Assessing the Impact of Script Gadgets on CSP at Scale

Sebastian Roth, Michael Backes, and Ben Stock
CISPA Helmholtz Center for Information Security
{sebastian.roth,backes,stock}@cispa.saarland

ABSTRACT

The Web, as one of the core technologies of modern society, has
profoundly changed the way we interact with people and data.
One of the worst attacks on the Web is Cross-Site Scripting (XSS),
in which an attacker is able to inject their malicious JavaScript
code into a Web application, giving this code full access to the
victimized site. To mitigate the impact of markup injection flaws
that cause XSS, support for the Content Security Policy (CSP) is
nowadays shipped in all browsers. Deploying such a policy enables
a Web developer to whitelist from where script code can be loaded,
essentially constraining the capabilities of the attacker to only be
able to execute injected code from the said whitelist.

As recently shown by Lekies et al., injecting script markup is not
a necessary prerequisite for a successful attack in the presence of
so-called script gadgets. These small snippets of benign JavaScript
code transform non-script markup contained in a page into exe-
cutable JavaScript, opening the door for bypasses of a deployed CSP.
Especially in combination with CSP’s logic in handling redirected
resources, script gadgets enable attackers to bypass an otherwise se-
cure policy. In this paper, we, therefore, ask the question: is securely
deploying CSP even possible without a priori knowledge of all files
hosted on even a partially trusted origin? To answer this question,
we investigate the severity of the findings of Lekies et al., showing
real-world Web sites on which, even in the presence of CSP and
without code containing such gadgets being added by the developer,
an attacker can sideload libraries with known script gadgets, as
long as the hosting site is whitelisted in the CSP. In combination
with CSPs matching logic for redirects, this enables us to bypass
10% of otherwise secure policies in the wild. To further answer our
main research question, we conduct a hypothetical what-if analysis.
Doing so, we automatically generate sensible CSPs for all of the
Top 10,000 sites and show that around one-third of all sites would
still be susceptible to a bypass through script gadget sideloading
due to heavy reliance on third parties that also host such libraries.

ACM Reference Format:

Sebastian Roth, Michael Backes, and Ben Stock. 2020. Assessing the Impact
of Script Gadgets on CSP at Scale. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security (ASIA CCS °20), June
1-5, 2020, Taipei, Taiwan. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3320269.3372201

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS 20, June 1-5, 2020, Taipei, Taiwan

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6750-9/20/06....$15.00
https://doi.org/10.1145/3320269.3372201

1 INTRODUCTION

In today’s society, the Web is an essential part of everyday life.
It has grown not only into a platform that enables us to keep in
touch with friends via social media, but more importantly, it has
transformed into a full-fledged application ecosystem, hosting even
complex applications. Given this ever-increasing importance, any
threats specific to the Web are endangering the security of delicate
data. One of the gravest threats are so-called Cross-Site Scripting
(XSS) vulnerabilities. These vulnerabilities allow an attacker to
execute JS code within the context of a flawed Web site, essentially
enabling the attacker’s code to conduct any action the site’s own
JS could. This enables an attacker to steal a victim’s credentials,
leak sensitive information, or perform actions on behalf of a victim.
Thus, XSS can cause severe damage, especially if present in security-
critical applications. To mitigate the impact of this vulnerability, a
developer can make use of the Content Security Policy (CSP). Since
XSS means that code not intended by the developer is executed
within their application, CSP follows a whitelisting approach of the
developer’s intended code. In particular, a developer can provide a
whitelist of scripting resources that are allowed to be loaded, and
thus executed, in the Web application’s context.

Notably, while several papers have shown the inability of site
operators to deploy CSP in a secure fashion [3, 4, 27, 28], Lekies
et al. [14] highlighted a new threat: script gadgets. They dub script
gadgets such pieces of JS code, which turn non-script data into
executing code. Hence, these snippets, often contained in widely
used libraries like Angular]S, enable an attacker to exploit injection
flaws in an application without the necessity to inject actual script
payloads. As non-script data is not governed by CSP, this enables
an adversary to successfully exploit an injection vulnerability in the
presence of a script gadget. In order to leverage a script gadget, the
containing library either needs to be already loaded into the site,
or a host containing such needs to be whitelisted. Prior work from
Weichselbaum et al. [27] has indicated that 56% distinct policies
discovered in the wild could potentially be bypassed through gadget-
hosting sites in whitelists. Notably though, their paper reported
a vulnerable CSP configuration in case any version of AngularJS
could be found on a whitelisted host. As we discuss in Section 5.2,
however, the mere presence of a host that contains a library flagged
as Angular]S is not sufficient for a successful exploit.

Hence, we extend both the works from Lekies et al. [14] and
Weichselbaum et al. [27] by showing real-world exploitability of
strict CSPs discovered in the wild. In particular, given a CSP which
restricts scripts to a fixed number of hosts, we determine if any
known vulnerable version of Angular]S is hosted on these sites.

As CSP is meant as a last line of defense against XSS injections,
we assume that a site deploying CSP could be susceptible to XSS. We
hence simulate an injection vulnerability and sideload the gadget
library into the target application, combining it with a non-script
payload. Only if the exploit can then be triggered, we mark a site

https://doi.org/10.1145/3320269.3372201
https://doi.org/10.1145/3320269.3372201
https://doi.org/10.1145/3320269.3372201

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

as being susceptible to a bypass through script gadget sideloading.
In doing so, we find that for the mere 248 sites that make use of a
sane CSP, while 29 contains whitelist entries pointing to Angular]S-
hosting sites, only 24 (9.6%) are bypassable through script gadget
sideloading. Importantly, while the set of sites that deploy CSP in a
meaningfully secure way are small, to begin with, the bypassability
of their policy through script gadgets highlights the heavy burden
that the reliance on third parties puts on building a policy.

Prior work has proposed to enable deployment of CSP through
automated tools (e.g., [18]) based on the scripts that are required
for the site’s functionality. To understand how badly script gadgets
impair such tools’ abilities to generate a functional, yet secure
CSP, we study the issue of script gadgets from a second angle: a
hypothetical what-if analysis of the top 10,000 sites. To that end,
based on the JS sources used by these sites, we generate sane CSPs
and show that more than one-third of these applications could be
successfully attacked through a sideloaded script gadget, merely
due to their reliance on third-party hosts for vital functionality.
To make matters worse, to avoid leaking path information across
origins, the matching algorithm of CSP ignores the path component
of a source expression if the resource loaded is as the result of a
redirect [8]. Therefore even if the developer did not whitelist the
entire source domain, but only specific scripts, we can still sideload
a library of our choice if at least one of the whitelisted sources
suffers from an open redirect. Notably, 114 different domains that
are part of the top 10,000 frequently used Web sites or are resources
that are loaded by these Web sites suffer from this vulnerability.

Overall, our findings indicate that on top of the massive engi-
neering effort necessary to deploy a meaningful CSP, site operators
are faced with even more pitfalls due to their heavy reliance on
third parties. This, in combination with CSP’s logic around redi-
rects, makes mitigating XSS through CSP even harder than already
pointed out by previous work [3, 4, 27, 28]. In summary, our work
makes the following contributions:

e We examine the prevalence of libraries that contain known
script gadgets at a large scale, and outline how open redirects
can be used to further widen the attack surface of script
gadget based CSP bypasses (Section 4).

o Based on the real-world deployment of CSP, our discovered
gadgets, and redirects, we show that 10% of otherwise se-
cure real-world CSPs can be bypassed through script gadget
sideloading (Section 5).

e To further document troubles in developing a sane CSP, we
furthermore conduct a hypothetical analysis, showing that
script gadgets would likely undermine the security of around
one-third of sites if the deployed host-based CSPs (Section 6).

o Based on the insights gathered throughout our analysis, we
discuss the root cause issue behind the outlined exploitation,
better CSP creation strategies, and call on parties capable of
addressing this problem at scale (Section 7).

2 TECHNICAL BACKGROUND

This section describes the various technologies used in this work.
In particular, we outline Cross-Site Scripting, CSP as a mitigation
against the attacks, as well as script gadgets as presented by Lekies
et al,, and the concept of open redirects.

Sebastian Roth, Michael Backes, and Ben Stock

2.1 Cross-Site Scripting

Including content from third-party pages is commonplace on the
Web: from advertisements to map services, all sorts of content are
loaded via frames into applications. If there were no separation
mechanism, this inclusion of content from different sources would
have severe security consequences. Therefore, the Same-Origin
Policy (or SOP for short) is the most basics security mechanism
on the Web, ensuring that only documents from the same Web
Origin [1] can access each other. This means that any JavaScript
running inside a given document can only access other documents’
content if their protocols, hostnames, and ports match. Therefore, to
gain access to another document’s content, the code of an attacker
must be running the same origin; e.g., through a code injection
vulnerability in the targeted application. This attack is called Cross-
Site Scripting (or XSS), as the attacker can inject code into another
site. Thus, the malicious code can do whatever legitimate code can
do, such as modifying the page to the attacker’s liking, exfiltrating
sensitive information such as session cookies, or perform any action
in the name of the victimized user.

2.2 Content Security Policy

As previously outlined, XSS can cause massive damage to a Web
application. To mitigate the impact of such unintended JavaScript
code execution, the Content Security Policy (or CSP for short) was
introduced by Stamm et al. [22]. Such a policy can be deployed via
HTTP headers or meta elements, consisting of multiple directives
separated by a semicolon. A list of source expressions follows each
directive name. These expressions represent the sources from which
resources of the type defined by the directive name may be included.
For example, to allow only Google Analytics and self-hosted (i.e.,
on the same origin) code as allowed script sources and restrict any
other resource (e.g., objects, frames, media) to load, the following
policy can be used:

default-src ’none’;
script-src ’self’ www.google-analytics.com

Whenever either script-src or default-src (as fallback) is speci-
fied, CSP also prohibits the use of inline scripts, event handlers, and
functions that perform a string-to-code transformation. However,
these restrictions can be relaxed by adding ’unsafe-inline’ or
’unsafe-eval’ to the directive. In its original candidate recom-
mendation from 2012 [24], CSP only supported whitelisting of host
names and URLs. Later on, in CSP Level 2 [25] this inflexibility of
Level 1 is addressed, especially concerning inline script and event
handlers. To make whitelisting of them easier, the standard added
support for hashes and nonces to whitelist scripts. By using hashes,
the developer can explicitly whitelist inline scripts by adding an
SHA hash of the script code to the script-src directive. Alterna-
tively, when a nonce is present, all scripts (both inline and external)
which carry that nonce as an attribute are whitelisted.

Using a whitelist exclusively containing hashes makes adding ad-
ditional script resources by those whitelisted scripts impossible. For
nonces, a script could theoretically read its own nonce, and when
adding new scripts, attach said nonce to them. Notably, though,
the current W3C Working Draft (CSP Level 3 [26]) added a feature
to address this issue in particular: *strict-dynamic’. When this

Assessing the Impact of Script Gadgets on CSP at Scale

let buttons = document.querySelectorAll(

— "[data-role=button]");

for (let b in buttons) {
buttons[b].innerHTML = buttons[b].getAttribute(
— "data-text");

Figure 1: Example for a script gadget.

<button data-role='button' data-text='<img src=foo
— onerror=alert(1)>'>

Figure 2: Attack payload for Figure 1.

expression is deployed, any script whitelisted through nonces or
hashes can programmatically (i.e., using createElement and append-
Child, not document.write) add additional scripts. This enables
whitelisted scripts to propagate the trust put into them. Moreover,
’strict-dynamic’ disables any host-based whitelist. As it can only
ever be deployed with hashes or nonces, having ’strict-dynamic’
also means ’unsafe-inline’ has no effect, as this is ignored in
the presence of hashes or nonces. Notably, though, support for
’strict-dynamic’ is limited and not currently supported by Sa-
fari or Microsoft Edge [16].

After a blog post from Homakov [8], which showed that CSP
could be leverage to leak sensitive path information when a re-
source is redirected, CSP Level 2 adopted a relaxed path matching
scheme. In particular, assume the following CSP:

script-src https://redir.com https://cdn.com/benign.js

In this case, the policy whitelists only a single script from cdn.com.
However, assuming that redirect.com contains a URL which, in-
stead of delivering actual content just sends a 30x redirect to the
browser (see also Section 2.4), CSP’s matching algorithm will ig-
nore the paths component of any entry in the whitelist, and al-
low scripts to included from any origin for which at least one re-
source is whitelisted. In this example, this would enable an ad-
versary to include a script from https://redir.com?target=https:
//cdn.com/vulnerable.js. Therefore, in case a whitelisted element
contains a redirect where the target is under the control of an
attacker, CSP’s restriction capabilities are partially crippled.

2.3 Script Gadgets

Lekies et al. [14] discovered that it is not necessary to directly
inject malicious markup with JS code into a Web site to perform an
XSS attack. Instead, fragments of legitimate JS code, so-called script
gadgets, can be used to inject or execute malicious payloads. Figure 1
shows an example of such a script gadget. The code iterates over
all buttons (lines 1 and 2), extracting the attribute data-text, and
setting the corresponding button’s innerHTML property. Therefore,
instead of injecting a script tag, the attacker can simply add a button
shown in Figure 2. If injected into the page itself, this would not
be executed as JavaScript since the data-text attribute has no
special meaning, which would require evaluation as HTML markup.
However, when the script gadget accesses the property and sets
the innerHTML property, the attacker’s code is executed.

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

<!-- injected by an attacker -->

<div id="someelement">

<script src="//attacker.org/attack.js"></script>
</div>

<!-- existing code -->

<div id=otherelement></div>

<script nonce=random>
$("#otherelement") . html($("#somelement") . html());
</script>

Figure 3: jQuery example for a script gadget.

Important for our work is a script gadget’s ability to bypass
existing CSP restrictions. In the simplified example, the attacker’s
code (after written by the gadget) is contained in an event han-
dler, which would not be executed if CSP is deployed without
’unsafe-inline’. Moreover, writing a script tag does not help
either, since an assignment of innerHTML will not execute any
script tags according to the HTML specification [29].

To understand the impact of such gadgets on CSP, we look at
a slightly more involved example using jQuery, as shown in Fig-
ure 3. We assume that scripts are whitelisted through nonces, and
’strict-dynamic’ is used. Notably, the html function in jQuery
is actually more than a wrapper around innerHTML. In particular,
if script elements are detected within the HTML being passed to
the function, those script elements will either be passed to eval
(in case of inline scripts) or result in a programmatic addition to
the document (for external scripts). Hence, while CSP would stop
the browser from directly loading the attacker’s injected script,
the script gadget would parse the script, and add it to the DOM
through createElement and appendChild. Since this script is nonced
and ’strict-dynamic’ is used, the browser would now load and
execute the attacker’s code.

2.4 Open Redirects

An HTTP redirect is an automatic redirection of one URL to another,
usually indicated by the 3xx HTTP status code [2]. This redirection
of URLs can, for example, be used to temporarily redirect requests
to another server if the original server is under maintenance. In
order to create a more dynamic way of redirecting to other pages,
the target URL may be specified by for example HTTP parameters
as depicted below.

$redirect_url = $_GET[’redir’];
header("Location: ".$redirect_url);

However, if the target of the redirect is not validated properly
on the server-side, an attacker can use this to cause a redirect to
an arbitrary target. Generally speaking, this can be used to trick
users into hiding the actual source of content. As an example, open
redirects may be used by attackers in phishing campaigns, as users
may only check the URL before clicking it (pointing to a seemingly
benign site), but not after a redirect has occurred (to the attacker’s
page). For our use case, such an open redirect becomes especially
problematic in combination with CSP, as CSP’s matching algorithm
for whitelisted sources ignores any paths when a resource is loaded
as the result of a redirect.

https://redir.com?target=https://cdn.com/vulnerable.js
https://redir.com?target=https://cdn.com/vulnerable.js

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

&
B

Figure 4: Attacker Model for CSP bypass

3 ATTACKER MODEL & RESEARCH
QUESTIONS

In this section, we explain our threat model and its preconditions
in detail. Furthermore, we present our main research question and
the intermediary goals of our work.

3.1 Threat Model

In this work, we investigate to what extent CSPs can be bypassed by
sideloading libraries with script gadgets from whitelisted parties.

Therefore, we assume a Web site is using a CSP that is not trivially
bypassable in order to mitigate the impact of markup injections.
In this CSP, the script-src directive has whitelisted all necessary
JavaScript sources for the Web site, including a script-rich third-
party domain (e.g., a CDN) that also hosts a library containing
a script gadget. We do not assume that the site itself necessarily
makes use of this library. However, we do assume that this site
suffers from a markup injection vulnerability, allowing an attacker
to insert arbitrary markup into the application. The actual attack
for bypassing the CSP is divided into the following steps, which
are also pictured in Figure 4:

(1) The attacker utilizes the markup injection to add the attacker
payload to the Web site. This payload consists of two parts:
First, a script tag that points to a library containing a script
gadget hosted by a whitelisted party (e.g., Angular]JS). Second,
a piece of markup which itself will not be executed (e.g., a
button as discussed before).

(2) The injected script tag loads the gadget-containing library
into the Web site. The CSP does not intervene, because the
third party that hosts the script is whitelisted as a trusted
script source, meaning the library is added to the site’s exe-
cution context.

(3) Now that the script gadget is present on the Web site, the
second part of the injected payload triggers this gadget to
execute the attacker’s malicious JavaScript code.

In addition to the straight-forward loading of such a gadget li-
brary from a whitelisted host, we also consider the case of open
redirects. As explained before, when a redirect occurs, CSP’s match-
ing rules do not consider the path of a resource anymore. Hence,
assuming that a site requires some resources from a site which also
hosts libraries with gadgets, but whitelists those scripts explicitly
by their full URL, a single whitelisted host with an open redirect

Sebastian Roth, Michael Backes, and Ben Stock

suffices for a bypass. In that case, the attacker injects a script tag
pointing to the open redirect site, pointing the redirect target to
the gadget library. CSP then checks to see if the host of the said
library is contained in any whitelist entry, and loads the script.
Thus, if any of the whitelisted sources suffers from an open
redirect vulnerability, we can sideload the gadget via this redirect,
although only another script from the gadget source is whitelisted.

3.2 Research Question and Goals

The main research question of this work focus is: How badly do
script gadgets impair a site operator’s ability to deploy a secure CSP?
This question can be divided into the effectiveness of bypasses in
real-world applications as well as the theoretical exploitability if
all Web sites would deploy a CSP that restricts script sources. To
answer this question, we need to reach a number of intermediary
goals. For actually bypassing a policy using a script gadget, it is
necessary to know the sources that host the corresponding libraries,
such that we can sideload them into the targeted Web site. By
collecting these sources, we can determine how many different
sites host libraries with script gadgets. To further increase the
effectiveness of our attack, we need to learn open redirect URLs.
With those vulnerabilities, we can utilize the redirect-based path
relaxation attack described in Section 2.2 to still sideload a script
gadget, although the source is only whitelisted as a URL to other
scripts on the same domain. The collection of the open redirects in
real-world applications allows us to determine to what extent these
can be used for additional bypasses. Since the bypassability of most
of the real-world CSPs was shown by several publications [3, 23, 27],
we first focus our investigations on those CSPs that are not trivially
bypassable. This allows us to investigate how script gadgets and
open redirects can still undermine many of the handful of secure
policies on the Web. Therefore we first need to define how a policy
aimed at restricting script content has to be designed such that
it works effectively. By collecting the CSPs that are present in
modern Web applications and analyzing them according to our
effectiveness definition, we can see how many Web sites are using
CSP for effectively mitigating XSS attacks. Finally, given that the
number of sites that make use of a sensible CSP is minuscule, we
also conduct a hypothetical analysis based on CSPs generated from
the used script sources of the top 10,000 Web sites.

4 BYPASS PREPARATIONS

The first step towards analyzing how susceptible sites are to side-
loading script gadgets is to gather two important pieces of infor-
mation. This entails the detection of URLs on which known script
gadget libraries are hosted. To that end, using an automated crawler,
we investigate the scripts regularly used by the top 10,000 Web sites
and classify each script to determine if it is known to contain script
gadgets. In addition to this, given the decision of the CSP stan-
dard’s authors to relax host matching in case of redirects, we also
need to create a list of URLs that have open redirects. As part of
our crawling setup, we, therefore, record all network requests, par-
ticularly focussing on resources that redirect to yet another URL.
Subsequently, we apply two matching algorithms to determine if
the redirect target was contained in the original request’s URL and,
if so, mark that URL as an open redirect.

Assessing the Impact of Script Gadgets on CSP at Scale

4.1 Dataset Curation

Our first goals are to assess how many sites are hosting libraries that
carry script gadgets and determine which sites allow for open redi-
rects. To address these, we crawl data from the main page as well as
all same-site subpages of the Tranco [12] Top 10,000 Web sites list,
created on May 10, 2019, with a maximum of 1,000 distinct URLs per
site. To visit these pages, we utilize Google’s browser instrumenta-
tion framework puppeteer [6] that instruments a Chromium Web
browser. During each visit of a page, the crawler intercepts every
HTTP response regardless of the content type. If such a response
is the result of a redirect, we check whether the URL that triggered
the redirection has its target mentioned in one of the parameters.
Here we considered not only the full URL but also domain, path, or
their base64 encoded equivalents being present. As soon as one of
those occur in the URL, we replace it with the URL of a script hosted
by GoogleAPIs!. Then we request the URL with the new target and
check if the response matches this script. If so, we consider this
redirect to be open and thus attacker-controllable.

In this procedure, we also capture whole chains of redirects,
because each and every redirect results in an additional request be-
ing issued. Additionally, if the content type is related to JavaScript
and the actual source code of the requested script is present in
the response, we use Retire. js [17] to investigate whether this
JavaScript code contains known frameworks or libraries. We de-
cided to use Retire. js, because in contrast to other applications to
analyze JS libraries (such as Wappalyzer), it is free, can do detection
locally without relying on (possibly rate-limited) APIs, and is easy
to embed in our crawling infrastructure. Using this information, we
create a mapping between hosts and the publicly available libraries
or frameworks, which contain script gadgets provided by them as
well as domains that use those libraries in their execution context.
To use the collected library sources for our CSP bypass, we inter-
sect the libraries with the script gadget containing libraries shown
by Lekies et al. [14], and created exploits based on their PoCs 2.

Thus, we are able to see how common the usage and the hosting
of these libraries are in the wild. Later on, we can reuse this dataset
in our bypass generation to sideload a script gadget containing a
library from a whitelisted source.

With the collected redirects, we then investigate which of the
query parameters in the redirection URL determines the target of
the redirect. Therefore, we search for the target URL or its base64 en-
coded equivalent in the query parameters of the URL that triggered
the redirect. In case of a match, we then change the correspond-
ing part of this URL to a script source of our choice. To validate
whether the redirect we found is indeed an open redirect, we load
each of the redirection URLs with the new target of our choice. In
case of successful loading the new target via this link, we store the
redirection URL as an open redirect.

4.2 Script Gadget Prevalence

Using our dataset, we are able to detect 28 different libraries loaded
from 9,909 different sites. To investigate the prevalence of script
gadgets, we intersect these libraries with the libraries known to

!https://ajax.googleapis.com/ajax/libs/angularjs/1.5.6/angular.min.js
Zhttps://github.com/google/security-research-pocs/blob/master/script-
gadgets/bypasses.md

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

Table 1: Distribution of script gadget libraries.

Library URLs Hosting Sites
jquery 54,659 9,242
bootstrap 8,259 2,851
angularjs 2,346 947
dojo 116 82
backbone.js 318 161
vue 51 27
ember 8 7

contain script gadget as identified by Lekies et al. [14]. Further-
more, we investigate how many hosts contain these libraries on
how many distinct URLs. Notably, as soon as only a query parame-
ter has changed, we count this as a new URL. The results of this
investigation are shown in Table 1. The number of different hosts
is much higher than the size of the actually crawled dataset, given
that inclusions often occur from sites outside the Top 10,000.

We can attribute this to the fact that we not only consider the
crawled Web site itself, but also all third parties that are used by
those Web sites. The jQuery library is by far the most frequently
used library in the wild that contains a script gadget in specific
versions. However, the gadget from jQuery only enables an attacker
to bypass strict-dynamic in a CSP, and also to bypass several XSS
filters, but not the bypass of a host-based CSP whitelist. Additionally,
the script gadget in jQuery cannot be triggered without an explicit
call to a jQuery function with attacker-controlled input. The second
most frequently used gadget library, Bootstrap, also only contains
gadgets to bypass ’strict-dynamic’ and XSS filters. However, the
third entry, Angular]S, is hosted on 947 different sites, and its script
gadget enables us to bypass CSP host-based whitelists and execute
our payloads without additional prerequisites. Other script gadget
libraries that are capable of bypassing host-based whitelists are
AureliaJS and Polymer]JS. However, we did not find any occurrence
of them in our dataset. The absence of these libraries is either
because we only crawled the first-level subpages or because, in
some cases, Retire.js does not correctly classify libraries because
the Web developer customized their version.

In addition to the libraries we discovered this way, we augmented
our dataset with alist > of publicly known sources for Angular]S. We
checked this list to ensure all the listed URLs still host the libraries
in question, making sure they are viable targets for exploitability.
Notably, this adds gstatic.com to the list of viable hosts, which
proved to be one of the most successful bypass enablers. This was
not discovered in our crawl as it is seemingly not used by any site
(according to a search on PublicWWW*).

4.3 Open Redirects

We found 4,902 URLs, from 114 distinct domains that can be used
as an open redirect. As depicted in Table 2 on some domains nearly
500 distinct URLSs can be used to perform open redirects. Note that
these domains are not necessarily part of the top 10,000 Tranco list

3https://github.com/google/csp-evaluator/blob/master/whitelist_bypasses/angular.js
“https://publicwww.com/websites/%22gstatic.com%2Ffsn%2Fangular_js-
bundlel.js%22/

https://github.com/google/csp-evaluator/blob/master/whitelist_bypasses/angular.js
https://publicwww.com/websites/%22gstatic.com%2Ffsn%2Fangular_js-bundle1.js%22/
https://publicwww.com/websites/%22gstatic.com%2Ffsn%2Fangular_js-bundle1.js%22/

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

Table 2: Top 8 hostnames with the highest number of URL
that allows for open redirects.

Hostname URLs
1 m.adnxs.com 491
2 sync.mathtag.com 390
3 ssum-sec.casalemedia.com 289
4 ml314.com 242
5 sync-tm.everesttech.net 236
6 pixel.tapad.com 233
7 pm.w55c.net 221
8 image6.pubmatic.com 200

Table 3: Top 8 URL query keys with the highest number of
distinct domains that use them for targeting.

key Domains URLs
1 redir 22 1612
2 url 14 203
3 r 12 230
4 redirect 8 172
5 cburl 8 43
6 nokey 6 314
7 rurl 6 308
8 «¢b 3 304

but rather domains that were used by those sites to load resources.
Most of the top domains with the highest number of open redirect
URLs are ad or analytic providers. This fact is especially important
for our generation of CSP bypasses because ad and analytics scripts
are whitelisted frequently in real-wprld CSPs. We also investigated
which query parameter is how frequently used to define a target
of a redirection. Therefore we analyzed each of the validated open
redirect URLs to extract the query parameter with the placeholder
as value. As depicted in Table 3 the most prominent parameter used
for redirects is redir (1,612 distinct URLs). Also, many of the URLs
(314) use the target directly as a parameter instead of specifying
a key for defining the target value. With this list of frequently
used query parameters, one can use customized search queries,
like Google Dorks, to find open redirect vulnerabilities without the
necessity of crawling thousands of Web sites.

5 REAL-WORLD IMPACT

After having collected real-world data on both URLs pointing to
known script gadget libraries as well as a list of open redirects, we
now turn to our main research question, namely the severity of
the impact of script gadget sideloading on CSPs. To achieve this,
we first collect the CSPs sent by the Web applications in our top
10,000 list. Based on the notion of a meaningfully secure policy
for script content restriction, we then evaluate how many sites
could potentially fall victim to sideloaded script gadgets due to the
presence of whitelisted hosts with known script gadgets. Contrary
to Weichselbaum et al. [27], we do not simply assume that this

Sebastian Roth, Michael Backes, and Ben Stock

<div ng-app ng-csp>
<div ng-click="x=$event" id=f tabindex=0>
<h1 id="trigger">Click me!</h1>
</div>
<div ng-repeat="(key, value) in x.view">
<div ng-if=key=="window">
{{ value.alert = [1].reduce(value.alert, 1) }}
</div>
</div>
</div>

Figure 5: Example injection to trigger alert via the script gad-
get present in the Angular]S library.

matching is sufficient, and instead build a method to confirm ex-
ploitability in practice by simulating an injection flaw. This allows
us to highlight a shortcoming of this prior work, namely that not
all libraries detected as Angular]S are, in fact, scripts that can be
leveraged for a gadget-based attack.

5.1 Methodology

To generate exploits that can bypass a CSP, we need information
about the CSP that is used by the target, an HTML markup injec-
tion to execute our payload, a URL for a library containing a script
gadget, as well as a payload which can trigger the script gadget. In
some cases, we may also use one of the discovered open redirect vul-
nerabilities to sideload a script gadget library. During the crawling
procedure explained in Section 4 we also collected all CSP HTTP
headers as well as all policies that are deployed as HTML meta tags
on the target sites. We parse every collected policy according to
the parsing instructions of the CSP Level 3 standard [26]. Given
our attacker model, which aims to bypass a policy that restricts
script content by sideloading a gadget, we only consider Web sites
that have a meaningfully secure CSP for content restriction. In
particular, we consider that a site has such a policy iff:

(1) It uses the script-src directive or the default-src direc-
tive as a fallback

(2) It does not use the * as a wildcard, which would whitelist
any possible script source.

(3) It does not whitelist entire schemes like data: or https:.

(4) Tt does not contain ’unsafe-inline’, which would allow
the use of inline JavaScript.

As an actual bypass of a host-based CSP script whitelist, we
use a script gadget found by Lekies et al. [14], which is present
in the Angular]S library. Figure 5 shows an example markup that
uses the script gadget present in Angular]S to call the JavaScript
window.alert function, without injecting any script tag or event
handler. The script gadget in Angular]S is one of the most severe
ones that allow for arbitrary code execution, and Angular]S has the
best distribution according to our data from Section 4. Furthermore,
in comparison to other gadgets, it has no preconditions except for
the presence of the Angular]S library. The restriction to only use
Angular]S as a script gadget should have no severe impact on our
bypassability results. According to our data from Section 4, most of
the library providers are CDNG. If our attacker has the capability to

Assessing the Impact of Script Gadgets on CSP at Scale

sideload a script from one of these CDNS, it makes no difference
which of the available script gadget libraries is used for the bypass.

We used the dataset from Section 4 to create a list of sources that
hosts the Angular]JS library. For each Web site with a secure CSP
according to our definition, we generate an exploit that simulates a
markup injection to inject a script tag that loads Angular]S from one
of the angular sources that are whitelisted in the respective CSP.If a
Web site whitelists only one specific script from a CDN, our exploit
generator uses an open redirect vulnerability found by the proce-
dure explained in Section 4 in one of the whitelisted sources such
that the exploit is still capable of sideloading the Angular]S library
from the CDN. Now that the vulnerable library is present on the
Web site, we abuse the script gadget to execute our own JavaScript
code. Our crawler simulates a markup injection to validate whether
the bypass of the policy works in the wild. For simulating a markup
injection, we utilize puppeteer’s page.evaluate function to add
our markup to the Web site. Importantly, this markup in the absence
of the Angular]S library does not result in code execution.

5.2 Results

In total we were able to successfully access 998,712 URLs. From this
dataset we collected CSPs from 2,076 different Web sites. Only 965
of those domains actually used the script-src or default-src
directive. Out of these, 248 have securely done this with respect
to our definition from Section 5.1.For the 248 Web sites that use a
secure policy, we generated exploits for 29 of those sites, of which 24
could be successfully bypassed using our attack. While this number
is very low when compared to initially crawled dataset, we stress
that the bypass ratio of around 10% is for sites with a tight CSP in
the first place. Hence, while the outlined attack does not impact a
large body of sites, it does underline that even high-profile sites
can be prone to bypasses through script gadgets and open redirects,
indicating the dangers of not having full knowledge about code
hosted on third-party sites.

To understand why some of the generated exploits could not
be validated, we manually investigated these cases. We found that
these could be attributed to misclassifications by retire.js, which
incorrectly detected Angular]S when only a module of Angular
(such as angular-sanitize) was present. Most of the Angular
sources used for the exploits are only successfully used as a bypass
for one Web site. This is because those are CDNs that are not
publicly used CDNSs, but rather CDNs that are used by specific Web
sites such as alicdn.com for aliexpress. com. However, three of
the Angular sources are used for more than one of the bypasses, as
depicted in Table 4. Notably, some of the sites were vulnerable to
multiple bypasses because they whitelisted multiple of the angular
sources. Thus, the numbers shown in this table are intersecting.
The Angular]S source www. gstatic. com enables us to bypass the
CSP of 20 distinct domains. In our dataset collected for Section 4,
we found evidence that at least four of the exploited websites used
JavaScript that originates from www.gstatic.com. In all cases, it
seems that they are only using gstatic to load the reCaptcha API or
the Chrome Cast Application Framework. Thus they would have
been able only to whitelist those specific URLs, such that an attacker
would need an open redirect vulnerability in another whitelisted
source to actually bypass their CSP. The bypasses that we found

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

Table 4: Top 3 Angular]S sources used in real-world exploits.

Angular Source Domain Affected Domains

gstatic.com 17
cloudflare.com 5
googlesyndication.com

in the wild were all possible due to direct sideloading the script
gadgets. Only two of these nevertheless exploitable bypasses would
also be possible via open redirect-based sideloading (as this disables
CSP’s path matching). Thus, those would have been vulnerable
even if, e.g., reCaptcha were to be whitelisted with the entire URL.

5.3 Selected Case Studies

To get a better understanding of how those bypasses can happen, we
take a closer look at two examples that deploy a seemingly secure
CSP but are still exploitable when script gadgets are sideloaded. At
the time of writing, we have notified both parties about the issue
with their script-src directive.

5.3.1 Snapchat. First, we focus on snapchat.com, which deployed
a CSP with the script-src directive depicted in Figure 6. At the
first look, this script restricting directive appears to be a strict
and secure policy. The policy itself does not contain any danger-
ous expressions like *unsafe-inline’. Moreover, only resources
from the site itself and a single other party, namely Google, are
trusted as third-party scripts. However, one of the whitelisted
sources is www. gstatic.com, which enables our attacker to side-
load https://www.gstatic.com/fsn/angular_js-bundlel.js and subse-
quently abuse the script gadget from Angular]JS to execute arbitrary
malicious payloads. Weissbacher et al. [28] have shown that creat-
ing a secure CSP requires a massive effort. While this policy may
suffice to protect against regular types of XSS (importantly, the
whitelisted hosts do not contain JSONP endpoints which could be
used to execute code [27]), Snapchat’s trust in www. gstatic.com
makes them susceptible to our outlined attack; effectively render-
ing the mitigation through CSP ineffective against an XSS attacker.
During our data collection procedure, we have not found any evi-
dence that gstatic.com is actually used by Snapchat. This might
originate from the fact that we automatically crawled the Web site
without our crawler being logged into the Web application. Thus,
only a fraction of the features which are available for real-world
users were actually visited by us.

5.3.2 Spotify. The second example we consider is spotify.com
(see Figure 7). Here, we again find that www.gstatic.com is white-
listed, opening it up to the previously outlined attack. Assuming

script-src 'self'
https://www.google.com/
https://www.gstatic.com/
https://apis.google.com/
https://www.google-analytics.com

Figure 6: CSP script-src of snapchat.com.

https://www.gstatic.com/fsn/angular_js-bundle1.js

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

script-src 'self'
‘unsafe-eval' 'sha256-HASH'
www . google.com
www.gstatic.com
sb.scorecardresearch.com

Figure 7: Abbreviated CSP of spotify.com.

that Spotify became aware of the issue with sideloaded gadgets,
they could choose to explicitly whitelist on the necessary script,
namely the reCaptcha APIL This, however, would not suffice to
secure the side from a script gadget-based attack. The reason is
the fact that sb. scorecardresearch. com is whitelisted. Our anal-
ysis showed that this host has an open redirect. Therefore, this
could be used by the attacker to add a script resource pointing to
the open redirect, making sure that the redirection target is Angu-
larJS on gstatic. com. As discussed before, CSP disables the path
matching if a resource is loaded as the result of a redirect, meaning
that any script from gstatic.com would be allowed. This exam-
ple highlights the potential impact an open redirect can have on a
CSP’s security. Hence, in order to secure one’s application properly
against the dangers of sideloaded scripts, next to ensuring that no
hostnames, from which Angular or other libraries could be loaded,
are whitelisted, a site operator also has to make sure that none of
the other whitelisted entries contain an open redirect.

6 HYPOTHETICAL IMPACT

Our findings thus far have shown highlighted a number of insights
already: first, only around 10% of all sites in our dataset even deploy
CSP. Applying our notion of a reasonably secure policy, only one
in four of those sites can be considered to be secure against regular
script injection. Notably, though, our analysis has shown that of
those, around 10% are susceptible to bypasses, including major
organizations like Snapchat and Spotify. Given that these high-
profile sites are already trusting only a handful of entities (e.g.,
Snapchat only whitelists their own site and Google properties), we
cannot assume that the average Web site could deploy a similarly
strict policy. Thus, we extend our research question such that it
also covers a hypothetical case: what if every site in the top 10,000
were to deploy a sane CSP today? To understand the severity of the
impact of script gadgets on this desirable future of CSP deployment,
we first discuss how we generate such policies for the Tranco Top
10,000 sites. We then follow up with an analysis on how many of
those policies could be bypassed with script gadgets.

6.1 Methodology

To further investigate the impact of the third-party based CSP
bypass, we take a look at the prevalence of this issue under the
assumption that all sites were to deploy a sensible CSP. For this,
we rely on the information already collected (see Section 4.1) about
scripts that are included by the analyzed sites. Although there are
more involved approaches to generate a CSP [5, 9, 18], we resort
to generating CSP in a light-weight fashion. In particular, while
many sites could not deploy CSP because of their reliance on inline
scripts, we focus on curating only host-based whitelists, as this is

Sebastian Roth, Michael Backes, and Ben Stock

scriptSrc = set()
data = clusterSources(scriptSources)
for host, urls in data:
scriptSrc.add(host) if len(urls) > 1 else scriptSrc.add(urls[0])

Figure 8: Generate script-src algorithm.

the primary target for the attacks. While removing inline event
handlers is infeasible for many sites (and is a major contribution
factor to CSP’s lack of success [19], our hypothetical experiment is
meant to understand the impact of script gadgets on CSP’s ability
to mitigate script injection. Therefore, we assume that each site
could get rid of inline handlers and nonce all inline scripts, i.e., the
generated CSP would be a host-based whitelist only.

Our CSP script source generation algorithm first clusters the
script sources used within the crawled site based on their host. This
provides us with a mapping of hostnames to script URLs on said
hosts. If a given host only hosts a single script, we add the complete
URL to the CSP. For all hosts with multiple URLs, we align our
implementation with what our observations in the wild indicate:
we add the full hostname to the CSP.

Notably, our procedure of automatically generating script-src
directives based on the script usage we found is only a lower bound
for the CSP. Due to this natural limitation of automated crawling,
we might have missed the usage of libraries that would allow ex-
ploitation, as mentioned in Section 5.3. Therefore also our results
regarding the exploitability of the hypothetical generated CSPs for
the Top 10,000 Tranco Web sites, is only a lower bound.

A code example of this algorithm that generates sensible script
content restricting directives is depicted in Figure 8. With this
algorithm we automatically generated script-src directives that
are secure with respect to our definition from Section 5.1. We reuse
our exploit generation and validation presented in Section 5 to
investigate whether they would be susceptible to a bypass or not.
In our preliminary tests, we found that not all libraries, which are
detected as being Angular]JS, actually contain a script gadget; in
particular, both the modules cookie and sanitize of Angular are
detected as being Angular]S. To ensure that our analysis does not
yield false positives, we built a simple test page, hosted locally. This
page contained the payload to be consumed by the gadget. Next,
for each URL pointing to what was identified as Angular]JS, we
included this as a script and determined if the injected payload was
executed. If not, we marked the URL as a non-working version (w.r.t.
our attack) of Angular]JS. In doing so, we found that 1,399 of 2,349
angular-labeled libraries were usable for our attack. Based on this
list, we determined if the generated CSP would allow the inclusion
of at least one of the 1,399 scripts; which would essentially allow
an attacker to sideload a working version of Angular]JS.

6.2 Results

For the remaining sites, we were either redirected off-site (e.g., to a
data protection regulation interstitial), or they did not respond to
HTTP requests. One such example is samsungcloud.com, which
does not resolve to an IP address (with or without www), but works
for support.samsungcloud. com (according to a check on Google).

On average the generated script-src directives for the remain-
ing pages contained 9.82 source expressions. The most popular

Assessing the Impact of Script Gadgets on CSP at Scale

Table 5: Top 8 Angular]S sources used for direct hypothetical
bypasses.

Angular Source Host Affected Sites
ajax.googleapis.com 931
www.gstatic.com 477
tpc.googlesyndication.com 217
cdn.jsdelivr.net 127
cdn.spotxcdn.com 53
g.alicdn.com 29
nebula-cdn.kampyle.com 28
cdn.playbuzz.com 23

external source expression was https://www.google-analytics.com/
analytics.js, which would need to be whitelisted by 5,216 distinct
sites. The Web site with the highest number of whitelisted entries
(226) was www2.deloitte. com. However, this number is only that
high because our CSP generation only worked with distinct host-
names and ignored if it would be easier to whitelist the parent do-
main. Therefore sp<randomString>.guided.ss-omtrdc.net is
whitelisted 159 times instead of only once. In contrast to this high
number, 2,024 sites only needed one source expression in their CSP,
which was, in most cases, only the ’self’ expression. We note
that our analysis does not consider inline scripts, i.e., to even reach
such a comparatively secure state, those sites would have to refrain
from inline scripts or deploy nonces or hashes.

Out of the 8,330 Web sites for which our CSP generation yielded
a script-src, we found that the policies for 3,441 sites were actu-
ally bypassable through sideloading. Table 5 shows the hosts most
frequently chosen by our exploit generation to include Angular]S.
It is worth noting that contrary to the real-world exploitability,
www. gstatic.comis not the most impactful host. This is due to the
fact that our CSP generation resorts to whitelisting full URLs if only
a single script is included from a given host. In particular, we found
that while resources from www.gstatic.com are widely used, in
most cases, the only used library is the reCaptcha API. Instead, the
best AngularJS source used as direct sideloading targets for our
hypothetical exploitation, with 931 affected sites, is Google’s CDN
(ajax.googleapis.com). One reason why this CDN, or CDNs in
general, perform that well is that, developers tend to use the same
CDN for multiple libraries, leading to a fully whitelisted CDN host.

Another major difference in comparison to the real-world ex-
ploitability is that in the case of the hypothetical bypasses, 1,654
Tranco sites would only be attackable due to the open redirects.
This again can be attributed to our CSP generation only whitelist-
ing full URLs when a single resource from a host is required. As
depicted in Table 6 most of those open redirects (482) were possible
due to securepubads.g.doubleclick.net being whitelisted.

The fact that we were able to automatically generate and validate
bypasses for the artificially created CSPs of more than 3,441 sites
that are part of the Tranco Top 10,000 indicates the severity of our
bypass. We also note the severe impact of open redirects, especially
on a popular site such as Doubleclick. One potential solution to
sideloading is the usage of hashes and nonces in CSP. The problem
of nonce-based policies, though, is that especially ad providers tend

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

Table 6: Top 8 Open Redirect sources used in the hypotheti-
cal exploits.

Open Redirect Host Affected Sites
securepubads.g.doubleclick.net 482
sb.scorecardresearch.com 37
bs.serving-sys.com 33
ib.adnxs.com 24
dsp.adfarm1.adition.com 19
secure.adnxs.com 18
gum.criteo.com 17
contextual.media.net 10

to add additional scripts to the page, which would either necessitate
them to explicitly add nonces to the newly introduced scripts or,
more likely, force the first party to deploy strict-dynamic [27].
However, if strict-dynamic is present, nearly all libraries with
script gadgets found by Lekies et al. [14] enable an attacker to side-
load other scripts. This, in turn, would allow an attacker to sideload,
e.g., Angular]S, opening the site up for our outlined attacks.

6.3 Hypothetical case study: reddit.com

As a sanity check and to understand why our secure CSP script
source directives are vulnerable against our bypass, we manually
investigated the generated policies as well as our generated exploits.

The social news aggregation site reddit.com does not deploy
a CSP in its real-world application, thus is was targeted by our
hypothetical analysis. The generated script-src directive is depicted
in Figure 9. Due to the nature of our generation, the policy is secure,
according to our definition from Section 3. It uses jQuery loaded
using the googleapis.com, but no other script from this source, thus
it is whitelisted as full URL. A script source which is present in the
whitelist as a full domain is securepubads.g.doubleclick.net,
which is due to the fact that scripts loaded from this domain have
random identifiers or timestamps in their path. Given that this site
is fully whitelisted, but importantly also contains open redirects.
As discussed before, CSP relaxes the path matching if a resource
is loaded as the result of a redirect. Thus we are able to load the
Angular]S library from ajax.googleapis.com although it is not
explicitly present in the whitelist.

This representative example is only one of the 1,654 sites that
are attackable due to open redirect vulnerabilities. In order to se-
cure their site from this vulnerability, Reddit would need to move
from host-based whitelisting to hash and nonce based whitelisting.

script-src
'self’
https://ajax.googleapis.com/ajax/.../jquery.min.js
https://adservice.google.com/adsid/integrator.js
securepubads.g.doubleclick.net
www. googletagservices.com
www.redditstatic.com

Figure 9: Generated (abbreviated) CSP for www.reddit.com.

https://www.google-analytics.com/analytics.js
https://www.google-analytics.com/analytics.js

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

However, due to several scripts loads being triggered programmati-
cally, they would need to use the strict dynamic mode. However,
the strict-dynamic expression is not universally supported by
all browsers, as mentioned in Section 2.2. Thus, Reddit would ei-
ther need to pass along nonces programmatically or would have a
CSP that is incompatible with some browsers. Furthermore, script-
dynamic has shown to be bypassable by several script gadgets. Thus,
removing the vulnerability would only be possible by massively
changing reddit.com as a web application.

6.4 Limitations and Potential Modifications

For the validation of the CSP bypasses, we assume that a markup
injection vulnerability is present on every Web site in our dataset.
Notably, the goal of our work is not to show that Web sites are
vulnerable, but we want to show how hard the generation of a
secure host-based whitelist is on the modern Web. CSP was initially
designed to mitigate the effect of XSS attacks and to investigate
the effectiveness of host-based whitelists in the modern Web. We
only investigate CSP in isolation. In addition to that, research has
shown that a non-negligible fraction of sites suffers from markup
injection vulnerabilities [13, 15, 30].

Furthermore, even if we could find XSS vulnerabilities in the wild,
automatically verifying exploitability is infeasible due to external
effects caused by, e.g., Web application firewalls. Irrespective of
this drawback, we find that there is no reasonably ethical way
to confirm the problem at scale, and hence refer to our discussed
simulation of an injection (fully on the client-side).

One cornerstone in our whitelist generation is the threshold for
adding an origin instead of multiple URLs from the same origin.
Naturally, the higher this threshold, the lower is the chance of
whitelisting an entire origin and thereby a script gadget library. We
experimented with changing the number of URLs that are necessary
to whitelist a full origin. The results of this analysis are shown in
Figure 10. The x-axis shows the threshold, i.e., the value 2 implies
that at least URLs must be loaded from the same origin before we
add the origin. This is the baseline we used for our measurements.
Naturally, the higher the threshold, the more secure the site is.
However, it must be noted that we did not achieve any meaning-
ful coverage of the applications in our crawl, i.e., the amount of
included JavaScript we observed is likely a lower bound.

7 DISCUSSION

Analyzing the root causes of the issues first described by Weichsel-
baum et al. [27], we find that several factors contribute to the danger
of script gadgets. First, these snippets bypass one of the fundamen-
tal assumptions of CSP: that, given the absence of unsafe-eval,
only code originating from the developer’s whitelisted sources can
be executed. In particular, script gadgets enable the transformation
from string data to code (similar to what eval enables) and cannot
be controlled via CSP. This opens any site making use of a library
containing a script gadget to attacks. Importantly, though, another
major reason comes into play when considering our results of one-
third of sites being attackable even in the presence of a sane CSP,
namely hosting libraries for diverse purposes on the same origin.
In contrast, one major security benefit originates from the sep-
aration of content. As an example, social networks like Facebook

Sebastian Roth, Michael Backes, and Ben Stock

4 3000+ -600
® 2500 —+-———t+——+—+—F——==F =T~ -500%
Qo =
§ 2000 -400 5
= «Q
3 15004 L3005
1000 200

10 11 12 13 14 15 16

Figure 10: Impact of the URL to domain threshold.

or Twitter do not allow users to upload any content to their own
origins, but instead to twimg.com and fbcdn.net, respectively. The
reason behind this is simple: even though both sites likely employ
mechanisms to ensure that uploaded images are not HTML markup
or active objects like Flash (which, importantly retains its origin
if included from other sites), they employ a defense-in-depth ap-
proach. Hence, if an attacker manages to bypass upload filters to
upload HTML, this does not reside on the main page, and hence
cannot be leveraged to attack the sites.

Arguably, many of the sites we found to be vulnerable would
easily benefit if CDNs approached their different content in a simi-
lar fashion. In particular, if Google decided to split up their hosts
containing the reCaptcha snippets and Angular]S, sites leveraging
the reCaptcha APIs would not be susceptible to script gadget at-
tacks. We note that our crawler, in fact, did not detect Angular]S
hosted by gstatic.com, and we instead had to rely on a list of known
Angular]S sources. This highlights the absence of the necessity to
even host Angular]S on that particular site. While the same level
of protection as separating libraries could theoretically be achieved
by whitelisting the entire path to the reCaptcha API, our findings
regarding open redirects indicate that this does not suffice. Hence,
even if the full reCaptcha URL is whitelisted, as long as a single
other entry points to an open redirect, any scripts on the hosts of
the reCaptcha script can be loaded.

Another potential improvement for the Web’s susceptibility to
script gadgets is the removal of open redirects. As our analysis has
shown, sites that contain such redirect flaws are often related to
advertisement and analytics, which are used frequently and are thus
trusted by a large body of sites. Arguably, such open redirects may
well serve a purpose, e.g., an ad provider can leverage this URL first
to collect statistics about clicked links and subsequently redirect
users to the target site. Notably, though, this suffers from the same
problem as hosting all sorts of libraries on the same site: the sites
are mixing up different use cases under the same site. An easy way
of addressing this problem is to have specific (sub)domains, which
are only meant to be used for redirects. In this way, a site could
still whitelist an ad network’s entire domain for script content, but
given that this domain would no longer have open redirects would
no longer be susceptible to redirect-enabled script gadget attacks.

While prior work has already indicated the problem in real-world
policies, our hypothetical analysis adds another order of magnitude
to the problem: even in a perfect world, in which CSP is widely
deployed, the reliance of sites on third parties for their code en-
ables bypasses through the combination of script gadgets and open
redirects. Given that the CSP is unlikely to be changed due to the
perceived grave threat of leaking sensitive path information after

Assessing the Impact of Script Gadgets on CSP at Scale

redirects, we instead call on CDNs to resort to meaningful separa-
tion. In particular, Lekies et al. [14] already contains an extensive
list of script gadget libraries, which could be easily separated from
more meaningful content. This comes with the drawback that, as-
suming a site wants to use both AngularJS and the reCaptcha API
regularly, CSPs would become longer, it does nevertheless reduce
the attack surface for sideloading script gadgets.

Based on the result from Section 6, we argue that our former
definition of a meaningfully secure policy needs to shift when we
consider script gadgets. By trusting a domain, the developer does
not only trust those resources that they are directly loading, but
also every resource that is hosted by this domain. In order to create
a secure policy, the developer needs to be sure that none of the
trusted domains have any open redirects and/or are not hosting
a script-gadget library. In practice, such a priori knowledge is in-
feasible to come by, as even thorough crawls cannot find libraries
that are only included behind, e.g., logins. Hence, a developer may
spend significant efforts in hardening they CSP, which is bypassable
through an open redirect and/or gadget library on a whitelisted
sites. Furthermore, restricting a whitelist to sites that do not host
any gadget library blocks the site from using a CDN. Assuming
that no other whitelisted source suffers from an open redirect vul-
nerability, a developer needs to only whitelist full URLs. This may,
however, be brittle when considering that third parties often add
more scripts [10, 11], for which URLs can change, which would
violate the CSP. Hence, we overall find that the prevalence of script
gadgets on many widely used hosts severely impairs CSP’s ability
to mitigate XSS attacks.

8 RELATED WORK

In this section, we discuss how our work relates to prior research.
In particular, this covers works that investigate the (in)security
of CSP in the wild as well as mechanisms that can be used to
automatically generate CSPs or make applications compliant with
CSP. One of the earliest works on CSP was done in 2013 by Doupé
et al. [5]. The authors proposed a tool, which externalized inline
scripts, allowing for deployment of CSP without ’unsafe-inline’.
The first measurement study on the adoption of CSP in the wild
was conducted by Weissbacher et al. [28] in 2014. They found that
only 1 of the Top 100 Alexa sites enforced a CSP. To explain this low
adoption of the security mechanism, they tried to create policies for
three different hosts on their own and found that the creation of an
initial CSP requires massive engineering efforts. This is not only due
to finding and whitelisting all sources, which can be error-prone,
but also because the then-current CSP spec did not support nonces,
making inline scripts a severe roadblock for CSP deployment.
The insecurity of CSPs deployed in the wild was shown by two
works in 2016. Next to showing that well above 90% of unique poli-
cies discovered in the wild were trivially bypassable, Weichselbaum
et al. [27] also first indicated the danger of having whitelists with
Angular]JS-hosting sites. Notably, though, their paper assumed that
after detection of what seemed to be Angular]S (the paper claims
to do so by checking certain bytes of Angular]S, without going
into further detail) on a given site, a whitelist entry pointing to
that site would automatically be a bypass for CSP. In contrast, our

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

analysis has shown that this is not always the case, given the inaccu-
racies of detection libraries. Furthermore, their paper proposed the
strict-dynamic expression, which is also part of the CSP Level
3 standard in order to not require extensive application changes.
In contrast to Weichselbaum et al., we not only highlight potential
issues but validate our findings with PoCs, showing that merely
relying on library detection tools may yield false positive. We fur-
ther consider open redirects for the sideloading of script-gadget
libraries and created a hypothetical risk evaluation in a scenario
where every Web site is using a CSP that is not trivially bypassable.
Calzavara et al. [3] investigated similar problems in CSP deploy-
ment. During their longitudinal analysis over four months, the
authors found that CSPs changed less frequently than necessary.
Later on, they extended their work to a six months analysis. In
doing so, the authors discovered that the overall quality of CSP
slightly improved, essentially increasing the mitigation potential
against XSS attacks. They attribute this trend to the grown usage
of nonces in policies, although the authors also point out that the
majority of policies in the wild do not seem to be related solely to
script content restriction [4]. Our work has found a similar trend in
the usage of CSP, where only a minuscule fraction of sites deploy a
meaningful CSP (in terms of script code restriction).

Web applications’ struggle to deploy CSP was also investigated
by Kerschbaumer et al. [9]. They showed that many of the CSP
deploying Web sites use the unsafe-inline expression to avoid the
rewriting of their applications. In order to solve this problem, they
created a crowd-sourced learning system that is able to generate
CSP policies for a given application automatically. In addition, Pan
et al. [18] built a tool capable of generating CSP by rewriting sites,
showing that such an automated system works for the Alexa top
50 sites. While our work does not tackle the problem of rewriting
applications to be CSP-compliant, we leverage ideas from them for
the hypothetical analysis of what could be.

In recent years, attacks on CSP have become a prominent re-
search topic. In 2015 Hausknecht et al. [7] discovered that browser
extensions frequently perform invasive modification on both the
page content and the CSP. Van Acker et al. [23] showed that CSP is
not able to prevent data leakage, in particular, when DNS and re-
source prefetching are used as channels. In addition, a more recent
paper from Some et al. [21] showed that even if CSP is deployed,
given its inconsistent deployment throughout an application as
well as concepts like domain relaxation, it may be bypassable.

Most influential for our work naturally is the paper from Lekies
et al. [14], which first discussed the concept of script gadgets and
also mentioned the possible bypass of CSPs using Angular]S from
whitelisted sources. While Lekies et al. were rather unspecific about
which Web sites are exploitable, we generated and validated exploits
for real-world Web sites from the Tranco Top 10,000. Furthermore,
we do not only consider cases were the script-gadget containing li-
brary is actively used on a Web site, but also cases where we are able
to load this library from one of the whitelisted parties. In addition
to that, we try to probe the cause of why certain sites whitelist dan-
gerous script sources by analyzing the specific use cases of multiple
Web sites. Furthermore, we extend the analysis by hypothetically
evaluating the bypassability in case of CSP being deployed on every
Web site that we investigated. The first academic work that tackles
the problem of unvalidated or open redirects was Shue et al. [20].

ASIA CCS *20, June 1-5, 2020, Taipei, Taiwan

They created several heuristics in order to identify dynamic URL
redirections by searching for the http prefix. Using these heuristics,
they found out that around 80% of all redirects that they found were
actually open redirects. Our work has shown that now, more than
ten years later, the issue of open redirects is still present with 114
domains providing open redirects.

9 CONCLUSION

In this work, we aimed to understand how shaky CSP’s foundation
is when we consider script gadgets and open redirects. To answer
our main research question, we first showed how sideloading script
gadgets can increase the attack surface of a CSP-secured Web ap-
plication. To that end, we analyzed the Tranco top 10,000, looking
for both sources hosting script gadgets as well as sites with open
redirect issues. Based on the gathered insights, we then conducted
an analysis of real-world CSP so as to understand the susceptibility
of the sites deploying CSP against the threat of sideloaded gadgets.
In doing so, we found that of the few sites that even securely use
CSP to restrict content, 10% are susceptible to bypasses through
whitelisted script gadgets. Our results hint at the fact that being
overly permissive in whitelisting the entire www.gstatic. com host
is a major contributor. Notably, though, we found evidence that
even when resources from the said origin are explicitly whitelisted
by their full URL, whitelisted open redirects allow an attacker to
include Angular]S nevertheless. In addition to the real-world analy-
sis, which draws a skewed picture given the minuscule deployment
of CSP in the wild, we ran a hypothetical experiment, curating
host-based whitelists based on the scripts used by the Top 10,000
sites. Overall, we found that which a conservative approach to
automatically generating CSPs, 3,441/8,330 sites for which a CSP
was auto-generated could still fall victim to a script gadget attack.
In particular, of those bypassable sites, 1,654 were susceptible to
due whitelisted open redirects, highlighting again the threat this
insecure practice may cause to other Web sites.

To mitigate the presented CSP bypass, a practice that is already
widely used throughout the Web can be adopted. The best prac-
tice for hosting uploaded passive content like images is to host
them under a different domain. If CDN providers leverage this prac-
tice by only hosting the known-dangerous JavaScript libraries on
domains separate from their remaining code, this would greatly
reduce the attack surface for sideloading script-gadgets. Similarly,
while analytics and ad providers often leverage open redirects for
different purposes, the design choice to have such redirect URLs on
the domain which needs to be whitelisted by CSP for the main func-
tionality of the provider widens the attack surface as well. Here, we
propose the same concept of separation, i.e., hosting the redirects
on a separate domain, which does not require whitelisting in CSP.

Summarizing, we find that CSP’s ability to protect sites from
XSS is even further impaired by script gadgets and open redirects.
Importantly, this means that a third party — without any ill inten-
tions — may put sites which trust it to host benign functionality
may accidentally undermine the first party’s CSP. In particular,
an operator trying to deploy a secure CSP must be well-aware of
any site hosting such a library, as well as any of their whitelisted
hosts with open redirects. We hope that our paper ensures that this
threat gets its well-deserved attention, such that CSP can be used

Sebastian Roth, Michael Backes, and Ben Stock

to help secure the Web even in the presence of script gadgets; i.e.,
by ensuring that libraries which can be abused as script gadgets
are hosted separately from utility functionality.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their insightful feedback
on how to better frame our paper and improve its contributions.
In particular, we also thank our shepherd Tobias Lauinger for his
guidance in the shepherding process.

REFERENCES

[1] A.Barth. RFC 6454. Online at https:// www.ietf.org/ rfc/rfc6454.txt, 2011.

[2] T.Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945: Hypertext Transfer Protocol
— HTTP/1.0. Online at https:// www.ietf.org/rfc/rfc1945.txt, 1996.

[3] S.Calzavara, Alvise Rabitti, and Michele Bugliesi. Content security problems?:
Evaluating the effectiveness of content security policy in the wild. In CCS, 2016.

[4] S. Calzavara, Alvise Rabitti, and Michele Bugliesi. Semantics-Based Analysis of
Content Security Policy Deployment. TWEB, 2018.

[5] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna.
deDacota: Toward Preventing Server-Side XSS via Automatic Code and Data
Separation. In CCS, 2013.

[6] GitHub - GoogleChrome. Puppeteer. Online at https:// github.com/GoogleChrome/
puppeteer, 2019.

[7] D.Hausknecht, J. Magazinius, and A. Sabelfeld. May I?-Content Security Policy
Endorsement for Browser Extensions. In DIMVA, 2015.

[8] E.Homakov. Using Content Security Policy for Evil. Online at http://homakov.

blogspot.com/ 2014/ 01/ using- content-security-policy- for-evil. html, 2014.

C. Kerschbaumer, S. Stamm, and S. Brunthaler. Injecting CSP for Fun and Security.

In ICISSP, 2016.

[10] D.Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, A. J. Halderman, and M. Bai-
ley. Security challenges in an increasingly tangled web. In WWW, 2017.

[11] T.Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and E. Kirda. Thou
shalt not depend on me: Analysing the use of outdated javascript libraries on the
web. In NDSS, 2017.

[12] V.LePochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski, and W. Joosen.
Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipulation.
In NDSS, 2019.

[13] S. Lekies, B. Stock, and M. Johns. 25 million flows later: Large-scale detection of

dom-based xss. In CCS, 2013.

S. Lekies, K. Kotowicz, S. GroB3, E. A. Vela Nava, and M. Johns. Code-reuse attacks

for the web: Breaking cross-site scripting mitigations via script gadgets. In CCS,

2017.

[15] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia. Riding out DOMsday: Toward

detecting and preventing DOM cross-site scripting. In NDSS, 2018.

Microsoft Developer. EdgeHTML Platform Status. Online at https://tinyurl.com/

skxpgsy, 2019.

[17] E. Oftedal. Retire.js: What you require you must also retire. Online at https:
// retirejs.github.io/ retire.js/, 2018.

[18] X.Pan,Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou. CSPAutoGen: Black-box
enforcement of Content Security Policy upon Real-World Websites. In CCS, 2016.

[19] S.Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock. Complex security
policy? a longitudinal analysis of deployed content security policies. In NDSS,
2020.

[20] C. A. Shue, A. J. Kalafut, and M. Gupta. Exploitable Redirects on the Web:
Identification, Prevalence, and Defense. In WOOT, 2008.

[21] D.F.Some, N. Bielova, and T. Rezk. On the Content Security Policy Violations
due to the Same-Origin Policy. In WWW, 2017.

[22] S.Stamm, B. Sterne, and G. Markham. Reining in the Web with Content Security
Policy. In WWW, 2010.

[23] S.Van Acker, D. Hausknecht, and A. Sabelfeld. Data Exfiltration in the Face of

CSP. In AsiaCCS, 2016.

] W3C. CSP 1.0. Online at https:// www.w3.org/ TR/CSP1/, 2015.

5] W3C. CSP Level 2. Online at https:// www.w3.org/ TR/ CSP2/, 2016.

6] W3C. CSP Level 3. Online at https:// www.w3.org/ TR/CSP3/, 2016.

7] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. CSP is dead, long live
CSP! On the insecurity of whitelists and the future of content security policy. In
CCS, 2016.

[28] M. Weissbacher, T. Lauinger, and W. Robertson. Why is CSP failing? Trends and

challenges in CSP adoption. In RAID, 2014.

[29] WHATWG HTML Standard. The Script Element. Online at https:// htmlspec.
whatwg.org/ multipage/ scripting. html#the- script-element, 2019.

[30] WhiteHat Security. 2018 Whitehat Application Security Statistics. Online at
https:// www.whitehatsec.com/blog/ 2018- whitehat-app- sec-statistics-report/.

=

=
&

=
&

https://www.ietf.org/rfc/rfc6454.txt
https://www.ietf.org/rfc/rfc1945.txt
https://github.com/GoogleChrome/puppeteer
https://github.com/GoogleChrome/puppeteer
http://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
http://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
https://tinyurl.com/skxpgsy
https://tinyurl.com/skxpgsy
https://retirejs.github.io/retire.js/
https://retirejs.github.io/retire.js/
https://www.w3.org/TR/CSP1/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP3/
https://html.spec.whatwg.org/multipage/scripting.html#the-script-element
https://html.spec.whatwg.org/multipage/scripting.html#the-script-element
https://www.whitehatsec.com/blog/2018-whitehat-app-sec-statistics-report/

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Cross-Site Scripting
	2.2 Content Security Policy
	2.3 Script Gadgets
	2.4 Open Redirects

	3 Attacker Model & Research Questions
	3.1 Threat Model
	3.2 Research Question and Goals

	4 Bypass Preparations
	4.1 Dataset Curation
	4.2 Script Gadget Prevalence
	4.3 Open Redirects

	5 Real-World Impact
	5.1 Methodology
	5.2 Results
	5.3 Selected Case Studies

	6 Hypothetical Impact
	6.1 Methodology
	6.2 Results
	6.3 Hypothetical case study: reddit.com
	6.4 Limitations and Potential Modifications

	7 Discussion
	8 Related Work
	9 Conclusion
	References

