1905.09538v2 [cs.CR] 19 Sep 2019

arxXiv

AMSI-Based Detection of Malicious PowerShell
Code Using Contextual Embeddings

Danny Hendler Shay Kels Amir Rubin
Ben-Gurion University of the Negev, Microsoft, Ben-Gurion University of the Negev,
Israel Israel Israel
hendlerd @cs.bgu.ac.il shkels @microsoft.com amirrub@cs.bgu.ac.il

Abstract—PowerShell is a command-line shell, supporting a
scripting language. It is widely used in organizations for configu-
ration management and task automation but is also increasingly
used by cybercriminals for launching cyber attacks against
organizations, mainly because it is pre-installed on Windows
machines and exposes strong functionality that may be leveraged
by attackers. This makes the problem of detecting malicious
PowerShell code both urgent and challenging. Microsoft’s An-
timalware Scan Interface (AMSI), built into Windows 10, allows
defending systems to scan all the code passed to scripting engines
such as PowerShell prior to its execution. In this work, we conduct
the first study of malicious PowerShell code detection using the
information made available by AMSIL.

We present several novel deep-learning based detectors of
malicious PowerShell code that employ pretrained contextual em-
beddings of words from the PowerShell ‘“language”. A contextual
word embedding is able to project semantically-similar words to
proximate vectors in the embedding space. A known problem in
the cybersecurity domain is that labeled data is relatively scarce
in comparison with unlabeled data, making it difficult to devise
effective supervised detection of malicious activity of many types.
This is also the case with PowerShell code. Our work shows that
this problem can be mitigated by learning a pretrained contextual
embedding based on unlabeled data.

We trained and evaluated our models using real-world data,
collected using AMSI from a large antimalware vendor. The
contextual embedding was learnt using a large corpus of un-
labeled PowerShell scripts and modules collected from public
repositories. Our performance analysis establishes that the use
of unlabeled data for the embedding significantly improved the
performance of our detectors. Our best-performing model uses
an architecture that enables the processing of textual signals from
both the character and token levels and obtains a true positive
rate of nearly 90% while maintaining a low false positive rate of
less than 0.1%.

I. INTRODUCTION

Cybercrime in its various forms poses a serious threat to
the modern digital society. In the ever-going race of cyber
arms, attackers frequently rely on tools already existing on
the victim’s system, a technique known as “Living of the
Land”. These methods have become increasingly popular in
recent years [|1]. Several reports by security companies observe
the popularity in cyber attacks of using PowerShell [2]-[4], a
scripting tool normally used in organizations for configuration
management and task automation. One reason for this is that
PowerShell code can be obfuscated in many ways [2[]—-[4]).
PowerShell can be used in different stages of an attack, either
by a human attacker or by malicious software, to perform

various malicious activities such as reconnaissance, gaining
persistence in the attacked system, communicating with a
command and control server or fetching a payload. The volume
and diversity of PowerShell usage in malicious activities make
it an important attack vector to be addressed by defenders.

To facilitate better defence against script-based attacks on
Windows systems, Microsoft released the Antimalware Scan
Interface (AMSI) [5]]. AMSI provides defending systems with
the capability to inspect all the code executed by scripting
engines such as PowerShell. AMSI communicates to the
antimalware un-obfuscated code to be scanned, just before the
code is presented to the scripting engine. Most importantly,
whenever PowerShell is called with an argument command-
line code that invokes a script, both the command-line code and
the content of the script are made available to the antimalware
for scanning and not just the command-line code. As we
show in Section this provides the antimalware system with
significantly richer information than is available to it without
AMSI.

While it provides defenders with important optics into the
PowerShell code executed on the system, the AMSI interface
by itself does not provide a solution against PowerShell-based
malicious cyber activities and appropriate detection solutions
must be devised. Moreover, the widespread and diverse usage
of PowerShell scripting by legitimate users, such as network
administrators and software developers, imposes a requirement
for a very low false positive rate (FPR) by defending systems.
It is therefore important to devise effective detection techniques
that can be applied to this problem. Such techniques should
aim not only at extracting patterns of malicious code, but also
for capturing the semantics discerning malicious and benign
usage of PowerShell. In this work, we address for the first
time the challenge of detecting malicious PowerShell code
in general — and malicious Powershell scripts in particular —
collected using the AMSI interface.

Recent scientific achievements in Deep Learning (DL) [6]—
[8] provide many opportunities for the development of novel
methods for cyber defense. One of the major breakthroughs
in DL is associated with the usage of contextual embeddings
in various Natural Language Processing (NLP) tasks. Several
methods for embedding words into vectors have been proposed
in recent years [9]-[12]. Generally, these methods leverage
large datasets of text documents (such as Wikipedia articles)
to obtain representations of words as vectors in the Euclidean
space from contexts of their appearances in the document
corpus. These embedding methods have gained popularity over

traditional one-hot encoding in various NLP tasks, because of
their ability to project semantically-similar words to proximate
vectors in the embedding space. Pretrained embeddings can
be used to initialize the first layer of a neural network trained
to perform a particular task (for example, the classification
of documents to topics), thereby reducing the volume of data
required for training.

As a viable alternative to the word embedding approach,
several authors suggest to encode text as a sequence of
vectors representing characters [[13[], [[14]. Promising results
for the application of DL methods to the classification of
PowerShell command-lines (as opposed to general PowerShell
code consisting of both command-lines and scripts) using such
a character-level approach were reported in [[15]. We note,
however, that the problem of classifying general PowerShell
code, available using AMSI, is significantly different: as we
show in Section [VII code collected using AMSI is typically
much longer than command-line code and its structure is
more complex, often including definitions and invocations of
functions and references to external modules.

In this work, we propose a novel method for the classifica-
tion (to benign or malicious) of general PowerShell code. We
aim to depart from traditional pattern recognition approaches
and to provide a classification method for PowerShell code that
is more resilient to evasion attempts by malicious attackers. To
this end, we employ two popular text embedding approaches,
Word2Vec (W2V) [9] and FastText [[16], [17], trained on
a dataset, made publicly-available by Bohannon and Holmes
[18]], that contains a large corpus of unlabeled PowerShell
scripts . We use the embedding as a first layer for token
inputs in a deep neural network for malicious PowerShell
code detection, trained and evaluated using a second real-world
dataset, consisting of labeled PowerShell code instances logged
using AMSI from a large antimalware vendor.

Contributions

This work makes two key contributions. First, we address
the challenge of devising effective detectors of malicious Pow-
erShell code using the information made available to antim-
laware systems by AMSI. We implemented several detection
models, trained and evaluated using a dataset consisting of la-
beled PowerShell code instances collected during May-October
2018 inside the organization of a large antimalware vendor. We
present a novel DL-based detector of malicious PowerShell
code that leverages a pretrained contextual embedding. To
the best of our knowledge, our work is the first to apply
pretrained embeddings for the detection of malicious code. We
conduct extensive evaluation comparing the performance of
this detector with those of several alternative detection models.
Our evaluation results establish that it significantly outperforms
DL-based detectors that do not use a pretrained embedding, as
well as traditional-ML-based detectors, and is able to detect
nearly 90% of the malicious PowerShell code instances while
maintaining an FPR of only 0.1% on a test set collected over
a different period of time than the training set.

A second, more general, contribution of this work is to
demonstrate that contextual embeddings facilitates enhancing
the detection performance of supervised classification tasks by
using unlabeled data. This is important, since unlabeled data

are frequently available in abundance to the cyber defenders,
whereas labeled data is typically more scarce and difficult to
obtain. Since our approach is generic, it may be possible to
adapt it for the classification of code in other languages as
well as to other types of textual data that arise in cyberspace.

This work also demonstrates that models combining both
character-level and token-level code representations are able
to provide performance that is superior to that of models
that employ only a single type of representation. Our best-
performing model is deployed in the antimalware vendor’s
production environment since April, 2019.

The rest of this paper is organized as follows. In Sec-
tion we provide required background on PowerShell, the
AMSI programming interface, deep learning and contextual
embeddings. Section [llI| compares the information provided by
AMSI with that provided by command-line logging. Section
describes the datasets we use and the manner in which
they are preprocessed and used for training our models. This
is followed by a discussion of the contextual embedding of
PowerShell tokens in Section We describe the detection
models we implemented in Section and report on the
results of our experimental evaluation in Section Related
work is surveyed in Section Section [[X] briefly describes
our detector’s deployment and discusses possible attacks. We
conclude with a short discussion of our results and avenues
for future work in Section

II. BACKGROUND
A. PowerShell

First released in 2006, PowerShell is a command-line shell,
widely used in organizations for configuration management
and task automation. It has a powerful scripting language
with various capabilities, accessible through cmdlets. These
cmdlets are functional units, exposing system administration
capabilities such as registry or file system access and general-
purpose utilities like a web client or text encoding utilities.
For example, the Get-ItemProperty cmdlet reads values
from the Windows registry. A PowerShell script is a sequence
of PowerShell cmdlets that can be executed directly from the
command-line, from memory, or from a .ps1 file. Functional
units of PowerShell may be combined into a single PowerShell
module (.psml file), making the code easier to manage,
reference, load or share.

Given the ease of access to system resources using Power-
Shell, the fact that it is pre-installed on Windows machines, the
huge number of cmdlets available and the many ways in which
PowerShell code can be obfuscated [15]], PowerShell is a tool
of choice for malware authors to achieve their goals. From
reconnaissance via port scanning, through privilege escalation
using shell-code injection [2]] and gaining persistence using
registry editin to payload dropping using a web client [4],
PowerShell can serve as a fileless attack vector, enabling the
attacker to leave minimal traces on a compromised machine.

Indeed, several recently-published reports discuss the grow-
ing popularity of PowerShell’s usage as an attack vector and
analyze the various techniques by which this is done [2]]-[4],
[19]. A recent report by IBM ([[19]]) observes that over 57% of

Uhttp://az4n6.blogspot.com/2018/06/malicious-powershell-in-registry.html

http://az4n6.blogspot.com/2018/06/malicious-powershell-in-registry.html

the attacks they analyzed were fileless, and many of these used
PowerShell as an attack vector. This highlights the importance
of detecting malicious PowerShell code.

B. Antimalware Scan Interface (AMSI)

In 2015, Microsoft announced a new capability built into
Windows 10, called the Antimalware Scan Interface (AMSI)
[5]l, enabling applications in general — and script-engines in
particular — to request a scan by the antimalware installed on
the machine. By default, PowerShell code is sent via AMSI
for antimalware scanning prior to its execution. The labeled
dataset we use in this work (described in more detail in
section consists of real-world PowerShell code collected
using AMSIL

As surveyed in the past (see [2]-[4]]), PowerShell code can
be obfuscated using numerous techniques, which is often done
by malicious code for evading detection. Deep obfuscation can
be accomplished by iteratively applying obfuscation mecha-
nisms multiple times, thus wrapping the original code in sev-
eral obfuscation layers. With AMSI, the antimalware product
receives deobfuscated PowerShell code just before the code is
presented to the scripting engine for execution. For example,
any argument provided to the Invoke-Expression cmdlet
will be fully uncloaked by AMSI. E.g., when executing the
PowerShell command Invoke-Expression $env:var,
the value of the environment variable $env:var will be sent
by AMSI for scanning prior to execution. Without AMSI,
command-line monitoring can be applied to the PowerShell
process, but it can only observe the code argument string
— which in our example is simply Invoke-Expression
Senv:var.

Moreover, the content of scripts invoked by the command-
line is sent to the antimalware as well. For example, when
executing the simple command powershell.exe -file
./script.psl, the content of the script, which is missed
when only the command-line is monitored, is visible to the
antimalware when AMSI is enabled. This means that AMSI’s
output provides much more visibility into the PowerShell code
that gets executed than is available from direct analysis of
(possibly-obfuscated/encrypted) PowerShell script files or from
monitoring PowerShell command-line arguments.

We note that there exist a few cases in which AMSI’s
output is not fully de-obfuscated and is dynamically resolved
to plain code only during execution. This is the case when the
PowerShell code uses an expression that applies a string ma-
nipulation technique (such as string concatenation) to construct
a function operand or when a function name is composed of
characters with alternating casing (AMSI is case insensitive).

Several techniques for evading AMSI are known (see e.g.
[20]) and examples of such evasion attempts were observed in
our dataset. For instance, the following code sets the value of
the AmsiInitFailed property to true:

[Ref] .Assembly

.GetType (' System.Management .Automation.AmsiUtils’)
.GetField (’amsiInitFailed’,’NonPublic,Static’)
.SetValue ($null, Strue) ;

The above PowerShell code snippet is an example of an
evasion technique that uses .NET’s reflection mechanism to set

the value of the private static property AmsiInitFailed
in the AmsiUtils class to true, thus preventing the
ScanContent method (not shown in the above code) from
sending any content to the antimalware engine for scanning.
Attempts to disable or bypass AMSI can be considered as
malicious activity and can be detected by pin-point detectors
dedicated to this task, as done by several popular antimalware
vendors?] We elaborate more on this issue in Section

C. Deep Learning

In this section, we provide some background on deep
learning concepts and architectures that can be helpful for
understanding the deep-learning based malicious PowerShell
code detectors that we present in subsection A compre-
hensive introduction to deep learning can be found in [6].

An Artificial Neural Network [21]-[23] is a machine learn-
ing model, typically non-linear, composed of a collection of
layers. An ANN network/model typically has one or more
input layers and a single output layer. A model that contains
additional hidden layers between the input and output layers
is called a Deep Neural Network (DNN). Several key DNN
architectures exist. In what follows, we briefly describe the
architectures used by our detectors.

1) Convolutional Neural Networks (CNNs): Extensively
used in computer vision tasks [24f, [25]], CNN is an ar-
chitecture that uses a special kind of hidden layer called a
convolutional layer. A convolutional layer computes its output
by calculating the dot product of each of its filters with
windows of appropriate size in the input. By “sliding” a filter
across the input matrix, the dot product of the filter’s weights
and the corresponding window is computed, resulting in a
scalar value. The weights of the filters are being learnt during
the training process and are used for searching for the existence
of meaningful input patterns.

Two additional layer types often used by CNNs (as well as
by the RNN architecture we describe below) are the pooling
and dropout layers. A pooling layer [26] computes some
function on the input resulting in a single value (such as
average or maximum). These layers are typically used in
order to reduce dimensionality and overfitting [27]. A global
max pooling layer is a special case of pooling. Its window
size equals the size of the input. It computes the maximum
value inside the window. Intuitively, when using a global max
pooling layer on top of a convolutional layer, each filter is
mapped to a single feature, indicating the extent to which the
feature searched by this filter appears anywhere in the input.
A Dropout layer [28]] with (user-defined) probability p, drops
each node in the layer’s input with probability p, effectively
making it disconnected from the next layer. Dropout layers are
typically used in-between layers in order to reduce overfitting.

2) Recurrent Neural Networks (RNNs): Aimed to process
sequences of inputs, RNN is an architecture used in various
domains with sequential nature such as text [29], [30], speech
[31]-[33]], handwriting [34] or video [35]]. As implied by its
name, data is processed in a recurrent manner, considering
input seen so far when processing new data. In this work we
use a long-short term memory (LSTM) cell [36] to process

2 Microsoft Defender ATP, VirusTotal scan of AMSI bypass script.

https://www.microsoft.com/security/blog/2017/12/04/windows-defender-atp-machine-learning-and-amsi-unearthing-script-based-attacks-that-live-off-the-land/
https://www.virustotal.com/#/file/06cd630b722845631ec5d9b77e769536eccecb8215a881404342c59195a4b65f/detection

the data in the RNN network. The LSTM cell aggregates
information in a memory unit called a hidden state, which
is being updated as new information is being processed.

In a basic RNN architecture, LSTM cells process the data
from the first to the last input (in English textual data, this is
a left-to-right order). In a bidirectional RNN (BDRNN) layer
[37] there are two sets of LSTM cells: one set processes the
data from first to last, and the other processes it in reversed
order. Thus, the hidden state of the cells reading the input
in reversed order can be updated based on information which
appears in the input to their right. The output of these two
sets of LSTM cells is being used as the output of the BDRNN
layer.

D. Contextual Embeddings

In the context of text analysis, a common practice is to
add an embedding layer before the CNN or the RNN layer
[38]-[40]. Embedding layers serve two purposes. First, they
reduce the dimensionality of the input. Second, as done by our
detectors, they can be used to represent the input in a manner
that retains its context. The embedding layer converts the input
(typically at the token level, but sometimes also at the character
level, depending on the problem at hand) to a sequence of
vectors. Embedding techniques are designed to embed tokens
in an n-dimensional space (for an appropriately-selected value
of n) by representing them as n-dimensional vectors.

Our detectors employ the widely-used Word2Vec (W2V)
[9] and FastText |[16], [17] contextual embedding algorithms,
which use an ML model for learning the vector representation
of tokens. In both algorithms, the underlying architecture of the
model contains an input layer, a hidden layer of (appropriately
selected) size n, and an output layer. Depending on the training
method (“CBOW” or “skip-gram” [41]), we either try to
predict a token based on its context (i.e. the tokens surrounding
it), as done in CBOW, or to predict the context of a given token,
as done in skip-gram.

Following the learning phase, a sequence of values is stored
in the hidden layer per every token in the corpus. These values
serve as the vector representation of the token. The key dif-
ference between the two algorithms is the following. Whereas
Word2Vec only embeds the tokens as atomic units, FastText
also embeds character n-grams (sub-tokens) extracted from
these tokens. Specifically, each token is represented by the
sum of the vector representations of the token itself and its n-
grams (our implementations use n-grams for n € {3,...,6}).
This representation implies that FastText is able to leverage
the sub-tokens comprising each token. This allows it to embed
tokens that were not seen during the training stage (but may
be input to the model once it is deployed), as they or their
sub-tokens appeared as sub-tokens in the corpus used to train
the embedding.

III. AMSI vs. COMMAND-LINE LOGGING

In this section, we provide a brief comparison between the
data provided to an antimalware system via AMSI and that
provided by PowerShell command-line logging. The compar-
ison is based on data that was collected inside the vendor’s
organization during a period of one week. The total number
of AMSI scan events was 373,594,394 , more than twice the

108

107

108

10°

104

103

102

10!

. AMSI
100 Command-line
RN R R

0 4000 8000 12000 16000 >16000

Fig. 1. Length distributions of code logged using AMSI/command-line.

number of PowerShell command-line events, which totalled
177,222,700. This is because a single PowerShell command-
line may invoke (directly or indirectly) several PowerShell
executions, each generating a separate AMSI scan event.

Figure [I] presents the length distribution of code logged
using AMSI versus command-line logging. The x-axis repre-
sents the length of the PowerShell content and the y-axis the
number of events (in logarithmic scale). Each bar corresponds
to a bucket of size 200, except for the last bar which counts all
events reporting code of length exceeding 16,000 characters.
As can be seen, AMSI-collected code tends to be much longer
than that obtained using command-line logging. Specifically,
whereas only a negligible fraction of less than 0.0008% of
command-line events logged code of length 16,000 or more,
the corresponding figure for AMSI scan events is 4 magnitudes
higher - more than 8%.

We also compare the prevalence of PowerShell keywords
that indicate relatively-complex code structure, such as the
definitions and invocations of functions, branching, module-
importing and exception-handling tokens. Table [[] presents the
fractions of logging events that contain these tokens. As can be
seen, they are used by AMSI-logged code orders-of-magnitude
more frequently than by command-line code. For example,
the "function’ token appears in almost 39% of AMSI scan
events, 277 times more frequently than it does in command-
line code.

TABLE L. PREVALENCE OF TOKENS INDICATIVE OF
RELATIVELY-COMPLEX CODE.
H Token Percentage in AMSI Percentage in command-lines H

function 38.78 0.14
param 31.03 0.03
Import-Module 7.65 0.15
if 62.55 5.68
while 7.92 0.02
New-Object 19.49 0.66
throw 20.92 0.53

IV. DATASETS, MODEL GENERATION
AND PREPROCESSING

We train and evaluate our detectors using two datasets: An
unlabeled dataset and a labeled dataset. The unlabeled dataset

consists of approximately 368K unlabeled PowerShell scripts
and modules (*.psl and *.psml files) collected from public
repositories including GitHulﬂ and PowerShellGalleryﬂ made
publicly-available by Our labeled dataset is composed
of 116,976 PowerShell code instances (commands, scripts
and modules). Of these, 5,383 are distinct malicious code
instances, obtained by executing known malicious programs
inside a sandbox and recording all their PowerShell activity
using AMSI. The labeled dataset contains also a collection of
111,593 distinct benign code instances, recorded using AMSI
as well. Unlike malicious code, benign code was executed on
regular machines within the vendor’s organization rather than
inside a sandbox. Only code instances that were executed ex-
clusively on machines with no indication of malicious activity
30 days prior to data collection were labeled as benign. The
labeled dataset consists of a training set and a test set, collected
over different periods of time.

The following subtle point regarding the dataset labeling
process should be emphasized. When AMSI is used for
monitoring the execution of a program, the PowerShell code
it executes is reported in its entirety. Consequently, when a
malicious code uses benign modules (which is often the case),
the benign module’s code is reported by AMSI as well. In
order not to label such benign modules as malicious, we label
a code instance as malicious only if it was seen exclusively in
malicious contexts, that is, only if it was never observed on
clean machines.

The high-level structure of our model generation process
is presented in Figure 2] Our method trains the detection
model using two stages. During the first stage, we use the
unlabeled dataset and the training sef’| to obtain a contex-
tual embedding of PowerShell tokens. We provide examples
demonstrating interesting semantic relationships captured by
this embedding in Section During the second stage, we
employ the embedding as a first layer for token inputs in a
deep neural network trained (using the labeled instances of
the training set) to detect malicious PowerShell code. Our best
model employs an architecture comprised from both character-
level one-hot encoded input and a token-level embedding layer
(pretrained using FastText), followed by several layers of CNN
and LSTM-RNN neural network units. We use the labeled
dataset for supervised training and for performing an extensive
performance evaluation of different DL and traditional (e.g.
logistic regression [42]) ML classification methods.

Data Preprocessing: We have carefully preprocessed the
PowerShell code we collected in order to normalize it, by
regularizing digits and random values, for improving detection
and evaluation results. Digits were replaced with asterisk signs
(“**) in order to better deal with random values, IP addresses,
random domain names (which in many cases contain digits),
dates, version numbers, etc. Labeled code instances were
preprocessed also for eliminating identical (or nearly-identical)
code (a process that we call data de-duplication) in order to
reduce the probability of data leakage [43]], as we explain next.

3https://github.com/

4https://www.powershellgallery.com/

SWe thank Lee Holmes for helping us with working with this dataset and
his general assistance

6Labels are not used for learning contextual embeddings.

Unlabeled scripts

Stage 1:
Learn Embedding
Stage 2:
Train DL model

___ W
\@

—)

Tokens embedding DL model

- /Training

Characters embedding

Fig. 2. High-level structure of our model generation process.

Deduplicating Data: Since we use cross-validation to evaluate
the performance of our detection models on labeled data, we
took extra care to reduce the probability of data leakage. In
our setting, data leakage may result from using identical (or
nearly-identical) code instances for training the model and for
validating it. Indeed, we observed in our dataset PowerShell
code instances that differ by only a small number of characters.
In most of these cases, the difference stemmed from the
usage of random file names, different IP addresses, or different
numbers/types of white space characters (i.e. spaces, tabs and
newlines).

The existence of identical or nearly-identical code instances
in a PowerShell code-corpus collected inside a real-world or-
ganization is almost certain. Many of the benign code instances
observed run as part of corporate maintenance procedures and
are therefore likely to be observed on many machines and/or
on the same machine in different times. As for malicious code,
since we executed (inside a sandbox) numerous malicious
programs in order to collect the PowerShell code they invoke,
some subsets of these programs may have belonged to the same
malware family, and thus invoked similar or even identical
PowerShell code. Moreover, nearly-identical code can also be
used by programs from different malware families that launch
similar types of cyber attacks.

To prevent data leakage, we perform a de-duplication pro-
cess for eliminating identical or nearly-identical code instances
from our dataset. The de-duplication process consists of the
following 4 stages:

1) Code tokenization: Code instances are demarcated to tokens.
Any symbol which is not in the set {’a’-’z’, "A’-’Z’, ***, °§’,
>’} is used as a delimiter. We remind the reader that digits
are replaced by asterisk signs ("*’) during the regularization
process, hence they are not used as delimiters. We do not
use the dollar sign (’$’) as a delimiter because it is used
in PowerShell to refer to a variable. Thus, for example, we
consider true and $true as two different tokens. As for
the dash sign(’-’), it appears inside PowerShell tokens such
as Write-Host and Invoke—Command and is therefore
not used as a delimiter as well. We only use tokens of
length at least 2, since a single character by itself has no

https://github.com/
https://www.powershellgallery.com/

15.0 .
125
10.0
75
50
25

00 .]
00 25 50 75 100 125 150

Fig. 3. Number of tokens appearing in x code instances, on a log-log scale.
The vertical line is at z = log2(100).

meaning in PowerShell. The tokenization process yielded
approximately four million distinct tokens. Since PowerShell
is case-insensitive, all tokens were normalized to the lower
case.

2) Rare tokens elimination: Since our goal is to deduplicate
similar code instances based on the tokens contained in them,
we remove random-string tokens by keeping only tokens that
appear in more than 100 code instances. To motivate the
selection of 100 as the token-frequency threshold, Figure [3]
presents a histogram (using a log-log scale) of the number
of tokens that appear in exactly x distinct code instances, for
each value x. Note the change in trend around xz = 9 (512
instances), indicating that many tokens appear in less than
about 500 instances, and substantially less tokens appear in
over 500 instances. To ensure that we do not remove too many
tokens, we used 100 as a threshold for a token to be considered
significant. This resulted in a collection of 14,216 significant
tokens. We note that rare tokens are removed only for the
sake of de-duplication. In general, such tokens are still used
for training the embedding layer and evaluating the models.

3) Code instance clustering: By identifying each instance
according to the set of the significant tokens that appear in
it, we effectively cluster together all code instances that differ
only in the rare tokens they contain.

4) Cluster representatives selection: We arbitrarily select from
each of the resulting clusters a single representative. This
process yielded 116,976 distinct instances.

We note that the dimensions of the dataset specified earlier
are the numbers of distinct instances after the de-duplication
process. As shown by Table [} the de-duplication process
reduced the number of labeled instances from 198,477 to
116,976 — a 41% reduction.

TABLE II. DE-DUPLICATED CODE INSTANCES STATISTICS
Original Distinct % Deduped
Benign instances 188,797 111,593 41%
Malicious instances 9,680 5,383 44%
Total instances 198,477 116,976 41%

V. CONTEXTUAL EMBEDDING OF POWERSHELL TOKENS

We remind the reader that our training approach, illustrated
by Figure 2} consists of an embedding stage followed by a

supervised training stage. We learn the contextual embedding
using both the unlabeled dataset and the training setﬂ In this
section, we share some interesting findings derived from these
embeddings, showcasing their potential contribution for de-
tection. We experimented with two DL-based text embedding
techniques — W2V and FastText (see Section [[I-D). In both
cases, the input for the embedding is the same: we tokenized
the code as described above.

The PowerShell code we use to generate the embedding
contains approximately four million distinct tokens, most of
which appear in only a few instances. Using all these tokens
would generate a huge embedding layer, making the processing
time of both learning the embedding and training the model
impractically large. Consequently, only tokens that appeared in
at least ten instances were used for embedding. This resulted
in 81,111 distinct tokens.

We chose to use the CBOW rather than the Skip-Gram ar-
chitecture [41]], since the former is faster to train and generally
works better on large training sets with many frequent words.

A. Tokens embedding in action

W2V embedding is known for capturing semantic similar-
ities between different words, which are frequently preserved
in linear combinations of embedded vectors [9]]. In this subsec-
tion, we share a few interesting examples demonstrating how
different tokens representing similar semantics in PowerShell
code are embedded as neighboring vectors. Using t-SNE [44]
for reducing dimensionality, we present in Figure [a 2-
dimensional visualization of the vector representation (using
W2V) of 5,000 randomly selected tokens and some inter-
esting tokens which we highlighted. Note how semantically
similar tokens are placed near each other. For example, the
vectors representing -eq, -ne and -gt, which in PowerShell
are aliases for “equal”, “not-equal” and “greater-than”, re-
spectively, are clustered together. Similarly, the vectors rep-
resenting the allSigned, remoteSigned, bypass and
unrestricted tokens, all of which are valid values for the
execution policy setting in PowerShell, are clustered together.

Examining the vector representations of the tokens, we
found a few additional interesting relationships between the
tokens, which we describe next.

Tokens similarity: Using the W2V vector representation of
tokens, we can use the Euclidean distance to measure similarity
in the embedding space. Many cmdlets in PowerShell have an
alias. We found that when using the W2V embedding, in many
cases, the token closest to a given cmdlet is its alias. For exam-
ple, the representations of the token Invoke-Expression
and its alias IEX are closest to each other. Two additional
examples of this phenomenon are the Invoke-WebRequest
and its alias IWR, and the Get-ChildItem command and
its alias GCI.

We also measured distances within sets of several to-
kens. Consider, for example, the four tokens $i, $7j, $k and
Strue (see the right side of Figure [5). The first three are
usually used to name a numeric variable and the last represents
a boolean constant. As expected, the $t rue token mismatched

TThe test set is not used for learning the embedding.

the others — it was the farthest (in terms of Euclidean distance)
from the center of mass of the group.

More specific to the semantics of PowerShell and cy-
bersecurity, we checked the representations of the to-
kens: normal, minimized, maximized, hidden and
bypass (see the left side of Figure [5). While the last token is
a legal value for the ExecutionPolicy flag in PowerShell,
the rest are legal values for the WindowStyle flag. As
expected, the vector representation of bypass was the farthest
from the center of mass of the vectors representing all other
four tokens.

Linear Relationships: As W2V preserves linear
relationships, computing linear combinations of W2V
vector representation results in semantically-meaningful

results. Below are a few interesting relationships we found:
high-$false+S$true =~ low

‘-eq’ -S$false+ Strue ~ ‘-neq’

DownloadFile - $destfile+ $str ~DownloadString
‘Export-CSV’ —$csv+S$html =~ ‘ConvertTo-html’

‘Get-Process’ -$processest+$services ~ ‘Get-Service’

In each of the above expressions, the >~ sign signifies that
the vector on the right side is the closest (among all the vectors
representing tokens in the vocabulary) to the vector that is the
result of the computation on the left side, in terms of Euclidean
distance.

VI. CLASSIFICATION MODELS

We implemented and evaluated 10 DL detection models,
which differ in their architectures and in terms of whether
their input is processed as a sequence of tokens, a sequence
of characters, or both. In order to assess the extent to which
the DL models are able to compete with traditional detection
approaches, we also implemented two detectors that are based

low
‘medium
iex high
invoke-expression
africa
europe
Jgetratia webclient
downloadfile
downloadstring
iwr [ieq
fa|tsréJe invoke-webrequest %—ge
)
-or
) eiggi?
if
bypass
remotesigned
allsigned

unrestricted

Fig. 4. t-SNE 2D visualization of 5,000 tokens using W2V.

on widely-used traditional methods for feature extraction. We
proceed with the details.

A. Deep-Learning Based Detectors

We employ two deep-learning based architectures — a
Convolutional-Neural-Network (CNN) and a combination of
CNN and a Recurrent-Neural-Network (CNN-RNN).

1) Token-Level Architectures: We refer to DL architectures
that consider their input as a sequence of tokens as foken-level
architectures. We implemented two token-level architectures:
One based on the CNN-RNN architecture of [45]] and another
based on the CNN architecture presented by [46], [47]. In
both these architectures, on top of the embedding layer, we
used a convolutional layer with 128 filters and a kernel of size
3. In the CNN architecture, we then performed global max
pooling, followed by a dropout layer (see Section [[I-C). In the
CNN-RNN architecture, on top of the convolutional layer, we
used a max pooling layer of size 3, to preserve the sequential
nature of PowerShell code, followed by a bidirectional LSTM
layer with 32 units, a dropout of 0.5 and a recurrent dropout
of 0.02. Finally, in both architectures we used a single-node
dense output layer with a Sigmoid activation function for
classification. For full details, we provide our Keras [48] code
for model definitions in the appendix.

As previously mentioned, the first layer of both our DL
architectures is an embedding layer. We experimented with
the following three options for setting the initial weights in
the embedding layer, for a total of 6 different token-based DL
detection models:

e Weights sampled from a uniform distribution: The two
resulting models are henceforth referred to as “CNN”
and “CNN-RNN”. We sometimes refer to this option
as inline embedding.

e Weights pretrained using W2V: The two resulting
models are henceforth referred to as “CNN-W2V” and
“CNN-RNN-W2V”.

e Weights pretrained using FastText: The two resulting
models are henceforth referred to as “CNN-FastText”
and “CNN-RNN-FastText”.

In both training and prediction, we used the first 2,000
tokens from each PowerShell code instance, as only 3 benign
instances (and no malicious instance) in our labeled dataset

319

hidden
.normal.
Jnaximized

.minimized

~

ES
-0
25
o
5
3
10

s
s 200 9

Fig. 5. t-SNE 3D visualization of selected tokens.

m Clean
10 « Malicious
-
8 n
.
o 1-'1-

2 .
’ . . . s . -
- e - - L L]
- - . L -m «m -
D L R T *e SIEN - N |
0 500 1000 1500 2000

Fig. 6. Histogram of number of tokens per code instance (by label), y-axis
uses logarithmic scale.

contain more than 2,000 tokens. Figure [f] presents the his-
togram of instance lengths (in terms of tokens), separately
per label, on a log scale. The distributions of benign and
malicious instances are similar, and both reach almost the same
maximum length.

2) Character-Level Architecture: Another model we ex-
perimented with is the best-performing model presented by
[15]], named “4-CNN”, where character-level one-hot encoding
(which includes a special bit to account for character casing)
is used. It employs a 4-layer CNN architecture, containing a
single convolutional layer with 128 kernels of size 62x3 and
stride 1, followed by a max pooling layer of size 3 with no
overlap. This is followed by two fully-connected layers, both
of size 1,024 each followed by a dropout layer with probability
of 0.5, and an output layer.

3) Token-Character Level Architecture: The 7 models we
described so far use either a character-level or a token-level
representation, but not both. In order to combine both a token-
level and a character-level representation, we implemented and
evaluated an architecture similar to the CNN-RNN one, that
uses both a one-hot encoding representation of characters and
a token-level embedding layer. We henceforth refer to this
architecture as “Token-Char”. ﬂ Here, too, we experimented
with the three token embedding options (inline, W2V and
FastText), resulting in 3 additional DL detection models.

The use of two input representations requires applying
some adaptations to the architecture, as otherwise it would
result in a model that has too many trainable parameters,
thus increasing the risk of overfitting. In order to address
this issue, we reduced the number of input-tokens and input-
characters to 1,000 and also reduced the number of filters used
in the convolutional layer from 128 to 64. We also reduced the
number of tokens participating in the embedding process by
using only tokens that appear in at least 20 instances (instead
of 10); this reduced the number of tokens to 47,555.

Figure [/] depicts the “Token-Char” architecture. As can be
seen, it receives both a token-level and a character-level repre-
sentation of the input code. After the tokens are embedded and
the characters are encoded, each is being input to a separate
convolution layer with 64 filters. Next, for the token-level path,
we performed max pooling with a kernel of size 3 (as was

8We would like to thank Eran Galili from Microsoft for his help with the
architecture design and technical assistance.

| PowerShell Script |

o

Token Embedding

T

Char One-Hot encoding

'
:

32 62

1000 000

v

Convolution

64| 64 7L
9p3 998 |
axPool (3) Global May Pool
Max Pooling
64 64
1

332

Concatenate

(Duplicate)

Bidirectional
LSTM(32)

Output

Fig. 7. A diagram of the “Token-Char” model architecture. The result of
applying global max pooling on the character-level input is marked in blue, to
emphasise the fact that it has been duplicated in order for it to be processed
by the LSTM layer along with the token-level input.

done in the CNN-RNN architecture). As for the character-level
path, we used global max pooling, which resulted in a single
tensor of size 64 (the number of filters used in the previous
convolutional layer). We added a dropout layer with probability
0.5 for regularization (not shown in Figure [7).

We now explain how we combined the paths of the token-
level and the character-level inputs. Since we use global
max pooling for the character convolutional layer, we had to
duplicate the resulting tensor before we concatenate it to the
output of the token-level layer. This allows us to apply the bi-
directional LSTM on an input that is based on both the token-
level embedding and the character-level encoding. In each of
the 332 LSTM input entries, the top 64 represent token-level
features and the bottom 64 represents character-level features.
Note that, as we did not apply global max pooling to the
token-level path, the token-level sequential nature of the code
is maintained. We use a biderctional LSTM layer with output
size of 32 and, finally, an output layer consisting of a single
node. Full technical details are provided in the appendix.

B. Traditional NLP-based detectors

We used two types of NLP feature extraction meth-
ods: character-level n-grams and token-level n-grams. For
character-level features, we used character n-grams for n €
{2, 3,4}. For token-level features, we used token n-grams, for

n € {1,2,3}. We only used tokens appearing in at least 10
instances. For both methods, we evaluated both term-frequency
(tf) and term-frequency-inverse-document-frequency (tf-idf) as
a weighting factor and then applied a logistic regression
classifier on the extracted features (more details are provided
in the appendix). For each type of features (token-based or
character-based), we report on the evaluation results of the
best-performing model (optimal value of n), using tf-idf, as it
gave the best results in terms of true positive rate (TPR, a.k.a.
recall) when using a threshold keeping the false positive rate
(FPR) lower than 1073.

VII. EXPERIMENTAL EVALUATION

In this section, we describe how we evaluated our detectors.
We then present and discuss evaluation results. This is followed
by an analysis of the contribution of contextual embedding
and a discussion of the added value of the character-level
representation.

We have split our labeled dataset according to instances
collection times to a test set, consisting of 10,136 instances
(1,329 of which are malicious and 8,807 of which are benign),
and a training set, consisting of 106,840 instances (4,054
malicious and 102,786 benign), on which our models were
trained and evaluated using cross-validation. The training set
includes instances seen during May-July 2018, while the test
set includes instances seen during August-October 2018.

We performed a 3-fold cross-validation on the training
set to select values for hyper-parameters, such as the size of
the kernel of the convolutional layer, the number of filters to
use, the size of the LSTM layer, etc. Cross-validation was
used also for selecting the number of training epochs to be
used, as follows: For each fold, we selected the model that
is generated in the epoch in which we obtained the highest
TPR on the validation set (with an FPR lower than 1073).
As for performance evaluation on the test set — since the
above procedure generates 3 models for each detector (one per
fold), we apply all three to the test set and use their average
score. We used this technique, discussed in [49], in order to
avoid overfitting that may result from using too many training
epochs.

A. AUC results

For the traditional NLP models, we present the results of
the models that performed the best. These are the character-
level using tri-grams (Char-3-gram) and token-level using bi-
grams (Token-2-gram), both using tf-idf for feature weighting.
First, we focus on the area under the ROC curve (AUC) on
the validation set, presented in the AUC column in Table

As evident from Table all detectors obtain very high
AUC levels, above 0.987. At first glance, this may lead one to
conclude that they all provide sufficiently good performance.
However, considering that in real-world deployments the rate
of PowerShell instances to be classified by our models may
be very high, even a low FPR of 1% will result in too many
false alarms that would deem the detection system impractical.
Thus, for a detector to be useful, it must maintain a very low
FPR. Consequently, in what follows we evaluate the TPR of
the detectors while enforcing very low FPR levels. Figure [§]
presents the ROC curves of all models on the test set for FPR

o9

08

0.7

0.6

0.5

o4

03

0z

CNM-RNN {aurcc=0.978)
CNM-RNN-FastText (auroc=0.976)
CNMN-RNMN-W2V (auroc=0.975)

CNMN (auroc=0.973)

CNN-FastText (auroc=0.960)
CNMN-W2V (auroc=0 971)
Token-Char {auroc=0.973)
Token-Char-FastText (auroc=0 975)
Token-Char-W2aV (auroc=0.972)
CNN-4- {aurcc=0.964)

0.000 0.001

0.002 0.003 0.004 0.005

Fig. 8. ROC curves of models on test set for TPR 0.005

lower than 0.5%. It can be seen that the Token-Char-FastText
model significantly outperforms all other models. We proceed
by performing a detailed analysis of the TPR results for low
FPR.

B. TPR results

Columns ’Train’, ’Validation’ and ’Test’ in Table
present the TPR of our detectors for FPR level < 1073,
over the training, validation and test sets. In general, when
conducting cross-validation on the training set, results are
reported only for the validation fold. We choose to report
also on the performance of our models on the training folds
(in the column with heading ’Train’), since this allows us to
better analyze the extent to which different models suffer from
overfitting. As we conduct the analysis at an FPR level of 1073
and since we have a total of about 28,000 benign instances in
each training set fold, using this threshold translates to at most
28 FPs in each fold.

The TPR scores presented for the training and validation
sets in Table |lII| are the average scores for the three folds. As
mentioned above, for each validation fold, we select the model
that provides the highest TPR (over the epochs) on this fold,
while keeping the FPR low. This yields three detection models
applied to each test set instance, resulting in three scores per
each instance. The results presented in the ’Test’ column of
table [III] are the average scores of these three models. We use
this technique for ensuring that we apply the best model, as
each epoch results in a different model, and after a certain
number of epochs the models starts to overfit.

While all classifiers achieve relatively high TPR values, the
performance of the traditional NLP detectors is substantially
lower than that of the DL detectors. In comparison to the NLP
detectors, the DL detectors improve TPR by up to 4 pp on the
validation set and by up to 23 pp on the test set.

The decrease in detectors’ performance on the test set
in comparison with the validation set is expected, since the
training set (which includes the validation set) and the test
set were collected over disjoint periods of time. Moreover,
as we described in Section we deduplicated our labeled
data, so that the test set contains only instances that were not
seen in the training set. This implies that our TPR results
are, in fact, a lower bound on the actual TPR because, in
practice, many instances that are observed in the training data
are likely to also appear in new data to which the detectors

TABLE III. AREA UNDER THE ROC CURVE (AUC) AND TPR PER
MODEL, FPR< 1073, STANDARD DEVIATIONS ARE LESS THAN 0.005 ON
THE VALIDATION SET, 0.01 ON THE TRAINING SET, 0.03 ON THE TEST SET

AND 0.003 FOR THE AUC

H Model H AUC [Train [Validation [Test H
Token-Char-FastText || 0.994 | 0.949 | 0.929 0.894
Token-Char-W2v 0995 | 0972 | 0.922 0.810
Token-Char 0991 | 0.997 | 0.928 0.775
CNN-FastText 0.987 0.939 0.916 0.769
CNN-W2V 0.994 | 0976 | 0.944 0.779
CNN 0994 | 0999 | 0.943 0711
CNN-RNN-FastText || 0.991 | 0.937 | 0.921 0.818
CNN-RNN-W2V 0994 | 0962 | 0.929 0.805
CNN-RNN 0991 | 0.997 | 0.930 0.736

[cNN-4 [[0994] 0958 | 0936 [0799]|
Char-3-gram 0993 | 0.893 | 0.867 0.667
Token-2-gram 0.994 | 0.894 | 0.898 0.643

are applied. Since TPR results on the training data are very
high, these duplicated instances are very likely to be classified
correctly. However, because of de-duplication, such instances
do not appear in our test set. A second possible explanation to
the lower performance on the test set is that the models were
overfitted to the validation set during the process of hyper-
parameters tuning and DL architecture selection.

Focusing on the DL models, it is noteworthy to observe
the impact of the pretrained embedding layer. First, inspecting
the results on the training set, the TPR of models without the
pretrained embedding is above 0.99 (these are the entries in red
font in the “Train” column). These extremely high TPR values
are a strong indication of overfitting. Indeed, the overfitting of
models without pretrained embeddings is evident from their
lower performance on the test set.

For instance, focusing on the results of the Token-Char
architecture, let us compare the results of the Token-Char and
the Token-Char-FastText models. On the training set, Token-
Char overfits with TPR of 0.997 while Token-Char-FastText
obtains a TPR of 0.949. On the validation set, Token-Char-
FastText’s TPR very slightly outperforms that of Token-Char.
The reduction in overfitting gained by using the pretrained
embedding is established by the results on the test set, where
Token-Char-FastText’s TPR improves over that of Token-Char
by almost 12 pp, from 0.775 to 0.894 (see the red-font entry
at the top of the “Test” column in Table [[TI). Similar results
(although with smaller gaps) can be observed in the CNN-
RNN architecture, where the TPR on the test set improves
from 0.736 to 0.818, and in the CNN architecture, where it
improves from 0.711 to 0.769. A plausible explanation for
these results is that a pretrained embedding enables the model
to leverage contextual relationships that are absent from the
labeled dataset, thus becoming less susceptible to overfitting.

Next, we compare the results obtained when using the two
types of embedding — FastText and W2V. We start our com-
parison with the models of the Token-Char architecture, where
the differences in performance between the two embedding
algorithms on the test set are more significant. On the training
set, the TPR of the W2V model exceeds that of FastText by
approximately 2.3 pp. As we’ve already observed, superior
performance on the training set is often a sign of higher

10

overfitting and this seems to be the case also here. Indeed,
FastText takes the lead on the validation set and outperforms
W2V by approximately 0.7 pp. The gap becomes much more
significant on the test set, where Token-Char-FastText is the
best model with a TPR of more than 0.89, exceeding the TPR
of Token-Char-W2V by almost 8.5 pp.

A similar trend, although much less pronounced, is ob-
served on the CNN and the CNN-RNN architectures. W2V’s
TP is superior to that of FastText on the training set (by 3.7 pp
and 2.5 pp, respectively), but the gaps are slightly decreased
on the validation set (2.8 pp and 0.8 pp, respectively) and
significantly decreased or even reversed on the test set (1 pp
and -1.3 pp, respectively).

Collectively, these results seem to indicate that, in our
setting, models employing FastText are better at generalizing
as compared with those based on W2V. A possible explanation
is that FastText is better in interpreting tokens that were not
seen in the training set but appear in the validation or test sets.
This is because FastText utlilizes sub-tokens in the embedding
process.

Summing up our analysis of TPR results, we reach the
following key conclusions:

)
2)

The DL detection models significantly outperform the
traditional NLP models.

Pretrained embedding significantly improved TPR on
the test set: by 11.9 pp in the Token-Char architecture,
and by 8.2 and 6.8 pp in the CNN-RNN and CNN
architectures, respectively.

The TPR of our best model, Token-Char-FastText,
exceeds that of 4-CNN, the best model of [15], by
9.5pp.

3)

Another, more general conclusion, is the following: in some
cases, it is important to analyze the TPR on the training set and
not only on the validation set alone, in order to avoid selecting
an overfitted model. As evident from our evaluation, when two
models reach more-or-less the same TPR on the validation set,
the TPR on the training set can help us determine which model
will generalize better on unseen data.

We proceed to analyze in finer resolution the manner in
which contextual embedding improves detection performance.

C. The Contribution of Contextual Embeddings

In this section, we analyze the contribution of contextual
embedding. We start by measuring the contribution to the
model TPR that is gained by using non-labeled data in the
contextual embedding. We then describe and analyze specific
examples of malicious PowerShell tokens and code whose
detection is facilitated by using the embedding.

1) Contribution of Non-Labeled Data: In Section [VII} we
evaluated 12 malicious-PowerShell-code detectors (see Table
M), 6 of which use a pretrained embedding layer. As we
saw, the pretrained embedding improves TPR significantly on
all architectures. We remind the reader that the embedding
layer was trained using both the training set and the unlabeled
dataset. In order to quantify the contribution of the unlabeled
dataset by itself to the TPR of our detection models, we
generated an embedding layer using the training set only and

then measured the TPR of the resulting models (while keeping
the FPR below 0.001).

The results are presented by Table The ’Inline’ column
presents the TPR for the models without contextual embedding
and the ’All data’ column presents it for the models with
an embedding trained using both the training set and the
unlabeled datasetﬂ The ’training set only’ column presents
the TPR results of the new models, trained using the training
set only — without the unlabeled instances. As can be seen
by comparing the 2°nd and 3’rd columns of Table all
the models except for Token-Char-FastText hardly benefit at
all from the contextual embedding when it is trained using
the training set only. Thus, the contribution of the contextual
embedding for these 5 models should be fully attributed to
the usage of the unlabeled dataset (whose contribution can
be quantified by comparing the 3’rd and 4’th columns). The
explanation for this is, most probably, the fact that DL model
weights are optimized anyway w.r.t. the training set tokens by
the supervised training process.

The results for the Token-Char-FastText detector are sig-
nificantly different. Training the contextual embedding solely
based on the training set improves TPR by approximately
4.8 pp over no pretrained embedding at all, while using also
scripts/modules from the unlabeled corpus increases TPR by
additional 7.1 pp.

2) Detection Examples: We now provide an example of
how the W2V embedding facilitates the detection of malicious
code. Consider the following short malicious code:

Invoke-WebRequest -Uri http://<Ip>/ry.exe
—-OutFile
([System.IO.Path]::GetTempPath()+'c.exe’);
powershell.exe Start-Process -Filepath
([System.IO.Path]::GetTempPath()+'c.exe’);

In the above code, Invoke-WebRequest is used
to fetch the payload, write it to a temporary folder
and then execute it. Recall that the PowerShell command
Invoke-WebRequest has an alias — IWR. When replacing
in the above code the cmdlet Invoke-WebRequest by IWR,
the CNN-RNN model using the inline embedding scores the
altered script 5 pp lower, that is, it scores it as significantly less
likely to be malicious. This decrease does not occur when the
CNN-RNN-W2V model is used. We now explain the reason
for this difference.

9These values also appear in Table [III| and are repeated here for facilitating
comparison.

TABLE IV. TPR RESULTS WITHOUT CONTEXTUAL EMBEDDING
(CINLINE’), WITH CONTEXTUAL EMBEDDING USING TRAINING SET ONLY,
AND WITH CONTEXTUAL EMBEDDING USING BOTH THE UNLABELED
DATASET AND THE TRAINING SET.

[[Model [[Inline | training set only [All data []
[[Token-Char-FastText [[0.775 | 0.823 [0894]
H Token-Char-W2v H 0.775 [0.763 [0.810 H
[[CNN-FastText [[0711] 0.72 [0769]
[CNN-w2v [[0711 [0713 [0
[[CNN-RNN-FastText_|[0.736 | 0.736 [0818__ |
[| CNN-RNN-W2V][0736 | 0.729 [0805]

11

Counting token appearances in the training set, we found
that the Invoke-WebRequest command appears in 1540
benign instances and in 6 malicious instances, while IWR
appears in 27 training set instances, all of which are benign.
This explains the decrease in score of the inline embedding
model. In the model that uses the W2V embedding, on the
other hand, the Invoke-WebRequest command and its
alias TWR were found to be semantically equivalent, since each
of the two vectors to which they were mapped by W2V is the
closest neighbor of the other. Consequently, when using the
CNN-RNN-W2V model, no decrease in the score is observed
when replacing the command by its alias.

Next, we provide an example of how FastText facilitates
detection by comparing the performance of the CNN-RNN
model (which does not use a contextual embedding) with that
of CNN-RNN-FastText. We conduct this comparison using
the CNN-RNN architecture rather than the Token-Char archi-
tecture, since the former only utilizes per-token information,
making it easier to pinpoint the contribution of the contextual
embedding.

The CNN-RNN-FastText model detected 143 instances that
were not detected by the CNN-RNN model. Out of these,
137 are TPs and 6 are FPS Manually analyzing these code
instances, we were not able to identify any specific tokens
which could have contributed to the detection. Nevertheless,
our analysis of the newly-detected instances indicates that in
at least 41 of them, detection can be, at least partly, attributed
to the fact that FastText uses sub-tokens. We now provide an
example showcasing the possible contribution of sub-tokens.

Our analysis identified the following 3 tokens (hence-
forth referred to as the example tokens), one or more of
which appearing in 41 of the newly detected instances:
"responsetext’, ' responsebody’ and ' xmlhttp’.
These 3 tokens seem rather benign based on the training set:
they were respectively seen in 44, 84 and 49 training set
instances, out of which only (respectively) 1, 2 and 2 were
malicious. We then analyzed the properties of their sub-tokens.
In addition to a significant increase in the number of training
set instances that contain one or more of these sub-tokens
(which is to be expected), we found that some of them seem
suspicious based on the training set, as the ratio of malicious
training set instances in which they appear is relatively high,
facilitating the detection of the instances that contain them by
the model. Examples of such sub-tokens are:

e ’'http’ appeared in 18,616 training set instances,
2,024 of which are malicious (10.8%).

e ’spo’ appeared in 7,296 instances, 656 of which are
malicious (8.9%).

Since FastText utilizes sub-tokens for its embedding pro-
cess, the vector representations assigned to tokens with similar
sub-tokens are relatively close to each other. Consequently, as
the above sub-tokens appear in a malicious context (mostly
as part of tokens other than the example tokens), the fact
that the tokens containing them are embedded to vectors that
are relatively close to those of the example tokens can assist

100 the other hand, only 34 instances detected by CNN-RNN with inline
embedding were not detected using FastText embedding. Out of these, 28 are
TPs and 6 are FPs.

the model in correctly classifying instances containing these
example tokens.

D. Character-Level Versus Token-Level Representations

In this section, we investigate the added value of the
character-level input representation over the token-level rep-
resentation and discuss the ways in which we combined the
two representations.

From Table we see that the TPR of the 4-CNN model
on the test set not only significantly surpasses that of the NLP-
based detectors, but also exceeds that of the CNN architecture
models by 2 pp or more. Its TPR is also comparable with
that of the CNN-RNN architecture models and, specifically, is
exceeded by the CNN-RNN-FastText model by less than 2 pp.
We now analyze the differences in detection between the 4-
CNN and the CNN-RNN-FastText models to better understand
the added value of the character-level encoding used in 4-CNN.

By comparing the detection results of these two models
we found that CNN-RNN-FastText detects 60 code instances
that are not detected by 4-CNN, 55 of which are TPs, while
4-CNN detects 34 instances (29 of which are TPs) that are not
detected by CNN-RNN-FastText. The significant added value
of the character-level model can be explained by the existence
of obfuscated instances in our test set that are detected by it
but are not detected at the token level, as we explain next.

We focus first on the CNN-RNN-FastText model and
discuss how it treats various PowerShell code obfuscation
techniques and why some of them are not detected by it,
using concrete examples from the 29 test set instances that
are detected by 4-CNN but evade CNN-RNN-FastText.

FastText uses sub-tokens to construct a contextual embed-
ding. This enables the model to tackle one of the known
methods of PowerShell obfuscation — the use of string manipu-
lations to construct a PowerShell command Unfortunately, in
some cases, the usage of sub-tokens by FastText is insufficient
for detecting this type of obfuscation. Moreover, there are
additional PowerShell obfuscation techniques that are not
detectable at the token level. We identified three such “blind
spots” of FastTextE}

1) One popular way of PowerShell code obfuscation, seen
in many malicious instances, is the usage of tokens whose
characters alternate between lower-case and upper-case (e.g.,
iNvOkE-wEbReQuEsT). Since we lower-case the input be-
fore processing it, token-level representations are unable to
detect this type of obfuscation, which was observed in 16 of
the 29 instances that evaded CNN-RNN-FastText.

2) Special characters such as '+’ and [’ or ’]’ are con-
sidered as delimiters and are therefore absent from token-
level embeddings, that is, they do not appear as part of
tokens or sub-tokens. Out of the 29 missed instances, 13
instances contain all of these 3 special characters. Inter-
estingly, in three of these instances, we observed a rela-
tively rare obfuscation technique, in which a part of the
instance (that contained ASCII-encoded characters) appeared

TAs we’ve mentioned in Subsection this obfuscation type, performed
in execution time, cannot be de-obfuscated by AMSI.

2These are clearly blind spots of W2V as well, since W2V treats tokens
as atomic units.

12

in reverse order. An example of this obfuscation technique
is the command ‘‘[88]rahc[+96]rahc[+37]rahc",
which, upon reversal, becomes *‘IEX", an alias of the
"Invoke-Expression" cmdlet. It is impossible for the
token-level model to detect such obfuscation techniques with-
out considering the special characters they use.

3) String manipulations using one or two characters generally
evade FastText. The minimum length of a token is 2, hence
a single character cannot contribute to a model using the
FastText embedding. As for two-character tokens, these are
likely to appear in numerous contexts, and so it is reasonable
to assume that their embedding does not contribute much
to the detection. Indeed, in 12 of the 29 missed instances,
tokens were constructed by concatenating multiple strings,
many of which are singleton characters or 2-character strings,
thus evading FastText. Here is an example of part of code
obfuscated in this manner:

"{2H{3HOoH{1}'-f "Sc’,’RiPT’,’invVOk’,'E’
"vA’ + 'rI’+’aBle:jW4v’

Turning our attention back to the 4-CNN model, it was
established in [15] that it is able to detect many of these
obfuscation techniques, since it considers its input at the
character-level and takes character casing into consideration.

In the wake of the above analysis, we concluded that the
character-level and the token-level approaches are comple-
mentary and seem to cover different aspects of the detection
problem, hence sought ways of combining them. Our first
attempt to combine the two approaches was to construct an
ensemble that combines the detection results of CNN-RNN-
FastText and 4-CNN by using the average of the scores
they assign to the input instance. The ensemble increased the
TPR on the test set to 0.835, which translates to at least 45
additional instance detections in comparison to each of the
two models by itself. Still, this is almost 6 pp lower than
the TPR of the Token-Char-FastText model (which achieves
a TPR of 0.894 on the test set). These results indicate that
feeding the DL model with both a token-level and a character-
level input representation enables it to learn features based
on combinations of signals from both levels, providing more
synergy between them than is possible by using each model
separately and feeding their scores to an ensemble.

VIII. RELATED WORK

Several recent reports by antimalware vendors surveyed the
increasing use of PowerShell as a cybersecurity attack vector
[2]-[4]. Hendler et al. [15] presented the first detector of ma-
licious PowerShell command-lines. Their detector is based on
a DL model that employs a character-level embedding. Unlike
theirs, our detector targets the detection of general malicious
PowerShell code, visible via AMSI. General PowerShell code
included scripts and modules, in addition to command-line
code. As we’ve shown in Section general PowerShell code
is more volumetric and possesses a more complex structure
than command-line code.

Holmes and Bohannon [50] presented a detector of obfus-
cated PowerShell code. AMSI de-obfuscates code before it is
sent for scanning, so this approach may not be best-suited
for AMSI-based detection. Moreover, many malicious code
samples are not obfuscated and many benign PowerShell code

samples are. Recently, Rusak et al. [51] presented a classifier
of malicious PowerShell scripts into malware families, that
is based on an Abstract Syntax Tree (AST) representation
of PowerShell scripts. Their DL model uses a small-scale
embedding of 62 types of AST node types. Unlike our work,
they do not address the problem of malicious PowerShell code
detection, nor do they use a (direct) contextual embedding of
PowerShell code.

JavaScript and VBScript are two additional widely-used
scripting languages that can be abused as attack-vectors [52].
Much of the previous work done on defending against such
attacks focuses on the detection of obfuscation [53]-[56],
rather than of maliciousness, or on the extraction of specific
features [57]]-[61]] that are generally not applicable to the
problem of detecting malicious PowerShell code. For example,
Cova et al. [57] present a detector for JavaScript and Drive-
By download that utilizes manually-defined JavaScript-specific
features, such as the lengths of the input to the eval function,
as well as some features external to the script’s content, such
as the number of redirects when the script is executed. These
features are not applicable in our setting. More generally, DL
models make feature extraction an automatic process.

Other works propose detectors for malicious Javascript
code based on classic feature-extraction NLP techniques, see
e.g. [53], [62], [63]. We implemented and evaluated mali-
cious PowerShell-code detectors based on such techniques
(specifically, n-gram and BoW) and they were significantly
outperformed by the other models we evaluated.

Stokes et al. [64] present a DL-based detector of malicious
JavaScript and VisualBasicScript code. They use the byte-
representation of the script as model input. They experimented
with two architectures, one using a byte-level embedding,
which is more effective for analyzing relatively-short code
sequences, and another that processes the input in longer fixed-
length units before feeding it to the embedding layer. In both
cases, the embedding was learnt as part of the supervised
training. Unlike our work, they do not employ unlabeled
data to pretrain an embedding layer and their models use an
embedding at only a single representation level. Wang et al.
[65] present a malicious JavaScript code detector that converts
JavaScript code to binary vectors (according to characters’
ASCII values), which are then being input to the DL architec-
ture. Their model does not employ a contextual embedding.

Some previous works employ DL-based detection with an
embedding stage for additional cyber-defense tasks, such as
detecting malicious PE files [66], [67], detecting malicious
URLs, file paths and registry keys [68]], [69], and analyzing
sequences of security events for detecting attack steps [70].

IX. DISCUSSION

Deployment: Our best-performing model (Token-Char-
FastText) is deployed in the antimalware vendor’s production
environment since April, 2019. During its first 3 months of
operation, it processed over 3 billion AMSI events, raising
alerts with average precision of over 80%. The detector runs
in a cloud environment and scores AMSI events reported to it
from client endpoints. To evaluate detection scalability, we ran
our detector on a single core of a 24GB RAM Intel i7 machine.
It took it 40.2 seconds to score 10,136 AMSI events, totalling

13

45MB of PowerShell code, for an average of approximately
1.1MB of code per second. Since numerous AMSI events can
be classified independently of one another, our detector is
easily parallelized and scales linearly in the number of cores
assigned to it by the cloud infrastructure.

Attacks and countermeasures: An obvious evasion technique
against our detector would be to bypass AMSI altogether.
Several such attacks and countermeasures were reported (see
e.g. [20]). One way of attempting to bypass AMSI is to have
the PowerShell code do so, as we illustrated in Section
Given appropriate training examples, our detector may identify
such attempts. In addition, several antimalware vendors already
have pin-point detectors of such bypass attempts. Other types
of attacks include the replacement of system files that are
critical for AMSI’s correct operation and in-memory patching
of AMSI instrumentation [71], but those generally require
administrative privileges. Antimalware vendors are engaged
in a typical cybersecurity cat-and-mouse game with attackers
aiming to disable AMSI. While full security cannot be guar-
anteed, it is plausible to assume that AMSI bypassing attacks
will become increasingly difficult over time.

As with any ML-based detection model, attackers may
attempt evasion by changing their behavior dynamically over
time. One possible way of doing so might be automatic
generation of polymorphic variants of malicious PowerShell
code. This second type of attacks can be mitigated by re-
training the model sufficiently often for keeping up with
changing malware trends, by using fresh, real-world examples
of both benign and malicious PowerShell code.

X. CONCLUSIONS AND FUTURE WORK

In this work, we addressed the challenge of devising an
effective malicious PowerShell detector in AMSI-enabled envi-
ronments. We presented and evaluated several novel DL-based
detectors that leverage a pretrained contextual embedding of
tokens from the PowerShell “language”. A unique feature
of these detectors is that their embedding is trained using a
dataset enriched by a large corpus of unlabeled PowerShell
scripts/modules. Our performance analysis establishes that
the usage of unlabeled data significantly increased detection
quality. Our best model combines an embedding of language-
level tokens with one-hot encoding of characters. Feeding
the DL model with both a token-level and a character-level
input representation enables it to learn features based on
combinations of signals from both levels, thereby obtaining
a TPR of nearly 90% while maintaining a low FPR of less
than 0.1%. Its TPR exceeds that of the best model of [15] by
almost 10pp on AMSI-based data.

A promising avenue for future work is to investigate
whether our detection approach can find additional cybersecu-
rity applications. As a first step, we plan to investigate its usage
for detecting malicious code in other scripting languages, such
as JavaScript. Another interesting question is how best to strike
a balance between the sizes of the unlabeled dataset used for
embedding and the labeled dataset used for supervised training.

Several methods for embedding words into vectors have
been proposed in recent years in addition to W2V and FastText.
Devlin et al. present BERT, applying the bidirectional training
of Transformer [72] to language modeling. They present and

use a novel masked language model technique for conducting
bidirectional training. Unlike FastText and W2V, BERT uses
multiple hidden layers. Peters et al. present ELMo [73]], an
embedding technique that constructs several vector represen-
tations for each token, one per every context in which it
appears. ELMo uses two bidirectional LSTM layers on top
of a character-level convolution layer. Another direction for
future research is to investigate whether using either of these
two techniques can yield additional performance benefits.

REFERENCES

[1] Symantec, “Attackers are increasingly living off the land,” 2017.

[2] PaloAlto, “Pulling Back the Curtains on EncodedCommand PowerShell
Attacks,” 2017.

[3] Symantec, “The increased use of Powershell in attacks,” 2016.

[4] FireEye, “Malicious PowerShell Detection via Machine Learning,”
2018.

[5] Microsoft, “Antimalware Scan Interface (AMSI),”
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-
scan-interface-portal, 2019.

[6] I J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning,
ser. Adaptive computation and machine learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org/

[71 Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

[8] J. Schmidhuber, “Deep learning in neural networks: An overview,’
Neural networks, vol. 61, pp. 85-117, 2015.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems. NIPS,
2013, pp. 3111-3119.

[10] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532-1543.

[11] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135-146, 2017.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[13] X. Zhang and Y. LeCun, “Text understanding from scratch,” arXiv
preprint arXiv:1502.01710, 2015.

[14] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,
“Exploring the limits of language modeling,” arXiv preprint
arXiv:1602.02410, 2016.

[15] D. Hendler, S. Kels, and A. Rubin, “Detecting malicious powershell
commands using deep neural networks,” in Proceedings of the 2018 on
Asia Conference on Computer and Communications Security. ACM,
2018, pp. 187-197.

[16] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” arXiv preprint arXiv:1607.04606,
2016.

[17] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

[18] D. Bohannon and L. Holmes, “Revoke-Obfuscation v1.0,”
http://bit.ly/2mfCns9, 2018.

[19] IBM, “Ransomware Doesn’t Pay in 2018 as Cybercriminals Turn to
Cryptojacking for Profit,” 2019.

[20] MDSec, “Exploring powershell AMSI and logging evasion,”
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-
logging-evasion/, 2018.

[21] I Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[22] R. J. Schalkoff, Artificial neural networks. McGraw-Hill New York,
1997, vol. 1.

14

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd.,
20009.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541-551,
1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level
features for recognition,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 2559-2566.

D. M. Hawkins, “The problem of overfitting,” Journal of chemical
information and computer sciences, vol. 44, no. 1, pp. 1-12, 2004.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification.” in AAAI, vol. 333, 2015, pp. 2267-
2273.

T. Mikolov, M. Karafiit, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model.” in Interspeech,
vol. 2. ISCA, 2010, p. 3.

A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. 1EEE, 2013,
pp. 6645-6649.

A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proceedings of the 31st International
Conference on Machine Learning (ICML-14). JMLR.org, 2014, pp.
1764-1772.

H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in Fif-
teenth Annual Conference of the International Speech Communication
Association. 1SCA, 2014.

A. Graves, “Generating sequences with recurrent neural networks,”
arXiv preprint arXiv:1308.0850, 2013.

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition. 1EEE, 2014, pp. 1725-1732.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673-2681, 1997.

Y. Goldberg, “A primer on neural network models for natural language
processing,” Journal of Artificial Intelligence Research, vol. 57, pp.
345-420, 2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533-536, 1986.

S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323-2326,
2000.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” ICLR Workshop, 2013.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013, vol. 398.

S. Kaufman, S. Rosset, C. Perlich, and O. Stitelman, “Leakage in data
mining: Formulation, detection, and avoidance,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 6, no. 4, p. 15, 2012.
L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579-2605, 2008.
S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional Istm network: A machine learning approach for

precipitation nowcasting,” in Advances in neural information processing
systems, 2015, pp. 802-810.

http://www.deeplearningbook.org/

[46]

[47]

(48]
[49]

[50]

[51]

[52]

[53]

(541

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning. ACM,
2008, pp. 160-167.

F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks of
the trade. Springer, 1998, pp. 55-69.

D. Bohannon and L. Holmes, “Revoke-obfuscation: powershell obfus-
cation detection using science,” 2017.

G. Rusak, A. Al-Dujaili, and U.-M. O’Reilly, “AST-based deep learn-
ing for detecting malicious powershell,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018, pp. 2276-2278.

N. Provos, D. McNamee, P. Mavrommatis, K. Wang, N. Modadugu
et al., “The ghost in the browser: Analysis of web-based malware.”
HotBots, vol. 7, pp. 44, 2007.

P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript
detection using classification techniques,” in 2009 4th International
Conference on Malicious and Unwanted Software (MALWARE). 1EEE,
2009, pp. 47-54.

I. A. AL-Taharwa, H.-M. Lee, A. B. Jeng, K.-P. Wu, C.-S. Ho,
and S.-M. Chen, “Jsod: Javascript obfuscation detector,” Security and
Communication Networks, vol. 8, no. 6, pp. 1092-1107, 2015.

W. Xu, F. Zhang, and S. Zhu, “Jstill: mostly static detection of
obfuscated malicious javascript code,” in Proceedings of the third ACM
conference on Data and application security and privacy. ACM, 2013,
pp. 117-128.

S. Kaplan, B. Livshits, B. Zorn, C. Siefert, and C. Curtsinger, “”” nofus:
Automatically detecting”+ string. fromcharcode (32)+” obfuscated”.
tolowercase ()+” javascript code,” Technical report, Technical Report
MSR-TR 2011-57, Microsoft Research, 2011.

M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious javascript code,” in Proceedings of
the 19th international conference on World wide web. ACM, 2010,
pp. 281-290.

W. Wei-Hong, L. Yin-Jun, C. Hui-Bing, and F. Zhao-Lin, “A static
malicious javascript detection using svm,” in Proceedings of the 2nd
International Conference on Computer Science and Electronics Engi-
neering. Atlantis Press, 2013.

I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, “LuxOr: Detection of
malicious pdf-embedded javascript code through discriminant analysis
of api references,” in Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop. ACM, 2014, pp. 47-57.

P. Laskov and N. Srndi¢, “Static detection of malicious javascript-
bearing pdf documents,” in Proceedings of the 27th annual computer
security applications conference. ACM, 2011, pp. 373-382.

D. Wael, A. Shosha, and S. G. Sayed, “Malicious vbscript detection
algorithm based on data-mining techniques,” in 2017 Intl Conf on
Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf
on New Paradigms in Electronics & Information Technology (PEIT).
IEEE, 2017, pp. 112-116.

A. Shah, “Malicious javascript detection using statistical language
model,” 2016.

K. Schiitt, M. Kloft, A. Bikadorov, and K. Rieck, “Early detection of
malicious behavior in javascript code,” in Proceedings of the 5th ACM
workshop on Security and artificial intelligence. ACM, 2012, pp. 15—
24.

J. W. Stokes, R. Agrawal, and G. McDonald, “Neural classification of
malicious scripts: A study with javascript and vbscript,” arXiv preprint
arXiv:1805.05603, 2018.

Y. Wang, W.-d. Cai, and P.-c. Wei, “A deep learning approach for detect-
ing malicious javascript code,” security and communication networks,
vol. 9, no. 11, pp. 1520-1534, 2016.

E. Raff, J. Sylvester, and C. Nicholas, “Learning the pe header, malware
detection with minimal domain knowledge,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. ACM, 2017,
pp. 121-132.

15

[67]

[68]

[69]

[70]

(711

[72]

(73]

B. Athiwaratkun and J. W. Stokes, “Malware classification with 1stm and
gru language models and a character-level cnn,” in Acoustics, Speech
and Signal Processing (ICASSP), 2017 IEEE International Conference
on. IEEE, 2017, pp. 2482-2486.

J. Saxe and K. Berlin, “expose: A character-level convolutional neural
network with embeddings for detecting malicious urls, file paths and
registry keys,” arXiv preprint arXiv:1702.08568, 2017.

W. Yang, W. Zuo, and B. Cui, “Detecting malicious urls via a keyword-
based convolutional gated-recurrent-unit neural network,” IEEE Access,
2019.

“Attack2vec: Leveraging temporal word embeddings to understand
the evolution of cyberattacks,” in 28th USENIX Security
Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, 2019. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity 19/presentation/shen

Microsoft, “Windows defender atp machine learning and amsi,”
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-
logging-evasion/, 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, 2017, pp. 6000-6010. [Online]. Available:
http://papers.nips.cc/paper/7181-attention-is-all-you-need

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” arXiv
preprint arXiv:1802.05365, 2018.

https://github.com/fchollet/keras
https://www.usenix.org/conference/usenixsecurity19/presentation/shen
https://www.usenix.org/conference/usenixsecurity19/presentation/shen
http://papers.nips.cc/paper/7181-attention-is-all-you-need

XI. APPENDIX - IMPLEMENTATION DETAILS

All our experiments were performed on an Azure-hosted
Data-Science-VM with 56 GB of CPU memory (6 vCPUs)
and 12 GB of GPU memory (single core). TensorFlow was
used as the back-end. Building the embedding using Gensim
[]E] took less than an hour per iteration (we used 15 iterations,
resulting in total execution time of 13 hours and 37 minutes).
Training took less than 7 hours for CNN-RNN models, 5 hours
for Token-Char models and 1 hour for CNN models. Thus, in
a production scenario, a model can be fully trained once a day.
We implemented our DL models using Keraﬂ

For the DL models, we used binary cross-entropy as a loss
function with Adam optimizer and tolerance of 10~%. Data
was processed in 512-sized mini-batches with a maximum of
30 epochs, as in most cases the model converged before 30
epochs. Weights of instances were proportional to classes ratio.
As for traditional ML training, we used SGD with log loss
and L2 as penalty. We stopped after 100 iterations or when
the change in loss became smaller than 10~%. Architecture
hyperparameters were selected manually, based on the best
empirical result in terms of average (across folds) TPR, using
the highest threshold with FPR lower than 1073,

A. CNN

On top of the Embedding layer, we used a convolutional
layer with 128 filters and a kernel size of 3. A global Max-
pooling layer was used, reducing dimensionality, followed by
a Dropout layer and a Dense layer with a Sigmoid activation
unction
model
model.
model.

Sequential ()

add (Embedding (32))
add (Conv1D (128,
kernel-size= 3,
padding='valid’,
activation=’'relu’,
strides=1))

add (GlobalMaxPoolinglD ())
model.add (Dropout (0.5))
model.add (Dense (1,
activation='sigmoid’))

model.

B. CNN-RNN

We used an LSTM layer on top of a convolutional layer.
The convolutional layer had 128 filters and a kernel size of 3.
A max-pooling layer was used with pool and stride sizes of 3,
reducing dimensionality, followed by a bi-directional LSTM
layer with output of size 32 and a Dense layer with a Sigmoid
activation function as our output.

Bhttps://radimrehurek.com/gensim/
https://keras.io/

16

model Sequential ()
model . add (Embedding (32))
model.add (Convl1D (128,
kernel-size= 3,
padding='"valid’,
activation=’relu’,
strides=1))
model.add (MaxPoolinglD (pool_size=3,
strides=3))
model.add (Bidirectional (LSTM (32,
dropout=0.5, recurrent_dropout=0.02)))
model.add (Dense (1,
activation='sigmoid’))

C. Token-Char

We used an LSTM layer on top of a concatenation of
the output of two convolutional layers — one on top of the
token-level input and another from the character level input.
Note that in the character-level case, we use a global max
pooling layer on top of the convolution layer, resulting in a
single tensor of length 64. In order to concatenate it with
the output of the max pooling performed on the token-level
convolutional layer, we chose to first duplicate this tensor so
that it would have the same length as the latter. In both cases,
the convolutional layer has 64 filters and a kernel size of 3.
For the token-level input, a max-pooling layer is used with
pool and stride sizes of 3. After the concatenation, we use
a bi-directional LSTM layer with an output of size 32 and
a Dense layer with a Sigmoid activation function as our output.

#TOKEN
token_input

Input (shape=(1000,),
dtype=’"float’)
GetEmbeddingLayer ()
(token_input)
ConvlD (64, kernel_size=3,
strides=1, padding=’'valid’,
activation='"relu’)
(token_embedding)
MaxPoolinglD (pool_size=3,
strides=3) (token_conv)
token_drop =Dropout (.5) (token_pool)

token_embedding

token_conv

token_pool

#CHAR
char_input

Input (shape=(1000,),
dtype=’'float’)
OneHotWithCaseBit (max_len)
(char_input)

char_encoding

char_conv ConvlD (64, kernel_size=3,

strides=1, padding=’'valid’,

activation='"relu’)
(char_embedding)

char_pool GlobalMaxPoolinglD () (char_conv)

char_drop Dropout (.5) (char_pool)

char_repeated RepeatVector
(token_drop.get_shape () [1].value)

(char_drop)

https://radimrehurek.com/gensim/
https://keras.io/

#Merge
merged = concatenate
([token_drop, char_repeated])
lstm = Bidirectional (LSTM (32,
dropout=0.3, recurrent_dropout=0.01))

(merged)

output = Dense(l, activation="sigmoid")
(1lstm)

D. Tokens Embedding

We used Gensi to build the embedding. Both W2V and
FastText were used, with CBOW as the training algorithm.
Parameters used are:

e Min length of a word was two, max was 50.

e We ignored all words with total frequency lower than
10.

e Our embedding space-size is 32.

e The window-size used was 4 (the window is the
maximum distance between the current and predicted
word within a sentence).

e We performed negative sampling using 5 noise words.

e We performed 15 iterations.

Bhttps://radimrehurek.com/gensim/

17

https://radimrehurek.com/gensim/

	I Introduction
	II Background
	II-A PowerShell
	II-B Antimalware Scan Interface (AMSI)
	II-C Deep Learning
	II-C1 Convolutional Neural Networks (CNNs)
	II-C2 Recurrent Neural Networks (RNNs)

	II-D Contextual Embeddings

	III AMSI vs. Command-Line Logging
	IV Datasets, Model Generation and Preprocessing
	V Contextual embedding of PowerShell tokens
	V-A Tokens embedding in action

	VI Classification Models
	VI-A Deep-Learning Based Detectors
	VI-A1 Token-Level Architectures
	VI-A2 Character-Level Architecture
	VI-A3 Token-Character Level Architecture

	VI-B Traditional NLP-based detectors

	VII Experimental Evaluation
	VII-A AUC results
	VII-B TPR results
	VII-C The Contribution of Contextual Embeddings
	VII-C1 Contribution of Non-Labeled Data
	VII-C2 Detection Examples

	VII-D Character-Level Versus Token-Level Representations

	VIII Related work
	IX Discussion
	X Conclusions and Future Work
	References
	XI Appendix - implementation details
	XI-A CNN
	XI-B CNN-RNN
	XI-C Token-Char
	XI-D Tokens Embedding

