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ABSTRACT

The electrical grid is undergoing an unprecedented evolution driven
mainly by the adoption of smart grid technologies. The high pene-
tration of distributed energy resources, including renewables and
electric vehicles, promises several benefits to the different market
actors and consumers, but at the same time imposes grid integra-
tion challenges that must adequately be addressed. In this paper,
we explore and propose potential business models (BMs) in the
context of distribution networks with high penetration of electric
vehicles (EVs). The analysis is linked to the CENERGETIC project
(Coordinated ENErgy Resource manaGEment under uncerTainty
considering electrIc vehiCles and demand flexibility in distribution
networks). Due to the complex mechanisms needed to fulfill the in-
teractions between stakeholders in such a scenario, computational
intelligence (CI) techniques are envisaged as a viable option to
provide efficient solutions to the optimization problems that might
arise by the adoption of innovative BMs. After a brief review on
evolutionary computation (EC) applied to the optimization prob-
lems in distribution networks with high penetration of EVs, we
conclude that EC methods can be suited to implement the proposed
business models in our future CENERGETIC project and beyond.
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1 INTRODUCTION

Technological developments and environmental issues have led to
an unprecedented evolution of power systems and the electrical
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grid. Driven by the adoption of Smart Grid (SG) technologies, the
high penetration of Distributed Energy Resources (DER), such as
renewable generation and Electric Vehicles (EVs), is increasingly
essential to our society, but at the same time is imposing grid in-
tegration challenges that need to be addressed [1]. In this new
paradigm, the management and control of distribution networks
require new roles and responsibilities from the Distributed System
Operator (DSO) to provide high-quality services for end users [2].

Although several studies indicate that operational problems may
arise in distribution networks because of the massive integration
of EVs, several opportunities aiming at taking advantage of the
significant flexibility that can be obtained from the optimal use
of EVs’ batteries are also envisaged. Some studies have identified
various valuable services that can be related with the integration
of EVs into distribution networks, e.g., balancing requirements for
energy suppliers with renewables, regulation services for system
operators, modification of demand curves to defer network expan-
sion, congestion management mitigation for DSO, and so on [3].
As a result, opportunities for new Business Models (BM) arise in
such context, with a keen interest from different stakeholders in
the potential of EVs’ flexibility as a resource of negotiation.

There is also a major concern when such BM are considered,
related to the complexity of the necessary mechanisms behind
the implementation of a given service. For instance, an EVs’ ag-
gregator may face a complex large-scale optimization problem to
guarantee the optimal coordination of its EVs fleet when a large
number of EVs users is considered, and the information related to
their schedules is scarce. Several studies have identified the com-
plexity in implementing control/marketing methods to maximize
business values [2, 3]. When real-world scenarios are taken into
account, current models and proposed solutions rely on unrealistic
assumptions and simplifications to be able to tackle issues related
to scalability, computational burden, or memory requirements, lim-
iting the applicability of optimization tools. Therefore, in this paper,
the application of innovative Computational Intelligence (CI) ap-
proaches, namely Evolutionary Computation (EC), is discussed as
an alternative to solve the optimization problems more efficiently.

In summary, this paper explores and proposes potential BM
in the context of distribution networks with high penetration of
EVs. The analysis is linked to the P2020 project CENERGETIC-
Coordinated ENErgy Resource manaGEment under uncerTainty
considering electrlc vehiCles and demand flexibility in distribution
networks. Due to the wide variety of services that can be procured
by DSO, aggregators, or EVs users, we limit our study to congestion
management and EVs charging coordination related services. This
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choice has been made based on the literature review which points
out to the vast potential on the use of EVs’ batteries for providing
flexibility services. Through a simple framework, three BM are
identified involving stakeholders such as DSO, market facilitators,
aggregators, and EVs users. Mechanisms to fulfill such BM are also
identified and, in some cases, translated into complex optimiza-
tion problems. For this reason, CI techniques are envisaged as a
viable option to provide more efficient solutions in the context of
distribution networks with high penetration of EVs.

The rest of the paper is organized as follows: Sect. 2 presents
a short literature review on the recent works regarding electric
vehicles flexibility. Sect. 3 presents the proposed business models
for EVs’ flexibility in the scope of CENERGETIC project, Sect 4.
presents an overview of the application of EC to EVs’ flexibility
optimization, Sect 5. presents the case study and, finally, Sect 6.
fully draws the conclusions of this paper.

2 FLEXIBILITY OF ELECTRIC VEHICLES

Flexibility of EVs can defined as the amount of energy that the EVs
users can offer by changing their charging patterns, i.e., shifting
load consumption or reducing the charging load on a given mo-
ment. Literature has suggested significant potential of EVs’ flexible
demand. The work in [4] depicts the applicability of two demand
technologies, namely electric vehicles and heat pumps, in electric-
ity markets. The benefits of these technologies associated with the
market participation is analyzed in the work. The research work
in [5] quantifies the potential of EVs to utilize fluctuating renew-
ables through optimized charging. The work also highlights that
optimized charging can increase by twofold the utilization of renew-
ables compared to simple charging, while trip information is more
relevant than charger availability to utilize EVs’ flexibility. Authors
in [6] propose an algorithm to quantitatively analyze how much
flexibility regarding duration and amount is used at various times of
a day using a large dataset of 390k EVs. Authors in [7] propose the
co-creation of distributed flexibility using 902 study participants in
three domains of residential energy consumption, namely solar PV
plus storage, electric mobility, and heat pumps. The results indicate
that electric car and solar PV users show a higher willingness to
co-create flexibility and adequate business models are required to
take the prosumer perspective into account. Authors in [8] present
an optimal approach to improve the flexibility of electric vehicles,
namely by combining the effect of slow home charging of electric
vehicles together with fast charging stations. The work also studies
the benefits of stationary battery storage in fast charging stations
to mitigate the negative effects on the power system operation.
The work in [9] presents a framework for assessing the EV stor-
age flexibility and distributed energy resource potential. The work
highlights the importance of investing in nonresidential charging
infrastructure to maximize the renewables potential arising from
BEV storage flexibility. The work in [10] presents a set of strategies
for solar and wind integration to leverage flexibility of EVs. Smart
charging of EVs can facilitate integration of large shares of renew-
ables and reduce the incremental generation cost and renewables
curtailment. Vehicle-to-grid can reduce ancillary and electricity
prices. Reference [11] presents an unsupervised algorithm to ex-
tract EV charging load patterns from smart meter data. Then, a
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method to define the flexibility of EVs based on the collective de-
mand is proposed. Therefore, it is possible to quantify the flexibility
achievable from the aggregated EV load in different time periods.
This is especially relevant for aggregators of EVs aiming to partici-
pate in flexibility programs. Based on the studied benefits of EVs’
flexibility claimed by the literature, we systematize the possible
business models for EVs’ flexibility interactions with DSO in the
next section.

3 BUSINESS MODELS FOR EVs’ FLEXIBILITY

According to [12], the definition of a BM starts by answering the
question:how value for the customer can be created? and then by
defining a business case around it. Therefore, a BM in SGs should
describe: (i) the benefits that an enterprise will deliver to the SG
players; (ii) how such benefits will be delivered to them; and (iii) how
the enterprise will capture a portion of the value that is delivered.

The developments of SG technologies will enable DSO to assume
new roles in the distribution context. For instance, Ancillary Ser-
vices (AS) directed to the DSO at the distribution level of the grid is
an example of a new business case, similarly to AS provided to the
Transmission System Operator (TSO) at the power transmission
level. Also, the integration of EVs and Renewable Energy Sources
(RES) into the distribution grid make possible the emergence of a
set of flexibility services as a viable solution to deal with operational
challenges.

In [2], a systematic review of the services enabled by the in-
tegration of EVs into the distribution grid is presented. To avoid
confusion with AS at the transmission level, the authors define
the Distribution System Services (DSS) and divide them into three
different categories: active power support, reactive power support,
and RES integration support.

In the context of the CENERGETIC project, it is envisaged the
integration of EVs enabling DSS for active power support. In this
way, the DSO can use such service for solving different problems
in the distribution grid (e.g., congestion management and power
loss minimization are two of the most common problems related to
the use of active power as a solution).

Figure 1 presents the illustration of three different BM consid-
ered in the scope of the CENERGETIC project. In the three cases,
the product to be sold/bought is flexibility, while the players and in-
teractions among them give the differences in the definition. In this
way, BM1 is focused on the interactions between the DSO and EVs’
aggregators. Therefore, in BM1 the DSO can request flexibility to
the aggregators to alleviate management issues in the distribution
network. The aggregators should receive monetary compensation
for the service provided. Similarly, BM2 is focused on the inter-
actions between the DSO and independent EVs users through a
market place. As the flexibility provided by a single EV is lower
than the flexibility provided by an EVs’ aggregator, efficient com-
munication/interaction processes, needed to obtain large amounts
of the product, may increase the complexity of the transactions.
Finally, BM3 defines the interactions between EVs’ aggregators and
EVs.

To better define the proposed BMs, in this paper we applied a BM
framework with three different levels, namely (i) the strategic level
(related to the governance and actors features), (ii) the costumers



BMs for flexibility of EVs: EC implementation

BM 1
Asks for flexibility »
EVs’ aggregator
Returns flexibility
BM 2
Market place
(ICT platform)
BM 3
EVs’ Aggregator

4]
1]
U]

—Asks for flexibilit

€—Returns flexibility—

Figure 1: Distribution system services provided by different
EVs’ interaction schemes

and market level (related to the business content and focus), and
(iii) the value chain level (related to the delivery and financing
structure). Table 1 presents the three BMs under this framework
(AGG stands for aggregator in the table).

4 EVOLUTIONARY COMPUTATION IN THE
CONTEXT OF EVs’ OPTIMIZATION

EC is one of the main branches of CI, a sub-field of artificial in-
telligence (AI) that attempts to exhibit the intelligence observed
in nature [1]. Different from classical deterministic mathematical
methods, Cl is tolerant to imprecision, uncertainty, and approxima-
tion, characteristics present in optimization problems that consider
EVs’ uncertainty, and large penetration of distributed resources.
Even when ClI-based approaches cannot guarantee an optimal out-
come, they certainly can provide near-optimal, and in some cases
even optimal solutions in acceptable computational times and with
low memory requirements. Some studies suggest that the appli-
cation of CI can be suitable to solve energy problems when such
situations arise [13, 14].

This paper has considered some possible BM opportunities that
may arise due to the interaction of DSO, EVs’ aggregators, and
EVs users. Conceptually speaking, the BMs can be translated into
optimization problems, some of them very complex ones. We focus
our attention on two main issues that need to be solved to fulfill
the proposed BMs, namely the congestion management problem
(DSO) and the coordination of EVs charging (aggregator). For in-
stance, the DSO might want to take advantage of the flexibility
that EVs can provide to solve congestion issues in the network.
In fact, congestion management is an optimization problem that

IClin a broader sense is formed by EC, artificial neural networks (ANN), and fuzzy
systems (FS). In this paper, we focus on the EC branch for optimization.
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aims at efficiently making use of the power available without vi-
olating system/network constraints. Several methods have been
proposed to tackle congestion management, such as nodal pricing,
uplift cost, price area congestion management, available transfer
capability, and flexible AC transmission systems devices. Due to
the properties of the optimization problem, a nonlinear program
typically involving a large number of variables, evolutionary com-
putation and expert systems have also been applied to solve it [15].
On the other hand, the optimal scheduling of charging EVs, also
known as EVs’ charging coordination problem [16, 17], is usually
a large-scale optimization problem that needs to be solved by an
aggregator or network operator in order to satisfy the demand of
its fleet. The complexity associated to this problem comes with the
consideration of uncertainty in EVs user behavior, since current
management systems typically rely upon highly accurate forecast
of EVs trips and user preferences, which could not hold in realistic
scenarios [18, 19]. Besides that, interactions between the DSO and
the aggregators might give place to bi-level optimization problems,
in which the coordination of such entities should be taken into
account, posing a new degree of complexity to the problems.
Notice that despite the models and assumptions behind such
optimization problems, some of them can be reduced to the form:

min f(x) (1a)

x€Q

subject to gi <0,i=1,...m (1b)
hj=0,j=1,...p (1c)

where x is a D-dimensional decision variable vector x = (x1, ..., xp)
from some universe Q. g;(x) < 0 and hj(x) = 0 represent con-
straints that must be fulfilled while optimizing (minimizing or max-
imizing) f(x). The formulation can be extended to multi-objective
optimization, bi-level optimization, dynamic optimization, many-
objective optimization, consideration of uncertainty, and so on. In
any case, an objective function (f(x)) and a decision variable vec-
tor (x) are part of the formulation. Those elements can be later
translated to the so-called fitness function and encoded potential
solutions (e.g., individuals in differential evolution (DE), particles
in particle swarm optimization (PSO), chromosomes in genetic
algorithms (GA), etc.), two of the requirements needed in the ap-
plication of a wide variety of EC algorithms. Therefore, once the
problem has been abstracted to this form, practically any EC al-
gorithm can be applied to get optimal and near-optimal solutions.
If an EC algorithm is tailored to tackle a specific problem, it can
result in an efficient tool providing good-quality solutions with
low memory requirements and in an acceptable amount of time
(requirements that in real-world applications are usually crucial).
In fact, it is important to mention that the use of EC is just justi-
fied when deterministic approaches (e.g., based in mixed-integer
linear programming (MILP) or mixed-integer nonlinear program-
ming (MINLP)) fail in providing efficient solutions to the problems
[1, 14]. If a deterministic approach can be used to solve a given
optimization problem, it should always be preferred as a solution
method.

We are not intended here to provide a comprehensive tutorial
on the use of EC for solving optimization problems (the reader
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Table 1: Business Models using EVs flexibility

Lezama et al.

Name
Level BM1 DSO-AGG BM2 DSO-EV BM3 AGG-EV
Strategic Level
The provider AGG DSO AGG
(who?)
The strategy The AGG can offer flexibility to A market place for flexibility The AGG can pay to EVs for the
(why?) the DSO for congestion manage- trading can be made available by use of their flexibility.

The resources
(who and what inter-
nally?)

The network
(who externally?)

ment or as AS.

The AGG might use forecast ca-
pabilities (e.g., EVs consumption
and trip schedules) and energy
management systems as internal
resources.

The ICT and trading platforms
can be contracted externally.

the DSO to take advantage of de-
mand response (DR) for conges-
tion management.

The DSO might poses the neces-
sary infrastructure (ICT capabil-
ities) to communicate with the
EVs.

The EVs can react to DSO loca-
tional marginal pricing (LMP) at
different zones of the grid using
their own control system. The
possibility of acquire ICT and
trading platforms externally is
also an option.

The AGG might use forecast ca-
pabilities (e.g., EVs consumption
and trip schedules) and energy
management systems as internal
resources.

The EVs’ management capabili-
ties can be used to react to AGG
flexibility requests. The ICT and
trading platforms can be con-
tracted externally.

Customer and Market Level

The customer model
(to whom?)

The market offer model
(what?)

The revenue model
(how they pay?)

DSO
Aggregated flexibility.

The DSO will have to pay the
flexibility required to the AGGs.
The price per unit of flexibility
(€/kW) can result from an asym-
metric pool or a value contracted
between to pears.

EVs

Flexibility market place to ex-
ploit EVs coordination.

The EVs users can make a
monthly/annual payment to par-
ticipate in the market place. Ad-
ditionally, DSO can pay incen-
tives to users for making trans-
actions between them, and thus
avoid the congestion of lines.

EVs

Compensation for the use of EVs
flexibility.

The EVs users can make a
monthly/annual payment to par-
ticipate in the flexibility aggre-
gation. Additionally, free fees
can be considered assuming that
the price per unit of flexibility
(€/kW) is determined by the
AGG considering DSO compen-
sations.

Value chain level

The delivery
(how we deliver?)

The procurement
(how is being delivered
to us?)

The financial model
(how we pay for it?)

The flexibility is delivered by the
coordination of EVs and the mod-
ification of consumption pat-
terns.

The EVs can react to AGG coor-
dination schemes by given direct
control to AGG or using intel-
ligent systems. Failure to com-
ply with the agreement between
AGG and EVs may be penalized.
The DSO pays to the AGG in
function of the amount of flex-
ibility used and considering the
fees and compensations that
AGGs might pay to EVs users
(e.g., a penalization if the conges-
tion occurred).

The market place can be set as a
webservice. Synchronization be-
tween the EVs’ control module
and the market place configured
by the DSO is another option.
The EVs transactions in the mar-
ket place are intended to be done
in function of LMP automati-
cally, thus avoiding network con-
gestion problems.

The DSO might pay incentives
calculated in function of the
penalty amount that is required
to be paid if congestion problems
exists.

The coordination of EVs is done
through centralized systems or
by price signals mechanisms.

The flexibility is delivered to the
AGG in response to the price sig-
nals issued for this purpose. Di-
rect control mechanism are also
an option.

The AGG will pay for the use of
flexibility to the EVs in function
of the amount sold to the DSO.
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Figure 2: A CI-engine that can be used to optimize specific requests from DSO, aggregators, or EVs users.

can be referred to [20-22] to that end). Rather, we want to con-
ceptualize and suggest the use of EC as efficient computational
methods to solve the optimization problems behind the proposed
BMs. Fig. 2 shows a simple conceptualization of the idea, through
the development of a CI engine as a decision support system. In this
case, DSO, aggregators, or EVs users can abstract their optimization
problems (defining the desired objective functions and decision
variable vectors) and send the information to a CI engine (i.e., a
platform with EC capabilities). The CI engine should have a module
for optimal selection of the optimization approach depending on
problem complexity. A set of EC approaches, including different
types of algorithms (e.g., population-based, swarm intelligence, evo-
lutionary strategies, etc.), should be available to tackle the burden
of stochastic formulations solving more realistic scenarios, i.e., of
high dimension and considering nonlinear constraints in acceptable
execution times, that are crucial for the short-term decision making
horizon. The engine can also include a module with ANN and FS
methods either to forecasting and control purposes. The engine can
later return the requested results to the users.

Finally, we provide a summary of EC techniques used in the
context of EVs’ charging coordination. Table 2 summarizes some
works regarding EVs’ charging coordination using EC approaches.
The table also shows some characteristics taken into account in
such studies. It can be highlighted the use of GA and PSO as the pre-
ferred solvers. Other approaches used include artificial bee colony
(ABC), tabu search (TS), greedy randomized adaptive search pro-
cedure (GRASP), improved grey wolf optimization (IGWO), and
firefly (FF) algorithm. Also, notice that most studies do not consider
V2G capabilities. The reason behind that might be the complexity
in incorporating a new set of variables into the formulation (re-
quiring an extra set of binary variables in some cases to avoid the
simultaneous charge and discharge actions). The work presented
in [23, 24] relax this issue by using a clever encoding of individuals
in which the same variable with negative values indicates injection
of energy into the grid (V2G), while positives values indicate the
battery charging process. However, this approach does not allow to
set a minimum level of energy charging in the battery, so that a new

set of variables for each EV, or a new set of constraints, will still be
needed to make a correct formulation of such process. Also, most of
the works focus on the charging process to meet user requirements,
while neglecting congestion management problems. With the cur-
rent high penetration of DGs and EVs, it is expected that congestion
management problems will become critical, so it is expected to see
more applications of EC combining EVs’ coordination and DSO
activities.

5 CONCLUSIONS AND FUTURE WORK

In this paper we overlook flexibility of electric vehicles for the smart
grid, which is part of CENERGETIC project research. We analyze
the works that highlight the potential of EVs in several challenges
of the smart grid, including peak shaving, congestion management,
optimize renewables’ use, etc. We propose three different business
models for EVs flexibility. The business models are different in the
way the flexibility can be provided, e.g. if a market place to trade
flexibility is present or not. To implement these business models in
practise we identify evolutionary computation tools that are suited
to tackle complex issues in this field, namely providing a review of
the EC applied to EVs optimization problems. We believe that EC
methods can be suited to implement the proposed business models
in our future work of CENERGETIC project.
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