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Abstract

This paper provides the first analysis on the feasibility of Return-
Oriented Programming (ROP) on RISC-V, a new instruction set ar-
chitecture targeting embedded systems. We show the existence of a
new class of gadgets, using several Linear Code Sequences And Jumps
(LCSAJ), undetected by current Galileo-based ROP gadget searching
tools.

We argue that this class of gadgets is rich enough on RISC-V to
mount complex ROP attacks, bypassing traditional mitigation like
DEP, ASLR, stack canaries, G-Free, as well as some compiler-based
backward-edge CFI, by jumping over any guard inserted by a compiler
to protect indirect jump instructions.

We provide examples of such gadgets, as well as a proof-of-concept
ROP chain, using C code injection to leverage a privilege escalation
attack on two standard Linux operating systems. Additionally, we
discuss some of the required mitigations to prevent such attacks and
provide a new ROP gadget finder algorithm that handles this new class
of gadgets.

1 Introduction

Memory corruption vulnerabilities are one of the most popular entry points
for hackers to hijack a program. Amongst them, stack overflow attacks have
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been popular since 1996 [2]. It was for long thought that the hacker would al-
ways inject some standalone payload, that could be detected as malicious as
such, using methods such as executable space protection [29]. This assump-
tion has been invalidated by Return-Oriented Programming (ROP), intro-
duced on par with the Galileo detection algorithm by Shacham in 2007 [43],
proving, as formulated by Dino Dai Zovi in 2010, that “preventing the intro-
duction of malicious code is not enough to prevent the execution of malicious
computations” [51].

Since then, many countermeasures have been developed against ROP
attacks [17, 19, 34, 35]. Each time, the publication of new ROP vari-
ants, such as JOP, SROP, SOP, or even JIT-spray [10, 12, 38, 9] bypassed
those stopgap mitigations. At the same time, these attacks have been ex-
tended to many architectures, including much simpler Reduced Instruction
Set Computer (RISC) [13], confirming that those design flaws are widespread
among all architectures. State-of-the-art mitigation methods such as gcc’s
-mmitigate-rop option or G-Free [34], tend to uproot such attacks by de-
tecting and eliminating any code section that could be reused by an attacker,
in the hope that the remaining gadgets would not be sufficient to mount com-
plex attacks. Other even more radical methods like Control-Flow Integrity
(CFI) try preventing arbitrary control-flow transfers by validating the target
of indirect jumps [27, 1, 39], often at the cost of performance, thus reducing
their usability [16, 14].

Likewise, these methods do hardly more than increasing the cost of such
attacks, as it may be sufficient to find new unexpected gadgets to get back
to step one of stack overflow exploitation. In this paper, we show once
again, how to challenge the existing security mechanisms using a new class
of gadgets that are undetected by the vast majority of published methods,
based on the well-known Galileo algorithm. We explain how to produce
such gadgets in RISC-V [49], a new Instruction Set Architecture (ISA) which
development began in 2010. Consequently, an attacker may be able to insert
such gadgets in an open source program and exploit them unnoticed.

RISC-V is based on the concept of RISC [37], targeting simplicity by
providing few and limited computer instructions. RISC ISAs have become
increasingly popular with the wide adoption of embedded devices such as
smartphones, tablets, or other Internet of Things devices. The most popular
RISC ISAs are currently ARM [6], Atmel AVR [7], MIPS [30], Power [25],
and SPARC [45].

RISC-V is the fifth RISC ISA published by UC Berkeley. It is completely
free and open-source, with its User-Level ISA published in May 2017 in
version 2.2. It features 32-bit and 64-bit little-endian variants (designated
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as RV32 and RV64), with a future extension to 128 bits. While only expensive
test boards feature RISC-V processors currently, many companies including
Western Digital or Nvidia have announced the use of RISC-V chips in their
future products [41]. Hence, this architecture is of particular interest for
such attacks, as most programs are in the process of being ported to this
architecture, leaving the insertion of backdoors easy for an ill-intentioned
programmer.

We summarize our contributions as follows.

1. We provide the first analysis on the feasibility of ROP attacks on the
new RISC-V architecture.

2. We introduce a new and stealthy class of ROP gadgets, undetected by
all previously published methods based on the Galileo algorithm.

3. We show the achievability of complex ROP attacks using this class of
gadgets on RISC-V ISA, under the assumption of malicious C source
code insertion generating such gadgets.

4. We implement a proof-of-concept backdoored SUID program allowing
privilege escalation on two standard Linux operating systems running
on RISC-V, with every available ROP mitigation mechanism enabled.

5. We present a new algorithm able to find ROP gadgets of this class and
discuss the plausibility of their presence in existing RISC-V binaries.

2 Background

In this section, we briefly introduce the key concepts related to this paper’s
scope-of-work and contributions. More particularly, we describe the memory
corruption exploitation technique known as Return-Oriented Programming
and detail some RISC-V features, later used in the paper.

2.1 Return-Oriented Programming

The first methods aiming at exploiting memory corruption bugs were as
simple as a straightforward data injection into the program, which would end
up being executed by the processor [2]. The introduction of Data Execution
Prevention (DEP) [29] made those attacks almost impossible, as injected
data could not be executed anymore. In this battle between the shield and
the sword, Return-Oriented Programming (ROP) has been the answer from
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malware developers. The first ROP attack was publicly presented in 2001
by Nergal in Phrack [32].

As shown by Fig. 1, it bypasses DEP by injecting in the stack a succession
of call frames. Each call frame will result in the execution of a gadget : a
small snippet of legitimate code containing a small number of instructions
ended by a ret. When the ret instruction is reached, the address of the
next gadget is popped from the stack into the program counter. Provided
that enough different gadgets are available in the executable, arbitrary code
may be executed by chaining those gadgets.

Two categories of gadgets can be distinguished. The first one using only
legitimate code written by the programmer, also called the Main Execution

stack frame

stack frame

stack frame

stack frame

padding

padding padding padding

local data

return address
gadget_1

return address
gadget_2

return address
gadget_3

local data
"/bin/sh"

return address
system_call

...

...
jal strcpy
...
ret

gadget_1

mv a1 ,0
mv a2 ,0
...
ret

gadget_2

mv a7 ,221
...
ret

gadget_3

mv a0,sp
...
ret

system_call

ecall

overflow

Figure 1: General principle of Return-Oriented Programming attacks. The
vulnerability shown here consists in a buffer overflow from an unchecked
strcpy allowing the user to smash the contents of the stack.
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Path (MEP). The second category uses overlapping code, called Hidden Ex-
ecution Path (HEP), i.e. code sections that have another interpretation by
the CPU depending on its internal status (32 or 64 bits, Thumb mode, or on
the offset at which the execution has started). The latter has the advantage
of bypassing any compiler-added stack protection mechanism, presenting a
wider variety of side-effects and being undetectable by traditional linear or
recursive disassemblers, which only handle the MEP of a program.

The first academic paper studying this technique was published in 2007
by Shacham [43], in which he presents ROP on x86 and the Galileo algorithm,
which allows the detection of gadgets in any executable memory region. It
is based on a backward disassembly method, starting from every return in-
struction, and then trying to recursively bruteforce the length of the previous
instruction. This provides a tree of possible gadgets all ending with a return.

The most common attack scheme consists in scanning the executable
sections of the binary with Galileo based [15, 26, 50] or with other ad hoc al-
gorithms [42] to find gadgets which are thereupon used to devise a ROP chain
performing the required computation. Intermediate languages are sometimes
used, allowing the design of higher-level ROP chains that are then compiled
to the gadget language [44, 50]. Finally, the payload is adapted to the in-
jection method, with techniques like padding, NUL bytes removal, or even
alphanumeric conversion, which are not within the scope of this study.

By design, the Galileo algorithm is only able to find gadgets made of a
straight-line instruction sequence, with no jumps except for the last instruc-
tion. Such a sequence is called a Linear Code Sequence And Jump (LCSAJ).
Gadgets spanning over several LCSAJs are thus undetected by Galileo, and,
to the best of our knowledge, have never been subject to study in the context
of ROP attacks.

2.2 RISC-V

RISC-V splits its instruction set between a mandatory core set (RV64I) and
different optional extensions, each of which is designated by a letter. The
defined extensions include integer multiplication and division (M), atomic
operations (A), single-, double- or quad-precision (F, D, Q) floating-point op-
erations, decimal floating-point operations (L), compressed instructions (C),
bit-manipulation (B), just-in-time (J), transactional memory (T), packed-
SIMD instructions (P), vector operations (V), and user-level interrupts (N).
The general purpose ISA, which includes IMAFD, is designated by the letter G.
In what follows, we focus on the RV64GC ISA, which is the one agreed on by
Debian and Fedora porters, as well as members of the RISC-V Foundation.
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On top of that, the Foundation intends to provide “a profile for standard
RISC-V Unix platforms that will include C extension as mandatory”.1

There are 31 general purpose 64-bit registers (named x1-x31), 32 floating-
point registers (f0-f31), a program counter (pc), as well as various control-
and-status registers. The pseudo-register x0 designates the zero constant.
RISC-V provides a standard ELF Application Binary Interface (ABI), called
psABI [18], with the naming convention provided in Fig. 2.

Register ABI Mnemonic Meaning
x0 zero Zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5-x7 t0-t2 Temporary registers
x8-x9 s0-s1 Callee-saved registers
x10-x17 a0-a7 Argument registers
x18-x27 s2-s11 Callee-saved registers
x28-x31 t3-t6 Temporary registers
f0-f7 ft0-ft7 Temporary registers
f8-f9 fs0-fs1 Callee-saved registers
f10-f17 fa0-fa7 Argument registers
f18-f27 fs2-fs11 Callee-saved registers
f28-f31 ft8-ft11 Temporary registers

Figure 2: Naming convention for registers, per RISC-V ELF psABI.

While most RISC ISAs require naturally aligned instructions, RV64GC
features 32-bit and 16-bit instructions, aligned on 16 bits, like in Thumb-2
extension introduced with ARMv6T2 [5]. Instruction length is encoded in
the least-significant byte (hence with the lowest address as RISC-V is little-
endian): 16-bit instructions require the last two bits to be different from 11
whereas 32-bit instructions have their last two bits equal to 11 with the three
previous bits different from 111.

Combining those two peculiarities of RV64GC opens the door to overlap-
ping instructions, that can be obtained by either using two 32-bit instructions
2 bytes apart (Fig. 3), or by using a 32-bit instruction whose last 2 bytes
are also a valid 16-bit compressed instruction (Fig. 4). In what follows, we
use I1 to designate the set of 32-bits instructions allowing overlapping se-

1https://wiki.debian.org/RISC-V
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13 4f 83 23

83 23 0b 00

00010011 01001111 10000011 00100011 00001011 00000000

xori t5,t1,568

lw t2,0(s6)

Figure 3: Two 32-bit overlapping instructions of I1 (little-endian represen-
tation). Instruction length encoding for each instruction is emphasized in
blue.

13 0a 04 40

04 40

00010011 00001010 00000100 01000000

addi s4,s0,1024

lw s1,0(s0)

Figure 4: A 32-bit instruction of I2 whose last 2 bytes are also a 16-bit valid
instruction (little-endian representation)

quences, whereas the set of 32-bit instructions whose last 2 bytes are valid
16-bit instruction will be denoted by I2. Examples of overlapping for both
sets I1 and I2 are given in Fig. 3 and 4. Typically, an overlapping sequence
consists of several instructions of I1 chained together, optionally ending with
an instruction of I2.

3 Threat model and attack overview

In this section, we explicit our target platforms, aiming run-of-the-mill RISC-
V systems with off-the-shelf ROP mitigations deployed. We also present two
attack scenarios taking advantage of our new class of gadgets for improved
concealment.

Our target platform features a standard Linux operating system, such as
Debian or Fedora, with two levels of privilege, that we call user and root.
Standard protections are deployed, such as Address Space Layout Random-
ization and Data Execution Prevention, that prevent common stack overflow
exploits. Programs are compiled with the standard gcc provided by the
operating system, adding gcc’s ROP mitigation mechanism using compiler
flag -fstack-protector-strong. Note that some other mitigation specific
to x86 are not available on RISC-V, like gcc’s -mmitigate-rop option or
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clang’s CFI. In Section 7, we discuss the ability of such mitigations, if ported
to RISC-V, to hamper attacks using this new class of gadgets.

3.1 Closing (stealthily) the gap between vulnerability and
exploitation

The first attack scenario focuses on adding a backdoor to a program leading
to a ROP attack. Backdoors allow any person aware of their existence to
reach a privileged state upon a specific input. In order to create a backdoor,
two distinct elements must be stealthily inserted by an attacker: a trigger
and a payload [46]. In our scenario, we assume the attacker already managed
to insert a trigger (or find an existing one), in the form of a ROP exec
vulnerability : a one-time memory write like a buffer overflow combined with
an arbitrary control-flow redirect, such as a return at the end of the function,
use-after-free, type confusion, or even corrupted instruction through fault
injection [47]. Such vulnerabilities are pretty common in programs, and are
often rendered non exploitable by reducing the number of available gadgets
and by deploying ROP mitigations, such as ASLR, stack canaries, backward-
edge CFI, or G-Free.

To lower the bar of exploitability, the attacker must embed gadgets in
the payload of his backdoor, aiming at preventing any unaware outsider from
stumbling upon those gadgets. As a steppingstone for future elaboration,
we consider generic C code injection through traditional backdooring, as
we believe that one variant of this scenario may target C++ Just-in-Time
compilers (like Cling [48] or ClangJIT [21], once they get ported to RISC-
V) to mount JIT-spraying attacks [23]. Indeed, identical assumptions are
required for the latter: code injection and ROP exec vulnerability.

As an illustration, we consider the case where the attacker has a user
privileged level access to the system, including shell, ability to run programs,
read access to binaries and libraries. The goal of the attacker is to increase
his privilege level to root, which in practice thoroughly compromises the
system by granting a read-write access to the whole target. Such an attack
is called a privilege escalation attack, and is at the core of highly publicized
attacks such as iOS jailbreaking [20]. To that end, the attacker will use a
program that can be executed by the user, but running at a root privilege
level. Those programs are called SUID (Set owner User ID up on execution),
and are abundant on any system. Indeed, actions as simple as changing a
password, plugging a USB key or granting root privilege for an authorized
user require the execution of SUID programs.

To backdoor such programs, the attacker may upstream underhanded
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C code in some open-source project. Details on how to achieve this have
been provided by Gilbertson [24] and thoroughly studied by Prati [40], with
some examples provided in the Underhanded C Contest2 and DEF CON’s
Hiding backdoor in plain sight contest. Here, the payload consists in a set
of ROP gadgets that span over several LCSAJs. Furthermore, those gadgets
are using overlapping techniques, so that only the last LCSAJ is in the MEP,
whereas all the previous ones are in the HEP, thus hiding them to currently
available ROP gadget searchers. To trigger the exploit and gain root access,
the attacker only has to execute the SUID program with the adequate user
input.

3.2 Creating a (concealed) persistent backdoor on a compro-
mised system

The second attack scenario leverages privilege escalation through SUID to
build a persistent backdoor in a compromised target. Persistence is consid-
ered as a key step in a complex attack chain to maintain access into compro-
mised systems upon slight environment changes (reboot, updates, password
change). This attack is much easier to implement than inserting backdoors
in highly scrutinized SUID programs, as it requires the attacker to only get a
one-time root access, and grant SUID permission to a program for which he
has knowledge of the existence of a privilege escalation exploit. Such back-
doors are quite common,3 as they involve modifying the permissions of only
one file, which is not monitored by default on popular intrusion detection
systems such as rkhunter, chkrootkit, or samhain.

For better chances of success, this can be combined with the first attack
scenario, by inserting hidden gadgets in a non SUID open-source program,
which is much easier to achieve. This backdoored program, embedding the
hidden gadgets and a ROP exec vulnerability, will be legitimately deployed
on the target. Should a security analyst audit the program before the attack,
he will wrongly conclude that the vulnerability is not exploitable, hence not
requiring an urgent patch. After the attack has been discovered, even if a
forensics analyst comes across the program granted with SUID permission,
without the knowledge of the ROP-chain, he will waste precious time and
effort trying in vain to identify the mechanism allowing privilege escalation.

2http://www.underhanded-c.org/
3https://attack.mitre.org/techniques/T1166/
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Function15cMEP HEP

save sequenceaddi sp,sp ,-16
sd ra ,8(sp)

dummy calljal ra,dummy

overlapping code
lui a0 ,0x9932
lui a3 ,0 x23371
lui a2 ,0 xa0212

addi s3,a4 ,363
lui t1 ,0 x26372
jmp 0x8

instructionsmv a1,zero
jal ra,dummy4

restore sequence
ld ra ,8(sp)
mv a0,zero
addi sp,sp ,16
ret

Figure 5: Segmentation of the different code sequences present in
function15c. The gadget is highlighted in gray.

4 Inserting Hidden Gadgets

For the sake of realism, we intend to use code created by a standard C com-
piler like gcc. We create exactly one function per gadget (named function1,
...), each ending with a C return instruction. For each function, the com-
piler may add assembly code at the beginning and the end of the function
whose purpose is to respectively insert (save sequence) and remove (restore
sequence) the call frame from the stack, depending on whether a callee-saved
register is modified by the function. Inserting a nested call in the function
is an easy way to be sure that the compiler will emit these save and restore
sequences.

Indeed, the presence of a restore sequence is crucial for mounting a ROP
attack, as we need to tamper with the return address register ra, which
is callee-saved. Inserting malicious call frames into the stack hence grants
control over the program counter through ra. In practice, a vast majority of
functions do call other functions, either in the program, or in any library. In
our proof-of-concept attack, we purposely added a call to a dummy function
in every gadget function. Other ROP variants using alternative control-flow
instructions such as indirect jumps or exceptions are beyond the scope of
this paper.

The malicious gadget is made of two LCSAJs, the first being hidden
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with code overlapping and the last being the legitimate restore sequence. A
detailed example for one of the gadgets is provided in Fig. 5. The C code
(using gcc -Os -fstack-protector-strong) used to generate it is:

long long function15c (){
dummy();
dummy4 (( signed) 0x9932000 ,

0,
(signed) 0xa0212000 ,
(signed) 0x23371000);

return 0;}

The hidden instructions are directly written in C code, and feature one
or two instructions followed by a jump to a relative offset. In the example
of Fig. 5, the MEP consists of two 32-bit I1 instructions followed by one I2
instruction, whereas the HEP comprises two 32-bit I1 instruction followed
by one 16-bit jump instruction. Here, the jump is only 8 bytes off its tar-
get, but it is definitely possible to modify this value to hide the overlapping
LCSAJ anywhere, even in other functions. In this gadget, magic constants
are loaded into the arguments of a function. The other gadgets use a mix of
arithmetical and floating-point operations, as well as load and stores instruc-
tions. To have a consistent output among different compiler versions and
environments, we forced register allocation (using the register keyword),
and prevented instruction reordering in the overlapping sequence. Magic
constants as arguments of the function cannot be prevented, as the opcode
of a HEP instruction lies in the operand of the MEP instruction. However,
many source code obfuscation techniques may come to help here, such as
C-preprocessor [28] or lightweight constant blinding, hiding the magic con-
stants respectively until the preprocessing and constant folding passes of the
compiler.

5 Chaining the Gadgets

In the previous section, we described our method to build one gadget
hiding some I1 instructions. In our full privilege escalation attack, we need
to chain several of such gadgets together. We will aim at spawning a root
shell, by invoking two system calls, the first being setuid(0) and the second
execve("/bin/sh",0,0).

In RISC-V, each syscall requires the execution of a special instruction
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8 slti t2 ,t2 ,225
24 slti t2,t2 ,225 //t2:=1
40 slti t2,t2 ,225 //NOP
48 .plt_address +1823
56 slti a1,t2 , -1999 //a1:=0
72 mul a4,t2,sp //a4:=.base +80
88 slti t2,t2 , -1999 //t2:=0
104 slti a2 ,t2 ,-1999 //a2:=0
120 addi a4 ,a4 ,-1278
136 addi a4 ,a4 ,1275 //a4:= .base +77
152 addi t2 ,t2 ,-31 //t2:=-31
168 ld s6 ,-29(a4) //s6:=.plt +1823
184 ld s6 , -1823(s6) //s6:= .__libc_start_main@libc
200 addi t1 ,s6 ,-1823
208 .ecall1_offset +1823
216 addi s11 ,t1 ,s2 //s11:= .setuid@libc :34
232 sd s11 ,315( a4) // .base+392<-s11
248 addi s3 ,a4 ,363 //s3:= .base +440
264 sd s3 ,307( a4) // .base +384<-.base +440
280 sd s3 ,363( a4) // .base +440<-.base +440
296 addi t1 ,s6 ,-1823
304 .ecall2_offset +1823
312 addi s11 ,t1 ,s2 //s11:= .setuid@libc :38
328 sd s11 ,411( a4) // .base+488<-s11
344 addi t2 ,t2 ,-31 //t2:=-62
360 addi t2 ,t2 ,-31 //t2:=-93
376 sltiu a0 ,t2 ,2017 //a0:=0
384 0 // .base +440
392 0 // ecall1 at .setuid@libc :34
440 0 // stack canary
456 addi a7 ,t2 ,314 //a7 :=221
472 addi a0 ,a4 ,67 //a0:=.base +507
488 0 // ecall2 at .setuid@libc :38
507 "/bin/sh"

Figure 6: High-level description of the ROP chain. The first column describes
the offset in bytes relative to the beginning of the ROP chain. The notation
with a leading dot .xxx@yyy:off designates the address of xxx in yyy at off-
set off. The notation <- designates a memory store, and := an assignment.
The .ecall1_offset+1823 indicates the location where we put the offset of
the ecall instruction in the setuid function of the C library relative to the
__libc_start_main function. Similarly, the .plt_address+1823 indicates
the location where the PLT address should be inserted.
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named ecall, with register a7 set to a value encoding the call.4 For each
call, one or several arguments may be passed, in registers a0, a1, a2, ... The
setuid syscall requires a7 to be set to 146, and a0 to the desired userid,
in our case zero. The execve syscall requires register a7 to be set to 221
(0xdd), a1 and a2 to zero, and a0 to point to the address of the string
/bin/sh. The next paragraphs explain how to achieve this result by using
only I1 instructions. We summarize the high-level overview of the ROP chain
in an assembly-like pseudocode in Fig. 6. The link to the full source code is
available in Appendix A.

Let us start by zeroing (resetting) a register. For this purpose, we use
the slti instruction (store less than immediate), that compares its source
register to a constant, and if lower resets the destination register, else sets
it to 1. By performing two slti instructions with a negative immediate
and with same source and destination register, we are guaranteed to reset
the register. In Fig. 6, this happens at offset 88. We can then reset other
registers by just performing an slti with a zeroed source register and a
negative immediate (offset 104).

The execution of an ecall instruction is trickier, as ecall 6∈ I1,2. Hence,
we must find an existing ecall and insert its location into the stack, so that
the program counter points to it after the execution of the last gadget. If
the program is statically compiled, this does not raise any issue. However, in
most operating systems, the program is compiled dynamically, which results
in every ecall instructions to be located in the libraries. Consequently, in
order to find the address of such an instruction, we must outsmart the Ad-
dress Space Layout Randomization (ASLR), which loads the linked libraries
at random addresses. Randomized libraries are then linked to the program
through the Procedure Linkage Table (PLT), in which the dynamic loader
(ld.so) stores the randomized addresses of each external function called by
the program. The PLT itself is always stored in the same memory area, stat-
ically known to er (offset 48). Programs compiled as Position Independent
Executable with -fPIE require an information leak to locate the PLT. By
reading into the PLT, we compute the address of our ecall instruction and
write it into the stack, so that the last gadget before the ecall will pop its
address and jump on it, triggering the syscall.

If a program uses the standard C library, then an initialization function
called __libc_start_main is systematically included in the PLT. In version
2.27 of the library, there is an ecall at offset 220, making a perfect candidate
for the execve syscall. However, this instruction is not satisfactory enough

4https://www.lurklurk.org/syscalls.html
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for our setuid syscall, as we need to continue the execution of our ROP
chain after invoking the syscall. Here, the candidate is part of an infinite
loop.

One may think that jumping at the beginning of the setuid@libc func-
tion of the C standard library may be a good idea. This is definitely not, as
the function inserts its own call frame into the stack, based on the value of
ra at its entry. Since we already use ra to hijack the control flow with ret
instructions, the function would return at its beginning, causing an infinite
loop. Jump and link instructions that could modify ra are inadequate as
well, inasmuch as they are detectable by Galileo.

Our solution involves jumping directly into the middle of the setuid@libc
function, making use of the instruction that sets register a7 to 146 immedi-
ately followed by the ecall. As a downside, we now must bypass gcc’s stack
protector (SP), that enforces backward-edge control-flow integrity, obliging
the function to return to its caller. Concretely, it checks whether the call
frames have been tampered with by generating a random number, the ca-
nary, at the beginning of the function, and storing it in two different loca-
tions. During the restore sequence, the two values are compared, and, if
different, the program aborts.

Howbeit, the other location at which the canary is stored is pointed to
by s0, which happens to be a callee-saved register, also used by gcc as a
frame pointer. Hence it may be possible to obtain a gadget whose restore
sequence pops s0 from the stack, which allows hijacking the canary. We do
so by writing at offset 384, which smashes the value of s0, thence pointing
both copies of the canary to the same memory area. In this way, the canary
test will always pass, as both pointers are now aliased. Finally, the gadget
at offset 232 inserts into the stack the address of the ecall in setuid@libc
using the location of __libc_start_main obtained through the PLT.

The execve syscall is easier to prepare. We reset a2, and straightfor-
wardly set a7 to 221. The gadget at offset 328 inserts into the stack the
address of the ecall candidate, also in setuid@libc. Note that we do not
need to bypass SP this time, as the execve syscall will spawn a new process.
Finally, we take advantage of the previously leaked stack pointer (at offset
72) to set a0 to the address of the string /bin/sh, located after the last call
frame of our ROP chain.
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6 Attack Proof-of-Concept on Different Platforms

In this section, we experiment our attack on two Linux operating systems,
Debian and Fedora, running as a chroot environment on a HiFive Unleashed
development board, featuring a quad-core Freedom U540 RV64GC processor.

6.1 Debian chroot on HiFive Unleashed

We first try our attack on the HiFive Unleashed board with a reduced Linux
buildroot system shipped with the board. We add a Debian chroot, al-
lowing the access of Debian features within the minimal operating system.
Additionally, we create an unprivileged user, setting up the stage for our
attack. Given that there is no gcc available on Debian RISC-V, we stat-
ically cross-compile the binary from another host computer. Static com-
pilation greatly simplifies our attack, as all the libraries are now included
within the program, rendering ASLR ineffective. Nevertheless, we still use
-fstack-protector-strong, to harden the program against ROP attacks.

Compared to previous scenario, we do not need to access the PLT any-
more. Instead we need to find an ecall in the program itself. For this
purpose, the function __internal_atexit is a perfect candidate. Indeed
it is always included by default in binaries using the standard C library,
and remarkably, falls through the cracks of SP. We write new gadgets in
handwritten assembly this time, and adapt the ROP chain.

The test program embeds the gadgets, whose construction is detailed
in Section 4, and the ROP chain with some simplifications compared to
Section 5. Finally, a function with a ROP exec vulnerability is added to
the program, whose sole purpose is to grant the attacker the possibility to
smash the stack, launching the attack upon return. We use an assembly in-
struction that straightforwardly replaces the stack by the ROP chain, which
produces similar results as a buffer overflow vulnerability that arises from a
scanf("%s",buffer).

After setting the SUID permission using chmod u+s to the binary, the
user logs in and executes the target program, successfully spawning a root
shell.

6.2 Fedora

We then moved to a Fedora 28 stage 4 disk image, another Linux based OS
with many more features. It has a package manager with a gcc version 7.3.1
able to dynamically compile programs directly on the board with a standard
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Figure 7: The attack setup with the Hifive Unleashed board featuring a
Fedora chroot. A serial connection on the micro-usb port allows a user-
level access to the board. An SUID executable in the user’s home directory
allows a successful privilege escalation attack, upon injecting the ROP chain
(cropped).

C library in version 2.27.5 Our attack was successfully tested both on the
RISC-V Fedora powered by a QEMU virtual machine [8] and a Fedora chroot
for Linux buildroot running on the HiFive Unleashed board, shown in Fig. 7.

As we expected, we did not witness any difference between both tests,
as QEMU emulates a HiFive Unleashed RV64GC board, without some of
its micro-architectural features like caches or timings. Moreover, in both
cases, ASLR is set to conservative randomization mode, which randomizes
the stack, VDSO page, and shared memory region position. The binary
itself is not randomized, which creates the opportunity of such code-reuse
attacks. The data segment base is located immediately after the end of the
executable code segment. We successfully bypass ASLR and SP, using the
method presented in Section 5.

Likewise, our test program embeds the malicious gadgets written in C,
5https://fedorapeople.org/groups/risc-v/disk-images/
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the ROP chain and the ROP exec vulnerability. The program is compiled by
root using the standard gcc with options -Os -fstack-protector-strong,
and given SUID permission using chmod u+s. The user then logs in and
executes the program, again successfully escalating privilege.

7 Proposed Countermeasures

In this section, we review different methods that could be implemented to
reduce the threat posed by the new gadgets described in this paper, from the
simplest to the most complex solutions. We also provide a new algorithm for
finding gadgets in RISC-V, that aims at improving and replacing the Galileo
algorithm in ROP gadget finders.

Although we managed to bypass gcc’s SP, we believe that stack ca-
naries may still be useful, as they try to prevent stack smashing, reduc-
ing the number of ROP exec vulnerabilities, and partial function execution,
reducing the number of MEP gadgets, thus raising the cost for ROP at-
tacks. In our attack scenario, even if SP is deployed everywhere (using op-
tion -fstack-protector-all), our gadgets are still able to jump over any
canary check directly on the restore sequence, rendering them ineffective.
Therefore, we recommend checking the canary immediately before the re-
turn rather than at the beginning of the restore sequence, as done by various
CFI implementations.

In gcc, stack canaries are deployed using three different compilation flags:
-fstack-protector-all that adds stack canaries to every function (but not
to glue-code), -fstack-protector for only the most vulnerable functions
(calling alloca, or containing a buffer whose size is larger than 8 bytes),
and -fstack-protector-strong, introduced in 2012 that strikes a balance
in between. Since Fedora 20, all packages are compiled with the last option.
Thus, compiling all SUID programs with option -fstack-protector-all,
as done on FreeBSD, can prove to be a good mitigation, as it widens the
gap between vulnerability and exploit by reducing the number of available
gadgets. Thence, an attacker would need to embed more hidden gadgets in
his payload, increasing the probability of being detected.

If we consider compiler-based backward-edge CFI variants like LLVM-
CFI,6 MCFI or Picon [14, 33, 22], the restore sequence may be hardened in
a way that may not allow reusing any part of it, e.g. by putting the target
validation guard between the return and the assignment to ra from the stack.
This leaves us with only the last return instruction that can be jumped to

6https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
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from the HEP. Although we hypothesize it may be possible to assign any
value to ra directly from the HEP, it is actually much easier to fall back on
the restore sequence of another function that is not protected by compiler-
based CFI, like glue-code. For the C standard library, the __libc_csu_init
function of crt1.o inserted by gcc and clang is a perfect candidate, as
it contains an unprotected restore sequence, even when compiled with SP
(-fstack-protector-all) and LLVM-CFI (-fsanitize=cfi on clang).

OpenBSD has its own SP version called RetGuard [31], running on par
with gadget reduction techniques, with the same shortcomings as gcc’s SP.
More generally, gadget reduction techniques like G-Free [34] or code ran-
domization [36] intend to eliminate any unaligned indirect jump, relying on
canaries or backward-edge CFI to prevent malicious use of aligned branches,
which is effective only against gadgets having one LCSAJ. The new gadgets
presented in this paper fall out of reach of those mitigations.

To include this new class of gadgets in existing mitigation, we would
have combine them with a static analysis pass verifying that every main
and hidden execution path ending with an indirect jump does go through
the canary check (SP) or reaches target validation (backward-edge CFI). For
this purpose, we provide Algorithm 1 finding each and every execution path
in a program. Its source code is available in Appendix A. It tentatively
disassembles one instruction at every program byte, and checks whether it
yields a valid instruction. It then inserts these valid instructions into a
graph, whose nodes are defined by their addresses and the outgoing edges
by the values that the program counter might take after the execution of the
instruction. For example, conditional jumps may have two outgoing edges,
while data processing instructions may only have one outgoing edge to the
immediately following instruction in the program.

Indirect jumps (like ret) do not have outgoing edges as the value of the
program counter may not be known statically. We mark such instructions as
Points of Interest (or PoI, term coined in [50]), to keep only the instructions
that can reach one of those PoIs. Indeed, instruction sequences may only
either reach a PoI, loop indefinitely or trigger an invalid instruction causing
the program to crash. This can equivalently be rephrased as keeping only the
subgraph coreachable from those PoIs. Additional work can be performed
on this graph, like merging chains of nodes, yielding a control-flow graph
(CFG) showing both the MEP and HEP. We show in Fig. 8 an example of
such CFG.

We used this algorithm to find such gadgets in the C standard library.
Out of the 1957 unaligned sequences ending with a fixed jump offset, only
one can realistically be used as a gadget in a traditional ROP attack. The
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scarcity of such gadgets on RISC-V architecture confirms our need for magic
constants when encoding the gadgets in Section 4. Indeed the opcode of a
HEP instruction lies in the operand of the MEP instruction.

Some more radical solutions would consist in trying to prevent over-
lapping code in RISC-V, either by deleting the compressed instruction C
extension, or by requiring 32-bit instructions to be naturally aligned, or by
changing the ISA so that the length of the instruction is encoded in first bit
of every half-word. Though, we may lose one bit per half-word, hampering
with the range of opcodes, i.e. less immediates, or less registers. Further-
more, this requires extensive changes to the instruction set, and we believe
that such a solution could only be implemented on next generation ISAs.

Input: B0, ...Bn, a binary program
Result: G, a directed graph of all execution paths
G

def
= (V,E);

End
def
= ∅;

for pc
def
= 0 to n do

I := Disasm_one_inst(Bpc, ...);
if I is not a valid instruction then

continue
end
V .insert(pc);
foreach pc′ in I.get_next_pc() do

E.insert(pc, pc′)
end
if I is an indirect jump then

End.insert(pc)
end

end

G′ def
= coreachable(G, End) ;

return G′;
Algorithm 1: Disassembly algorithm finding all execution paths in a
binary.

8 Related Work

Andriesse et al. [4] have shown a method to hide malicious code using over-
lapping instructions in x86. It splits the code into smaller fragments and
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addi s3,a4,363
lui  t1,0x26372
j    0x8

ld   ra,8(sp)
mv   a0,zero
addi sp,sp,16
ret

lui  a0,0x9932
lui  a3,0x23371
lui  a2,0xa0212
mv   a1,zero
jal  ra,dummy4

dummy4

addi sp,sp,-16
sd   ra,8(sp)
jal  ra,dummy

dummy

Figure 8: The function15c (first presented in Fig. 5) as shown by our dis-
assembler. Unnecessary details such as instruction addresses or hexadecimal
representations have been deleted. The gadget is highlighted in gray, and
the dummy functions are shown in light-gray.

bruteforces a prefix and a suffix, for which the code fragment becomes a
valid x86 MEP. This bruteforce method relies on the high density of the x86
instruction set, although it still sometimes requires manual intervention to
conceal the fragments. The resulting hidden fragments are only one LCSAJ
long, and always end by an indirect jump, hence easily caught by any ROP
gadget searcher. Our approach allows better stealth by splitting the hidden
code over several LCSAJs, for which the bruteforce method may not work
anymore. We also apply our method to a RISC architecture, which does not
benefit from the same code density.

ROP attacks have been subject to many academic studies since their first
publication in 2007 [43] introducing the Galileo algorithm. Many variants
based on the same algorithm have been published, like gadgets ending with
indirect jumps [10], gadgets popping signal-contexts from the stack instead of
call-frames [12], or attacks using format string vulnerabilities [38]. Amongst
popular ROP gadget searchers, only two have added support for RISC-V -
xrop and Radare2 [15, 3], both of them implementing the Galileo algorithm,
falling short of detecting this new class of gadgets. The closest to our work
could be ROPgadget [42], which tentatively disassembles a fixed number
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of instructions starting from each byte of the program. This method is
particularly inefficient compared to our algorithm and to Galileo, but it
could find some gadgets spanning over several LCSAJs, if they are shorter
than a given threshold (by default 10 instructions). Quite surprisingly, after
finding them, ROPGadget discards those gadgets by default, unless passed
the option --multibr. The algorithm that we provided comprehensively
solves this aspect of gadget detection by revealing any gadget, whatever
their length or number of LCSAJs is.

More recently, Borrello et al. [11] published a method to insert backdoors
in programs with encrypted ROP gadgets and a small decryption procedure.
While encryption methods provide a definitive proof that the malicious be-
havior will indeed be hidden to static analysis, this does not address the
problem of detection, as the decryption procedure is not concealed, and thus
may be detected by static analysis. In this paper, we provided another
method for adding such backdoors, without having any unconcealed element
in the program. To achieve this result, we rely on a fine understanding of
how current detectors work, exploiting their inability to find gadgets span-
ning over more than one LCSAJ.

9 Conclusion and Future Work

ROP attacks still pose a threat, although despite the wide deployment of
dedicated countermeasures. Those protections fail to provide a satisfactory
solution to these attacks, as we managed to design a new type of gadget
on RISC-V, undetectable by existing tools, made of several linear-code se-
quences and jumps, that bypasses ASLR, DEP, stack canaries, G-Free and
some compiler-based backward-edge CFI. We showed how to use such gad-
gets in two different attack schemes concealing a backdoor to perform priv-
ilege escalation attack on two standard Linux operating systems. Although
the gadgets are written in C, we believe that it can generalize to other lan-
guages, such as JIT compilers once they become available on RISC-V, as
well as other architectures featuring code overlap.

We provided a new algorithm aiming to replace previous Galileo based
algorithms, that manages to find all the hidden execution paths of a program,
and not just the last LCSAJ. This algorithm may be used both for offensive
and defensive purposes. However, we believe that its defensive usage is only
provisional, as a definitive solution to prevent code overlap requires thorough
changes in the ISA, which may only be implemented on next-generation
architectures.
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