
nd O(λn)

Θ(λ
√n)

I Exponential time below log n strongly conjectured.
I Remaining bounds proved.
I If no borders on frequencies, runtime infinite below

√
n log n

Theory of EDAs › OneMax 36 of 63

What Happens in the Medium Regime
If λ = ω(log n) and λ = o(

√
n)

⇒ expected runtime O(λn) and Ω(n log n).
Take, e. g., λ = n1/3 ⇒ upper bound O(n4/3), lower bound Ω(n log n).
Again upper bound O(n log n) for λ = c

√
n log n. Where is the truth?

Experiments:

50 100 150 200 250 300 350

3.2

3.4

3.6

3.8

4

4.2

·104

λ

50 100 150 200 250 300 350

0

0.5

1

1.5

·105

λ

Left: average runtime; right: no. times frequency hits minimum.
In fact a multimodal behavior: is O(λn) also Ω(λn) in medium regime?

Theory of EDAs › OneMax 37 of 63

New Result: Runtime of cGA is Multimodal

The multimodal behavior has been made rigorous for the simpler cGA,
not yet for UMDA.

Theorem (Lengler et al., 2018)
Expected runtime of cGA on OneMax is Ω(K1/3n + n log n) for
K = O(

√
n/log2 n).

⇒ Setting K = Θ(log n) gives us runtime Θ(n log n), so does
K = Θ(

√
n log n), but values in between make runtime worse.

Theory of EDAs › OneMax 38 of 63

OneMax: Summary

I Simple univariate EDAs like UMDA and cGA (and 2-MMASib) have
similar runtime behavior on OneMax.

I Very sensitive to settings of parameters.
I Two phase transitions.
I Multimodal behavior.
I If no borders are used, model must have model of preciseness

Ω(
√

n log n) to prevent genetic drift.

1208

Theory of EDAs › LeadingOnes 39 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

1209

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

1210

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

1211

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

1212

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

. . .

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 41 of 63

Early Results for LeadingOnes

UMDA without borders (Chen et al., 2007, 2009b, 2010):

Using λ = Ω(n2+ε), UMDA (without borders) optimizes LeadingOnes
in time O(λn) w. h. p. ⇒ runtime O(n3+ε) for optimal λ.

For comparison: (1+1) EA expected runtime Θ(n2).

Approach in the analysis again:
1. Determine total time for frequency vector to converge to optimality.
2. Determine lower bound on preciseness of model to prevent genetic

drift before convergence.

Large λ used to prevent genetic drift also for the last optimized bit
(possibly too large).

1213

Theory of EDAs › LeadingOnes 42 of 63

Recent results for LeadingOnes

Use the borders.

Theorem (Dang and Lehre, 2015)
If λ ≥ c ln n then expected runtime of UMDA with borders on
LeadingOnes is O(nλ log λ+ n2).

Holds also for PBIL (generalized UMDA) if learning rate not too small
(Lehre and Nguyen, 2018).

Theory of EDAs › LeadingOnes 43 of 63

When EAs and EDAs Differ on LeadingOnes

Overall analysis was similar to OneMax. No new insights through the
study of LeadingOnes?

Consider following example from Chen et al. (2009a).

Substring(x) =
{
2n if x = (1, . . . , 1)
maxn

i=1 i ·
∏i

j=max{i−n/4,1} xj otherwise

Substring equals LeadingOnes if no block of at least n/4
consecutive ones. E. g.: 11110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ 7→ 4

Otherwise, it describes the starting position of the rightmost block of n/4
ones – except if everything is one. E. g.: 010101011 . . . 111 7→ 3n/4

Theory of EDAs › LeadingOnes 44 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

(1+1) EA
t ← 0;
Draw x0 ∈ {0, 1}n uniformly at random;
while termination criterion not met do

Create y by flipping each bit in xt independently with prob. 1/n;
if f (y) ≥ f (xt) then xt+1 ← y ;
else xt+1 ← xt ;
t ← t + 1;

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

10**************************

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

1214

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

110*************************

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

1110************************

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

111110**********************

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

111111111111110*************

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

1215

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

111111111111111110**********

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

1101111111111111110*********

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

1101111111111111110*********

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

11001111111111111110********

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

1216

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

1100101111111111111110******

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

1100101010011111111111111111

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH

Theory of EDAs › LeadingOnes 46 of 63

Proof idea for UMDA
Also UMDA starts out by gaining more and more leading ones. This is
reflected in the frequencies.

1
n

1− 1
n

10101110110111011010

Even after the first bits no longer contribute to fitness, their frequencies
are expected to remain the same. All-ones string can be sampled.

Need large enough λ to prevent genetic drift.

Theory of EDAs › LeadingOnes 46 of 63

Proof idea for UMDA
Also UMDA starts out by gaining more and more leading ones. This is
reflected in the frequencies.

1
n

1− 1
n

11110***************

Even after the first bits no longer contribute to fitness, their frequencies
are expected to remain the same. All-ones string can be sampled.

Need large enough λ to prevent genetic drift.

1217

Theory of EDAs › LeadingOnes 46 of 63

Proof idea for UMDA
Also UMDA starts out by gaining more and more leading ones. This is
reflected in the frequencies.

1
n

1− 1
n

1111111111111110****

Even after the first bits no longer contribute to fitness, their frequencies
are expected to remain the same. All-ones string can be sampled.

Need large enough λ to prevent genetic drift.

Theory of EDAs › LeadingOnes 46 of 63

Proof idea for UMDA
Also UMDA starts out by gaining more and more leading ones. This is
reflected in the frequencies.

1
n

1− 1
n

11111111111111111111

Even after the first bits no longer contribute to fitness, their frequencies
are expected to remain the same. All-ones string can be sampled.

Need large enough λ to prevent genetic drift.

Theory of EDAs › LeadingOnes 47 of 63

LeadingOnes: Summary

Typical behavior of EDAs:
I On OneMax they optimize all bits roughly at the same time.
I On LeadingOnes they optimize bits from left to the right.
I Runtime Θ(n log n) vs. Θ(n2) for opt. parameters settings.
I

However, there are other EDAs that do not behave like this (see later).

Theory of EDAs › BinaryValue 48 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

1218

Theory of EDAs › BinaryValue 49 of 63

The final example function: BinVal

Recall

BinVal (x1, . . . , xn) :=
n∑

i=1
2n−ixi ,

being somewhere between LeadingOnes and OneMax. A bit
outweighs all less significant bits together, but every bit contributes to
fitness.

Often, a runtime analysis of LeadingOnes also gives a runtime bound
for BinVal (e. g., for UMDA/PBIL, Lehre and Nguyen, 2018).

Theorem (Droste, 2006)
The runtime of cGA on BinVal is O(Kn) for K = Ω(n1+ε) w. o. p.
It is Ω(Kn) w. o. p.

Note: upper bound O(n2+ε). Lower bound does not restrict K .

Theory of EDAs › BinaryValue 50 of 63

Not all Linear Functions Are Equally
Difficult for EDAs

Known for (1+1) EA (W., 2013): all linear functions optimized in
expected time (1± o(1))en ln n.
⇒ Runtimes on OneMax and BinVal differ by a lower-order term.

Droste conjectured that BinVal cannot be optimized in time O(n log n).

Theorem (W., 2018)
The runtime of cGA (without borders) on BinVal is Ω(n2) with
prob. Ω(1). Choosing K = o(n) leads to infinite runtime w. h. p.

Idea: if K too small, genetic drift likely to occur at light bits before all
heavy bits optimized.

Theory of EDAs › Noise 51 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

Theory of EDAs › Noise 52 of 63

Optimization under Uncertainty

Assume that an evaluation of the objective function is subject to random
noise.

Example: OneMax with additive Gaussian noise

fnoise(x) = OneMax(x)+N(0, σ).
0

Typical measures to handle noise in evolutionary computation:
I large populations
I resampling
I …

EDAs have a built-in noise handling mechanism.

1219

Theory of EDAs › Noise 53 of 63

EDAs Beat Population-based EAs in Noisy
Settings

Definition (Friedrich et al., 2017): an algorithm scales gracefully if its
expected runtime depends polynomially on the noise strength.
For example: runtime is proportionally to σ2.

Theorem
(µ+1) EA does not scale gracefully on OneMax with additive Gaussian
noise. However, cGA does.

Theory of EDAs › Noise 54 of 63

Proof Ideas
I (µ+1) EA uses mutation, which drifts away from the optimum when

there are many correct bits and noise disturbs fitness signal.
x = 11111111011111111111011111

↓ Prob(f (x) > f (y)) ≈ Prob(f (x) < f (y))

y = 11110111011111111111011111

I cGA does not use mutation and is balanced: in expectation,
frequency vector and thus fitness does not decrease over time.

1
n

1− 1
n

I cGA does not receive negative signal from noise, but signal (drift)
towards increasing OneMax becomes smaller with increasing σ.

I Have to ensure that effect of genetic drift is smaller than the signal
→ choose big enough K .

Theory of EDAs › Noise 55 of 63

Further Noisy Settings

Also simple ACO algorithms can be considered EDAs and are superior to
EAs in some noisy settings (also from combinatorial optimization):
I Sudholt and Thyssen (2012) for ACO for noisy shortest paths with a

ground truth
I Doerr et al. (2012) where the noise is intrinsic
I Feldmann and Kötzing (2013) for ACO with fitness-proportional

updates: leads to convergence to expected best solution

Many of the results can probably be transferred to more classical EDAs
such as cGA and UMDA.

Theory of EDAs › Jump 56 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

1220

Theory of EDAs › Jump 57 of 63

How EDAs Overcome Gaps
Jump challenging for hillclimbers: Θ(nk) to cross gap of size k > 1.

Hamming dist. k

EDAs can search more globally in Jump region thanks to higher sampling
variance time Θ(ck) instead of Θ(nk) (first observed in Hasenöhrl and
Sutton, 2018).

Theorem (Doerr, 2019)
If k ≤ 1

20 ln n and µ = Ω(
√

n log n) then cGA optimizes Jump in O(µ
√

n)
iterations w. h. p. Time O(n log n) if µ = Θ(

√
n log n).

See talk at this GECCO.

Theory of EDAs › Stable EDAs 58 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

Theory of EDAs › Stable EDAs 59 of 63

Balancedness, Stability and Genetic Drift
Have seen: without fitness signal, stochastic model of EDAs is expected
to be the same. Term: balanced (Friedrich et al., 2016a).
However, this is only the expected value. Genetic drift plays major role in
classical EDAs.

0
0.
2

0.
4

0.
6

0.
8

1

time

← balanced 6= stable →

0
0.
2

0.
4

0.
6

0.
8

1

time

Term: EDA is stable if a frequency in absence of fitness signal stays close
to its initial value.
cGA, UMDA, … are not stable. Frequencies quickly converge to either
maximum or minimum (each with probability 1/2) due to genetic drift.

Theory of EDAs › Stable EDAs 60 of 63

A New Way to Overcome Genetic Drift:
Significance-Based EDAs

Idea (Doerr and Krejca, 2018): Move frequency away from its initial
value only when there is evidence that 0 or 1 is the better bit value.

sig-cGA: algorithmic ideas
I Framework like cGA.
I For each bit, history Hi ∈ {0, 1}∗ of values in better individual
I Investigate last m history bits. If a value significantly dominates,

move frequency to corresponding border (1/n if 0 dominates,
1− 1/n if 1).

I Otherwise, leave frequency at 1/2.
I Example of significance: |‖Hi‖1 − m

2 | ≥ C
√

m ln n
I Different values for m are tested by the algorithm.

1221

Theory of EDAs › Stable EDAs 61 of 63

Significance-Based EDAs are Fast

Theorem
The expected runtime of sig-cGA on both OneMax ond LeadingOnes
is O(n log n) (and with high probability).

No other evolutionary algorithm is known that simultaneously optimizes
OneMax and LeadingOnes in time O(n log n).

Proof ideas
I On OneMax, drift Ω(pi(1− pi)/

√
n) quickly identified as

significant. Many ideas of analysis of plain cGA work.
I On LeadingOnes, frequencies are optimized from left to right.

Bits that do not contribute to fitness yet: no signal, no significance
of deviation, no genetic drift, stay at 1/2

Significance-based EDAs are promising, theory-driven approach.

Theory of EDAs › End 62 of 63

Contents

Introduction

Preliminaries

OneMax

LeadingOnes

BinaryValue

Noise

Jump

Stable EDAs

End

Theory of EDAs › End 63 of 63

Summary and Conclusions
Summary
I Runtime analysis for simple univariate EDAs
I Identified similarities to and differences from simple EAs
I Genetic drift a major obstacle
I Sensitive to parameters (phase transitions)
I Robust to noise
I Significance-based EDAs as novel theory-driven approach

Future work
I Combinatorial problems
I Multivariate EDAs
I Classification of problems w. r. t. appropriateness for EAs/EDAs, …

Book chapter related to this tutorial
Martin Krejca and Carsten Witt, Theory of Estimation-of-Distribution
Algorithms, in: B. Doerr and F. Neumann (editors), Theory of Randomized
Search Heuristics in Discrete Search Spaces, Springer, to appear
https://arxiv.org/abs/1806.05392

Thank you!

Theory of EDAs 1 of 10

References I

H. Asoh and H. Mühlenbein. On the mean convergence time of
evolutionary algorithms without selection and mutation. In Proc. of
PPSN ’94, pages 88–97. Springer, 1994.

S. Baluja. Population-based incremental learning: A method for
integrating genetic search based function optimization and competitive
learning. Technical Report CMU-CS-94-163, Carnegie Mellon
University, Pittsburgh, PA, 1994.

T. Chen, K. Tang, G. Chen, and X. Yao. On the analysis of average time
complexity of estimation of distribution algorithms. In Proc. of
CEC ’07, pages 453–460. IEEE Press, 2007.

T. Chen, P. K. Lehre, K. Tang, and X. Yao. When is an estimation of
distribution algorithm better than an evolutionary algorithm? In Proc.
of CEC ’09, pages 1470–1477. IEEE Press, 2009a.

T. Chen, K. Tang, G. Chen, and X. Yao. Rigorous time complexity
analysis of univariate marginal distribution algorithm with margins. In
Proc. of CEC ’09, pages 2157–2164. IEEE Press, 2009b.

1222

https://arxiv.org/abs/1806.05392

Theory of EDAs 2 of 10

References II

T. Chen, K. Tang, G. Chen, and X. Yao. Analysis of computational time
of simple estimation of distribution algorithms. IEEE Transactions on
Evolutionary Computation, 14(1):1–22, 2010.

D. Corus, D.-C. Dang, A. V. Eremeev, and P. K. Lehre. Level-based
analysis of genetic algorithms and other search processes. IEEE
Transactions on Evolutionary Computation, 22(5):707–719, 2018.

D. Dang and P. K. Lehre. Simplified runtime analysis of estimation of
distribution algorithms. In Proc. of GECCO ’15, pages 513–518. ACM
Press, 2015.

J. S. De Bonet, C. L. Isbell, Jr, and P. A. Viola. MIMIC: Finding optima
by estimating probability densities. In Proc. of NIPS ’96, pages
424–430. MIT Press, 1997.

B. Doerr. A tight runtime analysis for the cGA on Jump
functions – EDAs can cross fitness valleys at no extra cost. In Proc. of
GECCO ’19. ACM Press, 2019. To appear.

Theory of EDAs 3 of 10

References III

B. Doerr and M. S. Krejca. Significance-based estimation-of-distribution
algorithms. In Proc. of GECCO 2018, pages 1483–1490, 2018.

B. Doerr, A. Hota, and T. Kötzing. Ants easily solve stochastic shortest
path problems. In Proc. of GECCO ’12, pages 17–24. ACM Press,
2012.

C. Doerr and J. Lengler. Onemax in black-box models with several
restrictions. In Proc. of GECCO ’15, pages 1431–1438. ACM Press,
2015.

S. Droste. A rigorous analysis of the compact genetic algorithm for linear
functions. Natural Computing, 5(3):257–283, 2006.

M. Feldmann and T. Kötzing. Optimizing expected path lengths with ant
colony optimization using fitness proportional update. In Proc. of
FOGA ’13, pages 65–74. ACM Press, 2013.

T. Friedrich, T. Kötzing, and M. S. Krejca. EDAs cannot be balanced and
stable. In Proc. of GECCO ’16, pages 1139–1146. ACM Press, 2016a.

Theory of EDAs 4 of 10

References IV

T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton. Robustness of
ant colony optimization to noise. Evolutionary Computation, 24(2):
237–254, 2016b.

T. Friedrich, T. Kötzing, M. S. Krejca, and A. M. Sutton. The compact
genetic algorithm is efficient under extreme gaussian noise. IEEE
Transactions on Evolutionary Computation, 21(3):477–490, 2017.

Y. Gao and J. Culberson. Space complexity of estimation of distribution
algorithms. Evolutionary Computation, 13(1):125–143, 2005.

C. González, J. Lozano, and P. Larrañaga. Analyzing the PBIL algorithm
by means of discrete dynamical systems. Complex Systems, 12(4):
465–479, 2000.

G. R. Harik, F. G. Lobo, and K. Sastry. Linkage learning via probabilistic
modeling in the extended compact genetic algorithm (ECGA). In
Scalable Optimization via Probabilistic Modeling: From Algorithms to
Applications Pelikan et al. (2006), pages 39–61.

Theory of EDAs 5 of 10

References V
V. Hasenöhrl and A. M. Sutton. On the runtime dynamics of the

compact genetic algorithm on Jump functions. In Proc. of GECCO 18,,
pages 967–974. ACM Press, 2018.

M. Hauschild and M. Pelikan. An introduction and survey of estimation
of distribution algorithms. Swarm and Evolutionary Computation, 1(3):
111–128, 2011.

M. Höhfeld and G. Rudolph. Towards a theory of population-based
incremental learning. In Proc. of CEC 97, pages 1–5. IEEE Press, 1997.

J. Kacprzyk and W. Pedrycz, editors. Springer Handbook of
Computational Intelligence. Springer, 2015.

M. S. Krejca and C. W. Lower bounds on the run time of the univariate
marginal distribution algorithm on OneMax. In Proc. of FOGA ’17,
pages 65–79. ACM Press, 2017.

P. Larrañaga and J. A. Lozano. Estimation of Distribution Algorithms: A
New Tool for Evolutionary Computation, volume 2 of Genetic
Algorithms and Evolutionary Computation. Springer, 2002.

1223

Theory of EDAs 6 of 10

References VI
P. K. Lehre and P. T. H. Nguyen. Improved runtime bounds for the

univariate marginal distribution algorithm via anti-concentration. In
Proc. of GECCO ’17, pages 1383–1390. ACM Press, 2017.

P. K. Lehre and P. T. H. Nguyen. Level-based analysis of the
population-based incremental learning algorithm. In Proc. of
PPSN ’18, volume 11102 of LNCS, pages 105–116. Springer, 2018.

P. K. Lehre and C. Witt. Black-box search by unbiased variation. In
Proc. of GECCO ’10, pages 1441–1448. ACM Press, 2010.

J. Lengler, D. Sudholt, and C. Witt. Medium step sizes are harmful for
the compact genetic algorithm. In Proc. of GECCO ’18, pages
1499–1506. ACM Press, 2018.

F. G. Lobo, D. E. Goldberg, and M. Pelikan. Time complexity of genetic
algorithms on exponentially scaled problems. In Proc. of GECCO ’00,
pages 151–158. Morgan Kaufmann, 2000.

H. Mühlenbein. How genetic algorithms really work: Mutation and
hillclimbing. In Proc. of PPSN ’92, pages 15–26. North Holland, 1992.

Theory of EDAs 7 of 10

References VII

H. Mühlenbein and T. Mahnig. Convergence theory and applications of
the factorized distribution algorithm. Journal of Computing and
Information Technology, 7:19–32, 1999.

H. Mühlenbein and T. Mahnig. FDA – A scalable evolutionary algorithm
for the optimization of additively decomposed functions. Evolutionary
Computation, 7(4):353–376, 1999.

F. Neumann, D. Sudholt, and C. Witt. A few ants are enough: ACO with
iteration-best update. In Proc. of GECCO ’10, pages 63–70. ACM
Press, 2010.

M. Pelikan and H. Mühlenbein. The bivariate marginal distribution
algorithm. In Advances in Soft Computing, pages 521–535. Springer,
1999.

M. Pelikan, K. Sastry, and E. Cantú-Paz. Scalable Optimization via
Probabilistic Modeling: From Algorithms to Applications, volume 33 of
Studies in Computational Intelligence. Springer, 2006.

Theory of EDAs 8 of 10

References VIII
M. Pelikan, M. Hauschild, and F. G. Lobo. Estimation of distribution

algorithms. In Kacprzyk and Pedrycz (2015), pages 899–928.
G. Rudolph. Convergence properties of evolutionary algorithms. Verlag

Dr. Kovač, 1997.
J. L. Shapiro. The sensitivity of PBIL to its learning rate, and how

detailed balance can remove it. In Proc. of FOGA ’02, pages 115–132.
Morgan Kaufmann, 2003.

J. L. Shapiro. Drift and scaling in estimation of distribution algorithms.
Evolutionary Computation, 13(1):99–123, 2005.

J. L. Shapiro. Diversity loss in general estimation of distribution
algorithms. In Proc. of PPSN ’06, pages 92–101. Springer, 2006.

T. Stützle and H. H. Hoos. MAX–MIN ant system. Future Generation
Computer Systems, 16(8):889–914, 2000.

D. Sudholt and C. Thyssen. A simple ant colony optimizer for stochastic
shortest path problems. Algorithmica, 64(4):643–672, 2012. ISSN
1432-0541.

Theory of EDAs 9 of 10

References IX

D. Sudholt and C. W. Update strength in EDAs and ACO: How to avoid
genetic drift. In Proc. of GECCO ’16, pages 61–68. ACM Press, 2016.

D. Thierens, D. Goldberg, and A. Pereira. Domino convergence, drift,
and the temporal-salience structure of problems. In Proceedings of
CEC ’98, pages 535–540. IEEE Press, 1998.

C. W. Tight bounds on the optimization time of a randomized search
heuristic on linear functions. Combinatorics, Probability and
Computing, 22(2):294–318, 2013.

C. W. Upper bounds on the runtime of the univariate marginal
distribution algorithm on OneMax. In Proc. of GECCO ’17, pages
1415–1422. ACM Press, 2017.

C. W. Domino convergence: Why one should hill-climb on linear
functions. In Proc. of GECCO ’18, pages 1539–1546. ACM Press,
2018.

1224

Theory of EDAs 10 of 10

References X

Z. Wu and M. Kolonko. Asymptotic properties of a generalized
cross-entropy optimization algorithm. IEEE Transactions on
Evolutionary Computation, 18(5):658–673, 2014.

Z. Wu, M. Kolonko, and R. H. Möhring. Stochastic runtime analysis of
the cross-entropy algorithm. IEEE Transactions on Evolutionary
Computation, 21(4):616–628, 2017.

Q. Zhang. On the convergence of a factorized distribution algorithm with
truncation selection. Complexity, 9(4):17–23, 2004a.

Q. Zhang. On stability of fixed points of limit models of univariate
marginal distribution algorithm and factorized distribution algorithm.
IEEE Transactions on Evolutionary Computation, 8(1):80–93, 2004b.

Q. Zhang and H. Mühlenbein. On the convergence of a class of
estimation of distribution algorithms. IEEE Transactions on
Evolutionary Computation, 8(2):127–136, 2004.

1225

	Introduction
	Preliminaries
	OneMax
	LeadingOnes
	BinaryValue
	Noise
	Jump
	Stable EDAs
	End
	Appendix
	References

