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Overview

I Introduction to estimation-of-distribution algorithms (EDAs)
I What do we mean by theory?
I Presentation of important EDAs in theory
I Main results: from convergence to runtime analysis
I Conclusions
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Evolutionary vs. Estimation-of-Distribution
Algorithms

Evolutionary Algorithms (EAs)
I Work with populations of

search points
I Modify the search points

through, e. g., mutation and
crossover

I Select promising search points
based on fitness

EDAs
I Work with probability

distributions
I Sample search points based on

current distribution
I Adjust distribution based on the

most promising search points
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A Classical Evolutionary Algorithm
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An Estimation-of-Distribution Algorithm

Initialize
probabilistic

model
of good
solutions

Uniformly at random or ed-
ucated guess

Sample a
number of
solutions

Evaluate
solutions
and select
good ones

Termination
criterion
met?

Update
probabilistic

model

Stop

no

yes
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How an EA Approaches the Optimum
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How an EA Approaches the Optimum
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How an EA Approaches the Optimum
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How an EDA Adjusts the Probabilistic Model
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Important EDAs

Domain: discrete optimization, e. g., find maximum for f : {0, 1}n → R.
Important distinction: univariate vs. multivariate EDAs.
For example: f (x1, x2, x3) = −x1 + 2x1x2 + x3. Good to learn learn
dependency between x1 and x2.
Univariate
I cGA

I UMDA

I PBIL

I MMAS

I …

Multivariate
I FDA

I ECGA

I MIMIC, BMDA

I BOA

I …
Most theoretical results concern univariate EDAs.

Theory of EDAs › Preliminaries 11 of 63

Some Benchmark Functions

Theoretical results often consider simple problems, which we have to
understand first.

I OneMax (x1, . . . , xn) :=
∑n

i=1 xi

I BinVal (x1, . . . , xn) :=
∑n

i=1 2n−ixi

I LeadingOnes (x1, . . . , xn) :=
∑n

i=1
∏i

j=1 xj 111010101101

Illustrate simple but fundamental properties; re-appear in more complex
scenarios.
Write OneMax but mean n−Ham(x , a) for unknown string a ∈ {0, 1}n.

Theory of EDAs › Preliminaries 12 of 63

Univariate Algorithms

Common concept: the frequency vector (aka. marginal probabilities)

1
n

1− 1
n

I Probabilities (p1, . . . , pn) for setting the individual bits to 1.
I Usually initialized as pi = 1/2 for all i .
I Independently sampled.
I Frequency vector adjusted over time.

1201
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Compact GA (cGA) (Harik et al., 1999)
Simulates behavior of a GA with population size K in a compact way.

t ← 0;
pt,1 ← pt,2 ← · · · ← pt,n ← 1/2;
while termination criterion not met do

Create x (i. e., xi ← 1 with prob. pt,i and xi ← 0 with prob. 1− pt,i);
Create y ;
if f (x) < f (y) then swap x and y ;
for i ∈ {1, . . . , n} do

if xi > yi then pt+1,i ← pt,i + 1/K ;
if xi < yi then pt+1,i ← pt,i − 1/K ;
if xi = yi then pt+1,i ← pt,i ;
Restrict pt+1,i to be within [1/n, 1− 1/n] (“borders”);

t ← t + 1;

1 1 1 0 0 1 1x

1 0 0 0 1 1 0
(f (x) ≥ f (y))

yy
pt

Parameter K determines preciseness of model.
Big K = fine model = small update strength.

Theory of EDAs › Preliminaries 14 of 63

2-MMASib (Neumann et al., 2010)

Max-Min Ant System (Stützle and Hoos, 2000) with iteration-best
update

t ← 0;
pt,1 ← pt,2 ← · · · ← pt,n ← 1/2;
while termination criterion not met do

Create x ;
Create y ;
if f (x) < f (y) then swap x and y ;
for i ∈ {1, . . . , n} do

if xi = 1 then pt+1,i ← pt,i(1− ρ) + ρ;
else pt+1,i ← pt,i(1− ρ);
Restrict pt+1,i to be within [1/n, 1− 1/n] ;

t ← t + 1;

1 1 1 0 0 1 1x

1 0 0 0 1 1 0
(f (x) ≥ f (y))

yy
pt

Here 1/ρ reflects preciseness.

Theory of EDAs › Preliminaries 15 of 63

UMDA (Mühlenbein and Paaß, 1996)

t ← 0, pt,1 ← pt,2 ← · · · ← pt,n ← 1
2 ;

while termination criterion not met do
Pt ← ∅;
for j ∈ {1, . . . , λ} do

for i ∈ {1, . . . , n} do
x (j)

t,i ← 1 with prob. pt,i ,
x (j)

t,i ← 0 with prob. 1− pt,i ;

Pt ← Pt ∪ {x (j)
t };

Sort individuals in P descending by fitness (s. t.
f (x (1)

t ) ≥ · · · ≥ f (x (µ)
t )), breaking ties u. a. r.;

for i ∈ {1, . . . , n} do

pt+1,i ←
∑µ

j=1 x(j)t,i
µ

;
Restrict pt+1,i to be within [ 1

n , 1−
1
n ];

t ← t + 1;

µ

λ

If, e. g., µ = λ/2, then λ reflects preciseness of model.

Theory of EDAs › Preliminaries 16 of 63

Adjustment of frequencies: a general
challenge

Frequencies may walk into the wrong direction
I if the fitness function gives wrong hints w. r. t. single bits,
I if the function gives no hints but algorithm must update,
I even if the fitness function overall gives the right hints.

Think of OneMax:

1 1 1 0 0 1 1 ∗x

1 0 0 0 1 1 0 ∗

>

y

p8

y

p8

y

p8

y

p8

y

p8

y

p8

y

p8

p8 can go up, down or stay the same.

1202



Theory of EDAs › Preliminaries 17 of 63

Genetic Drift

If the fitness function is constant/flat (does not give a signal),
frequencies move randomly to a border (DEMO).

1
n

1− 1
n

Frequencies that move to the wrong border are problematic – even
disastrous if the border is not there.
Even if the expected value of a frequency converges to optimal value
(Höhfeld and Rudolph, 1997), this does not say much about runtime.
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Early Results (< 2000)
Models of cGA, UMDA and others, allowing estimations of the dynamical
behavior (e. g., Thierens et al., 1998; Mühlenbein and Mahnig, 1999).
Two effects:
1. Overall progress of probabilistic model (roughly:

∑
pi) and time to

convergence to good distribution (
∑

pi ≈ n),
2. time for single frequencies to drift to wrong border by genetic drift
→ should be bigger than convergence time.

Avoiding genetic drift requires precise enough model → lower bound on
runtime. Models of EDAs estimated progress of frequencies:

Mühlenbein and Mahnig (1999)

pt+1,i ≈ pt,i +
I√
n

√
pt,i

(
1− pt,i

)
,

which was made rigorous recently.
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First Steps Towards Runtime Analyses

Genetic drift recurrent issue in analysis of GAs and EDAs, e. g., Asoh and
Mühlenbein (1994); Shapiro (2003, 2005). Models proposed to make
frequencies “stable” (Friedrich et al., 2016a) → later.

Lower bound on preciseness of model
For different EDAs on OneMax, same threshold identified multiple
times (Thierens et al., 1998; Lobo et al., 2000; Shapiro, 2005): need at
least K = Ω(

√
n) different frequency values to prevent genetic drift.

Upper bound on time to convergence
Time for the EDA to converge to optimal solution ≈ K

√
n.

⇒ Best possible time complexity Θ(n)?

Theory of EDAs › OneMax 21 of 63

Rigorous vs. Non-Rigorous Analyses

All (?) analyses of convergence speed of EDAs before 2005 made some
simplifying assumptions.
Pros
I Unimportant details ignored
I Insights possible that rigorous

analyses cannot achieve

Cons
I No estimation of errors:

verification by experiments
I No theorem: may only hold for

small problem sizes

Since 2005: rigorous runtime analyses of EDAs, following the same
principle as runtime analysis of EAs.

Theory of EDAs › OneMax 22 of 63

First runtime analysis of EDAs

Droste (2006) considered cGA on OneMax (and other functions).
Studied runtime = no. iterations until optimum found.

Main results
I Upper bound O(K

√
n) on OneMax, for K = Ω(n1/2+ε)

→ runtime O(n1+ε) (with high probability)
I General lower bound Ω(K

√
n).

Recent refinement: Upper bound O(n log n) (Sudholt and W., 2016) for
K = c

√
n log n, big constant c

⇒ competitive with simple EAs (e. g., (1+1) EA).

Best lower bound until 2016: Ω(n) from general black-box complexity
(Doerr and Lengler, 2015)

Theory of EDAs › OneMax 23 of 63

Demo and Landscape

Expected runtime of cGA depending on n and K

K0 √
n log n

runtime

Θ(K
√n)

Ω(n)
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Proof Idea in the “Large K” Regime

I Show limits on genetic drift: with high prob. all frequencies stay
above 1/3 in a phase of Θ(K

√
n) steps.

I Frequencies move smoothly upwards (DEMO).

I To analyze speed: consider Φt =
∑n

i=1 pt,i and analyze its drift.
Important: how does a single frequency evolve?

I Consider the two offspring x and y and look into bit i .

Theory of EDAs › OneMax 25 of 63

Dynamics on Bit i
If xi = yi then pt,i is unchanged.
If xi 6= yi then pt,i is changed depending on f (x) vs. f (y):

f (x) < f (y)
reinforce yi

f (x) > f (y)
reinforce xi

0

fitness difference
on other bits:
f (x)− f (y)− xi + yi

Red area: bit i is irrelevant in this step
⇒ genetic drift moves pt,i in a random direction ±1/K (rw-step)

Blue area: bit i decides the outcome of f (x) vs. f (y)
⇒ increase pt,i (b-step, learning that 1s are better than 0s)

Slide kindly provided by D. Sudholt

Theory of EDAs › OneMax 26 of 63

Probability of a Biased Step at Bit i

0

Prob(b-step) ∼ 1/
√

n
1
n

1− 1
n

1/3

I Biased step occurs with probability at least Ω(1/
√

n). If offspring
differ in the bit (prob. 2pi(1− pi)) then raised by 1/K .

I Otherwise, frequency is expected to stay put.
I Altogether:

pt+1,i = pt,i +Ω(pt,i(1− pt,i)/
√

n)

Note similarity to pt+1,i ≈ pt,i +
I√
n

√
pt,i

(
1− pt,i

)
by Mühlenbein and

Mahnig (1999)
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What Happens for Small K

Now look into K <
√

n log n:
I Lower bound Ω(n) until 2015.
I Improved to Ω(n log n) (Sudholt and W., 2016).
I Heavy genetic drift occurs.

DEMO.

Whether optimum can be found at all, depends very much on the borders
on the frequencies.
I If no borders, with high probability frequencies locked to 0 ⇒

infinite runtime.
I If borders {1/n, 1− 1/n} used, optimum can still be found in

polynomial time! No proof for cGA, but for UMDA (Lehre and
Nguyen, 2017; W., 2017).

⇒ Borders may make the algorithm efficient despite genetic drift.

Theory of EDAs › OneMax 28 of 63

Idea for the Lower Bound

Coupon collector
You have to collect n different coupons. In
each round, you are given one coupon
chosen uniformly at random with
replacement. In expectation, it takes
Ω(n log n) rounds to collect all of them.

CC-BY-SA-4.0 by Jarek Tuszyński, 2015

Here the coupons are the frequencies at the lower border. Each of them
has probability 1/n of being raised.

If many frequencies move to the lower border before optimum is found,
we cannot be faster than n log n.

Theory of EDAs › OneMax 29 of 63

Medium and Large K : Overview

K0 log n √
n log n

runtime

to
be

di
sc
us
se
d

Ω(n
log

n) a
nd O(Kn)

Θ(K
√n)

I Phase transition between smooth behavior and strong genetic drift
at K ∼

√
n log n

I If no borders, algorithm fails at K = o(
√

n log n)
I With borders, efficient behavior as long as K = ω(log n).

Upper bound O(Kn) only conjectured here.

Theory of EDAs › OneMax 30 of 63

Small K

What happens if K = o(log n)?
Known for 2-MMASib (Neumann et al., 2010), similar to cGA: landslides
of frequencies occur.

DEMO.

Frequency that have attained their maximum 1− 1/n are nevertheless
likely to drop down to minimum.
Very unstable behavior, exponential optimization time.
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Runtime of cGA on OneMax: Complete
Picture

K0 log n √
n log n

runtime

ex
po

ne
nt
ia
l

Ω(n
log

n) a
nd O(Kn)

Θ(K
√n)

Theory of EDAs › OneMax 32 of 63

Analysis of UMDA

How does UMDA perform on OneMax?
Surprisingly, in terms of runtimes (no. of iterations · λ), not very
differently from cGA.

Obstacles in analysis:
I frequencies can change drastically, even from minimum to maximum

in one generation,
I two parameters: µ and λ.

The first runtime analysis of UMDA on OneMax stems from 2015!

Theory of EDAs › OneMax 33 of 63

Results for UMDA: Upper bounds

First runtime result (Dang and Lehre, 2015): expected runtime of UMDA
on OneMax is O(nλ log λ) for λ > 13eµ and λ = Ω(log n). Bound is
O(n log n log log n) for best possible parameter setting.

Bound independently improved to O(n log n) by Lehre and Nguyen
(2017) and W. (2017):

Theorem (Expected runtime of UMDA on OneMax)

1. For constant a > 0 and constant c ∈ (0, 1), assume
a ln n ≤ µ ≤

√
n(1− c), λ ≥ (13e)µ/(1− c) ⇒ runtime O(λn).

2. Assume λ = (1+ β)µ for constant β > 0, µ ≥ c log n for large
constant c > 0, as well as µ = o(n) ⇒ runtime O(λn).

3. Assume λ = (1+ β)µ for constant β > 0, µ ≥ c
√

n log n for large
constant c > 0 ⇒ runtime O(λ

√
n).

Theory of EDAs › OneMax 34 of 63

Results for UMDA: Lower Bounds

We also obtain similar bounds as with cGA:

Theorem (Krejca and W., 2017)
Let λ = (1+ β)µ for some constant β > 0 and λ = nO(1). Then the
expected optimization time of UMDA on OneMax is Ω(λ

√
n + n log n).

Proof idea again: at a very high level, we estimate
1. progress (drift) of sum of frequencies per iteration
2. time for genetic drift to move frequencies to wrong border

both for upper and lower bounds. Especially 2. is challenging.
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Overview of Runtime Bound for UMDA on
OneMax

λ0 log n √
n log n

runtime
ex
po

ne
nt
ia
l

Ω(n
log

n) a
nd O(λn)

Θ(λ
√n)

I Exponential time below log n strongly conjectured.
I Remaining bounds proved.
I If no borders on frequencies, runtime infinite below

√
n log n

Theory of EDAs › OneMax 36 of 63

What Happens in the Medium Regime
If λ = ω(log n) and λ = o(

√
n)

⇒ expected runtime O(λn) and Ω(n log n).
Take, e. g., λ = n1/3 ⇒ upper bound O(n4/3), lower bound Ω(n log n).
Again upper bound O(n log n) for λ = c

√
n log n. Where is the truth?

Experiments:

50 100 150 200 250 300 350

3.2

3.4

3.6

3.8

4

4.2

·104

λ

50 100 150 200 250 300 350

0

0.5

1

1.5

·105

λ

Left: average runtime; right: no. times frequency hits minimum.
In fact a multimodal behavior: is O(λn) also Ω(λn) in medium regime?

Theory of EDAs › OneMax 37 of 63

New Result: Runtime of cGA is Multimodal

The multimodal behavior has been made rigorous for the simpler cGA,
not yet for UMDA.

Theorem (Lengler et al., 2018)
Expected runtime of cGA on OneMax is Ω(K1/3n + n log n) for
K = O(

√
n/log2 n).

⇒ Setting K = Θ(log n) gives us runtime Θ(n log n), so does
K = Θ(

√
n log n), but values in between make runtime worse.

Theory of EDAs › OneMax 38 of 63

OneMax: Summary

I Simple univariate EDAs like UMDA and cGA (and 2-MMASib) have
similar runtime behavior on OneMax.

I Very sensitive to settings of parameters.
I Two phase transitions.
I Multimodal behavior.
I If no borders are used, model must have model of preciseness

Ω(
√

n log n) to prevent genetic drift.
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EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

1209



Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)

1
n

1− 1
n

1 1 1 1 0 * * * * * * * * * * * * * * *

If best-so-far solution has i leading ones, then last n − i − 1 frequencies
are drifting randomly.

1210



Theory of EDAs › LeadingOnes 40 of 63

EDAs on LeadingOnes
LeadingOnes(x) =

∑n
i=1

∏i
j=1 xj has not been considered much in the

theory of EDAs (except for UMDA).
Possible reason: behavior is more obvious than on OneMax and not
very different from classical EAs.
Typical: frequencies are optimized from left to right.
(DEMO)
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Early Results for LeadingOnes

UMDA without borders (Chen et al., 2007, 2009b, 2010):

Using λ = Ω(n2+ε), UMDA (without borders) optimizes LeadingOnes
in time O(λn) w. h. p. ⇒ runtime O(n3+ε) for optimal λ.

For comparison: (1+1) EA expected runtime Θ(n2).

Approach in the analysis again:
1. Determine total time for frequency vector to converge to optimality.
2. Determine lower bound on preciseness of model to prevent genetic

drift before convergence.

Large λ used to prevent genetic drift also for the last optimized bit
(possibly too large).
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Recent results for LeadingOnes

Use the borders.

Theorem (Dang and Lehre, 2015)
If λ ≥ c ln n then expected runtime of UMDA with borders on
LeadingOnes is O(nλ log λ+ n2).

Holds also for PBIL (generalized UMDA) if learning rate not too small
(Lehre and Nguyen, 2018).
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When EAs and EDAs Differ on LeadingOnes

Overall analysis was similar to OneMax. No new insights through the
study of LeadingOnes?

Consider following example from Chen et al. (2009a).

Substring(x) =
{
2n if x = (1, . . . , 1)
maxn

i=1 i ·
∏i

j=max{i−n/4,1} xj otherwise

Substring equals LeadingOnes if no block of at least n/4
consecutive ones. E. g.: 11110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ 7→ 4

Otherwise, it describes the starting position of the rightmost block of n/4
ones – except if everything is one. E. g.: 010101011 . . . 111 7→ 3n/4
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EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

(1+1) EA
t ← 0;
Draw x0 ∈ {0, 1}n uniformly at random;
while termination criterion not met do

Create y by flipping each bit in xt independently with prob. 1/n;
if f (y) ≥ f (xt) then xt+1 ← y ;
else xt+1 ← xt ;
t ← t + 1;

Theory of EDAs › LeadingOnes 45 of 63

EDAs Beat EAs on Substring

Theorem (simplified from Chen et al., 2009a)
(1+1) EA needs with overwhelming probability time 2cn to optimize
Substring. UMDA with λ = Ω(n2+ε), µ = λ/2 optimizes Substring
in polynomial time w. o. p.

Proof idea for (1+1) EA
Typically, (1+1) EA starts out by gaining more and more leading ones.

10**************************

When > n/4 leading ones, the first bit(s) no longer contributes to fitness.
These bits slowly become random again. Optimum missed, NIAH
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Proof idea for UMDA
Also UMDA starts out by gaining more and more leading ones. This is
reflected in the frequencies.

1
n

1− 1
n

10101110110111011010

Even after the first bits no longer contribute to fitness, their frequencies
are expected to remain the same. All-ones string can be sampled.

Need large enough λ to prevent genetic drift.
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LeadingOnes: Summary

Typical behavior of EDAs:
I On OneMax they optimize all bits roughly at the same time.
I On LeadingOnes they optimize bits from left to the right.
I Runtime Θ(n log n) vs. Θ(n2) for opt. parameters settings.
I

However, there are other EDAs that do not behave like this (see later).

Theory of EDAs › BinaryValue 48 of 63
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The final example function: BinVal

Recall

BinVal (x1, . . . , xn) :=
n∑

i=1
2n−ixi ,

being somewhere between LeadingOnes and OneMax. A bit
outweighs all less significant bits together, but every bit contributes to
fitness.

Often, a runtime analysis of LeadingOnes also gives a runtime bound
for BinVal (e. g., for UMDA/PBIL, Lehre and Nguyen, 2018).

Theorem (Droste, 2006)
The runtime of cGA on BinVal is O(Kn) for K = Ω(n1+ε) w. o. p.
It is Ω(Kn) w. o. p.

Note: upper bound O(n2+ε). Lower bound does not restrict K .
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Not all Linear Functions Are Equally
Difficult for EDAs

Known for (1+1) EA (W., 2013): all linear functions optimized in
expected time (1± o(1))en ln n.
⇒ Runtimes on OneMax and BinVal differ by a lower-order term.

Droste conjectured that BinVal cannot be optimized in time O(n log n).

Theorem (W., 2018)
The runtime of cGA (without borders) on BinVal is Ω(n2) with
prob. Ω(1). Choosing K = o(n) leads to infinite runtime w. h. p.

Idea: if K too small, genetic drift likely to occur at light bits before all
heavy bits optimized.
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Optimization under Uncertainty

Assume that an evaluation of the objective function is subject to random
noise.

Example: OneMax with additive Gaussian noise

fnoise(x) = OneMax(x)+N(0, σ).
0

Typical measures to handle noise in evolutionary computation:
I large populations
I resampling
I …

EDAs have a built-in noise handling mechanism.
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EDAs Beat Population-based EAs in Noisy
Settings

Definition (Friedrich et al., 2017): an algorithm scales gracefully if its
expected runtime depends polynomially on the noise strength.
For example: runtime is proportionally to σ2.

Theorem
(µ+1) EA does not scale gracefully on OneMax with additive Gaussian
noise. However, cGA does.

Theory of EDAs › Noise 54 of 63

Proof Ideas
I (µ+1) EA uses mutation, which drifts away from the optimum when

there are many correct bits and noise disturbs fitness signal.
x = 11111111011111111111011111

↓ Prob(f (x) > f (y)) ≈ Prob(f (x) < f (y))

y = 11110111011111111111011111

I cGA does not use mutation and is balanced: in expectation,
frequency vector and thus fitness does not decrease over time.

1
n

1− 1
n

I cGA does not receive negative signal from noise, but signal (drift)
towards increasing OneMax becomes smaller with increasing σ.

I Have to ensure that effect of genetic drift is smaller than the signal
→ choose big enough K .
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Further Noisy Settings

Also simple ACO algorithms can be considered EDAs and are superior to
EAs in some noisy settings (also from combinatorial optimization):
I Sudholt and Thyssen (2012) for ACO for noisy shortest paths with a

ground truth
I Doerr et al. (2012) where the noise is intrinsic
I Feldmann and Kötzing (2013) for ACO with fitness-proportional

updates: leads to convergence to expected best solution

Many of the results can probably be transferred to more classical EDAs
such as cGA and UMDA.
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How EDAs Overcome Gaps
Jump challenging for hillclimbers: Θ(nk) to cross gap of size k > 1.

Hamming dist. k

EDAs can search more globally in Jump region thanks to higher sampling
variance  time Θ(ck) instead of Θ(nk) (first observed in Hasenöhrl and
Sutton, 2018).

Theorem (Doerr, 2019)
If k ≤ 1

20 ln n and µ = Ω(
√

n log n) then cGA optimizes Jump in O(µ
√

n)
iterations w. h. p. Time O(n log n) if µ = Θ(

√
n log n).

See talk at this GECCO.
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Balancedness, Stability and Genetic Drift
Have seen: without fitness signal, stochastic model of EDAs is expected
to be the same. Term: balanced (Friedrich et al., 2016a).
However, this is only the expected value. Genetic drift plays major role in
classical EDAs.

0
0.
2

0.
4

0.
6

0.
8

1

time

← balanced 6= stable →

0
0.
2

0.
4

0.
6

0.
8

1

time

Term: EDA is stable if a frequency in absence of fitness signal stays close
to its initial value.
cGA, UMDA, … are not stable. Frequencies quickly converge to either
maximum or minimum (each with probability 1/2) due to genetic drift.
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A New Way to Overcome Genetic Drift:
Significance-Based EDAs

Idea (Doerr and Krejca, 2018): Move frequency away from its initial
value only when there is evidence that 0 or 1 is the better bit value.

sig-cGA: algorithmic ideas
I Framework like cGA.
I For each bit, history Hi ∈ {0, 1}∗ of values in better individual
I Investigate last m history bits. If a value significantly dominates,

move frequency to corresponding border (1/n if 0 dominates,
1− 1/n if 1).

I Otherwise, leave frequency at 1/2.
I Example of significance: |‖Hi‖1 − m

2 | ≥ C
√

m ln n
I Different values for m are tested by the algorithm.
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Significance-Based EDAs are Fast

Theorem
The expected runtime of sig-cGA on both OneMax ond LeadingOnes
is O(n log n) (and with high probability).

No other evolutionary algorithm is known that simultaneously optimizes
OneMax and LeadingOnes in time O(n log n).

Proof ideas
I On OneMax, drift Ω(pi(1− pi)/

√
n) quickly identified as

significant. Many ideas of analysis of plain cGA work.
I On LeadingOnes, frequencies are optimized from left to right.

Bits that do not contribute to fitness yet: no signal, no significance
of deviation, no genetic drift, stay at 1/2

Significance-based EDAs are promising, theory-driven approach.
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Summary and Conclusions
Summary
I Runtime analysis for simple univariate EDAs
I Identified similarities to and differences from simple EAs
I Genetic drift a major obstacle
I Sensitive to parameters (phase transitions)
I Robust to noise
I Significance-based EDAs as novel theory-driven approach

Future work
I Combinatorial problems
I Multivariate EDAs
I Classification of problems w. r. t. appropriateness for EAs/EDAs, …

Book chapter related to this tutorial
Martin Krejca and Carsten Witt, Theory of Estimation-of-Distribution
Algorithms, in: B. Doerr and F. Neumann (editors), Theory of Randomized
Search Heuristics in Discrete Search Spaces, Springer, to appear
https://arxiv.org/abs/1806.05392

Thank you!
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