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ABSTRACT
Deep Learning has been shown to be particularly vulnerable
to adversarial samples. To combat adversarial strategies, nu-
merous defensive techniques have been proposed. Among
these, a promising approach is to use randomness in order to
make the classification process unpredictable and presumably
harder for the adversary to control. In this paper, we study
the effectiveness of randomized defenses against adversarial
samples. To this end, we categorize existing state-of-the-art
adversarial strategies into three attacker models of increasing
strength, namely blackbox, graybox, and whitebox (a.k.a. adap-
tive) attackers. We also devise a lightweight randomization
strategy for image classification based on feature squeezing,
that consists of pre-processing the classifier input by embed-
ding randomness within each feature, before applying feature
squeezing. We evaluate the proposed defense and compare it
to other randomized techniques in the literature via thorough
experiments. Our results indeed show that careful integration
of randomness can be effective against both graybox and black-
box attacks without significantly degrading the accuracy of
the underlying classifier. However, our experimental results
offer strong evidence that in the present form such random-
ization techniques cannot deter a whitebox adversary that has
access to all classifier parameters and has full knowledge of
the defense. Our work thoroughly and empirically analyzes
the impact of randomization techniques against all classes of
adversarial strategies.
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1 INTRODUCTION
Deep learning (DL) has advanced rapidly in recent years fueled
by big data and readily available cheap computation power.
Beyond standard machine learning applications, DL has been
found extremely useful in numerous security-critical applica-
tions such as handwriting recognition, face recognition [40],
and malware classification [3, 15, 45]. When used in such appli-
cations, recent studies show that DL is particularly vulnerable
to adversarial samples, which are obtained from correctly clas-
sified samples by adding carefully selected perturbations to
fool classifiers [7, 13, 24, 32]. These perturbations are so chosen
that they are large enough to affect the model prediction but
small enough to go unnoticed (e.g., through a visual check in
image recognition applications). Since DL was shown vulner-
able to adversarial samples, numerous attacks and defenses
have been developed back and forth [28, 30, 34, 44].

While these back-and-forth attacks and defenses have clearly
advanced state of the art, it is essential to analyze their robust-
ness in different adversarial models to understand how benefi-
cial they are in making DL more robust. Here, we distinguish
between three classes of attacker models depending on the
adversary’s knowledge with regards to the classifier’s details:
blackbox (a.k.a. non-adaptive), meaning that the adversary only
knows public information, whitebox (a.k.a. fully adaptive), i.e.,
the adversary knows full details of the classifier including any
defense in place, and graybox (a.k.a. semi-adaptive), reflecting
partial knowledge of the classifier’s internals.

A popular defensive technique utilizes randomness in the
classification process, with the hope to enlarge the search space
of successful adversarial perturbations. The use of randomness
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to enhance robustness of DL classifiers has been proposed in
many different flavors, both at training and classification time,
ranging from randomizing the input to modifying the neural
network itself in a randomized fashion. Although many works
hint at the potential of such a technique [5, 16, 43, 46], there is
still lack of analysis within the community on the robustness
of this strategy against state-of-the-art attacks.
Contributions. In this work, we study the effectiveness of pre-
processing randomized defenses against a wide variety of
adversarial strategies, including the strongest whitebox at-
tacks to date. Specifically, we develop a security model to for-
mally define robustness of machine learning algorithms under
the various adversarial strategies that populate the literature
(cf. Section 3). Our model, inspired by cryptographic defini-
tions of security, is generic and captures a broad variety of
machine learning classifiers. To investigate the effectiveness of
randomization on the classifier’s robustness, we present a light-
weight defensive strategy, Randomized Squeezing, that combines
the prominent pre-processing defense Feature Squeezing [44]
with input randomization (cf. Section 4). We also compare Ran-
domized Squeezing with two other instantiations of random-
ized pre-processing techniques: the Cropping-Rescaling defense
of Guo et al. [16], and Region-Based Classification by Cao and
Gong [5]. We empirically compare the effectiveness of Ran-
domized Squeezing, Cropping-Rescaling, and Region-Based
Classification, against state of the art attack strategies to gener-
ate adversarial samples from MNIST, CIFAR-10, and ImageNet
datasets (cf. Section 5).

Our proposal embeds randomness within the input to the
classifier, operating on every pixel of the image independently
by adding randomly chosen perturbations to all pixels, prior
to applying the squeezing function. The combination of in-
put randomization and squeezing instantiates a specific pre-
processing transformation, similarly to Cropping-Rescaling
and Region-Based Classification. For all three randomized
techniques, our empirical evaluation shows that introducing
an appropriate amount of randomness at pixel level does not
significantly hamper accuracy and, in case of Randomized
Squeezing, it also improves robustness against graybox adver-
saries [7, 13, 18, 24, 29, 33] compared to deterministic Feature
Squeezing. Our results further highlight that, despite the per-
turbation induced by randomizing test images, Region-Based
Classification and Randomized Squeezing can achieve high
accuracy and robustness without transforming training sam-
ples. This is in contrast to prior findings [16] hinting that input
transformation can be effective against adversarial samples,
provided that the same transformation is also applied at train-
ing time, and opens the possibility to leverage randomness to
realize online defenses—which can enhance the robustness of
pre-trained classifiers in a flexible and efficient manner.

To further evaluate the three defenses in the whitebox model,
we consider the strongest currently known attacks, tuned for
each defense: the Backward Pass Differentiable Approximation
(BPDA) [1] and the Expectation Over Transformation (EOT) [2].
Our results indicate that while these adaptive attacks defeat
all three defenses, increasing the amount of randomness used

by the defense results in a higher number of iterations, respec-
tively, larger perturbations, necessary for the attacks to succeed.
This suggests that even in the case of whitebox attacks, ran-
domness may have a positive, although limited, impact on the
classifier’s robustness—in the sense of forcing the BPDA and
EOT attacks to invest greater effort to craft high-confidence
adversarial samples. Our results also support the intuition
that introducing unpredictability to the classification process
makes it more challenging, for state-of-the-art adaptive attacks,
to find adversarial perturbations which are successful regard-
less of the randomness.

It is therefore plausible that some DL applications, which
can reasonably constrain the attacker by limiting the distortion
and/or requiring that adversarial samples be generated in real
time, may safely employ randomized classifiers even against
(properly constrained) whitebox attacks.

As far as we are aware, this is the first work that compre-
hensively analyses the impact of randomness on DL classifiers
under all state-of the art adversarial strategies, covering also
the whitebox attacker model.

2 BACKGROUND
In this section, we introduce notation and relevant concepts
for the subsequent sections.
Notation & Conventions. Let X be a (finite) set, and letD : X →
[0, 1] be a probability distribution. We denote by x ←D X
the random sampling of an element x according to distribu-
tion D; we write x ←$ X for sampling x uniformly at random.
We denote by f : X → Y the function defining the classifi-
cation problem of interest (a.k.a. “ground truth”), where X
and Y are the sets of instances and of corresponding classes
(or labels), respectively. A machine-learning classifier C is an
algorithm that aims at emulating function f . Typically, the
classifier is deterministic and can be thus thought of as a func-
tion itself. In this work, we cover a broader class of classifiers
and let C be any, possibly randomized algorithm. If C is ran-
domized, we write y ←$ C(x) to denote that on input x the
classifier, run on freshly sampled randomness, outputs label y.
Let C : X → Y be a deterministic classifier. For X′ ⊆ X we
denote by X′✓(C) = {x ∈ X′ : C(x) = f (x)} the set of in-
stances in X′ where C agrees with f . Similarly, we denote
by X′✗(C) = {x ∈ X′ : C(x) , f (x)} the set of misclassi-
fied instances. Using this notation, we measure a classifier’s
(empirical) accuracy, respectively, (empirical) error w.r.t. a given
dataset D = {(x, f (x)) : x ∈ XD}, for some XD ⊂ X as
accXD (C) := |XD

✓ (C)|/|XD| and errXD (C) := |XD
✗ (C)|/|XD|,

respectively. For randomized classifiers, the definitions of ac-
curacy and error need to be augmented for incorporating the
randomness of the classifier. Note that accuracy and error can
also be used to capture the performance of a classifier w.r.t. an
adversarially chosen distribution DA, respectively, input set XA.

2.1 Adversarial Samples
The accuracy of a classifier is measured w.r.t. samples drawn
from a ‘natural’ distribution D : X → [0, 1] over the input



space. This approach is grounded in results from computa-
tional learning theory [41], which guarantee a low classifica-
tion error as long as samples used at test time originate from
the same distribution of the training samples. While this as-
sumption may be realistic in a pure machine-learning setting,
it is hard to justify in general. In cybersecurity, e.g., the “test
samples” are generated by an adversary A attempting to by-
pass an ML protected system, and may thus be specifically
crafted to deviate from the training samples. This state of affair
has been confirmed by the recent advances in attacking ML
systems through adversarial samples [39].

An adversarial sample x′ is derived from a labeled sam-
ple (x, y) by slightly perturbing x, so that x′ still belongs to the
original class y, yet it is classified wrongly. Formally: x and x′

have a relatively small distance d(x, x′) ≤ ϵ, f (x′) = y, and
C(x′) , y. The tolerated amount of perturbation ϵ is called dis-
tortion (a.k.a. adversarial budget). The three most common met-
rics to measure the distance between an adversarial sample x′

and its legitimate counterpart x are based on the Lp-norms
(L0, L2, and L∞): (i) d0(x, x′) = |{i : xi − x′i , 0}|, based on

the number of modified pixels; (ii) d2(x, x′) =
(

i(xi − x′i)
2) 1

2 ,
based on the Euclidean distance; (iii) d∞(x, x′) = maxi(xi −
x′i), based on the maximum difference between pixels at cor-
responding positions, where xi − x′i is the difference between
pixels at position i of images x and x′, respectively. For a dis-
tance metric dp, we denote by || · ||p the corresponding norm.
Depending on the attacker’s goal, adversarial samples can be
categorized as targeted and untargeted. A targeted adversarial
sample x′ is successful if the classifier’s prediction matches
an attacker-chosen label yt , y, where y is the true label. An
untargeted adversarial sample instead succeeds if the classifier
predicts any label other than y.

Prominent techniques to generate adversarial examples against
DL classifiers are the Fast Gradient Sign Method (FGSM) [13],
the Basic Iterative Method (BIM) [24], the Jacobian Saliency
Map Approach (JSMA) [24], the Carlini-Wagner (CW) attacks [7],
and DeepFool [29]. Among others, we will consider these at-
tack strategies in our evaluation (cf. Section 5).

2.2 Defensive Techniques
Here we discuss the defenses against adversarial samples
which are most relevant to our work. We survey more de-
fensive techniques in Section 6.
Feature Squeezing. This technique, introduced by Xu et al. [44],
transforms the input by reducing unnecessary features while
keeping the DL model intact. Feature Squeezing is a generic
transformation technique to reduce feature input space such
that it can limit opportunities for an adversary to generate
adversarial samples. The approach assumes that legitimate
samples have same output on original and transformed form
while adversarial samples have larger difference on outputs,
the discrepancy of outputs helps to reject adversarial samples.
In this paper, we study the two proposed squeezing techniques,
squeezing color bit depths and spatial smoothing.

Squeezing color bits relies on the assumption that large color
bit depth is not necessary for a classifier to interpret an image.
The authors consider 8-bit gray scale images of size 28× 28
pixels (MNIST dataset) and 24-bit color images of size 32× 32
pixels (CIFAR-10 and ImageNet datasets) in their experiments.
The 8-bit gray scale images are squeezed to 1-bit monochrome
images by using a binary filter with cut-off set to 0.5, while
each channel of the 24-bit color images (8-bit per color channel)
is squeezed to 4 or 5 bits. Each channel can be reduced to i-bit
depth by multiplying the input value with 2i − 1, rounded up
to integers and then divided by 2i − 1 to scale back to [0,1].

The local smoothing is a type of spatial smoothing technique
that adjusts the value of each pixel based on aggregated values,
e.g., by taking median of its neighborhood pixels. The median
smoothing technique follows Gaussian smoothing design. The
values of neighborhood pixels are decided by a configurable
sliding window of which size ranges from 1 to entire image. Ex-
periments in [44] show that median smoothing with 2× 2 and
3× 3 sliding window is effective. Another way to perform spa-
tial smoothing is non-local smoothing. Non-local smoothing
considers a large area to compute replacement value for each
pixel. Given an image patch, non-local smoothing searches
for all similar patches and replaces the center patch with the
average of similar patches. We use the notation proposed by
Xu et al. [44] to denote a filter as “non-local means (a-b-c)”,
where a is the search window a× a, b the patch size b× b and
c the filter strength.
Randomness-Based Defenses. The literature features a num-
ber of strategies to use randomness for enhancing DL clas-
sifiers against adversarial samples. Zhou et al. [46] propose
two ways to use randomness for strengthening deep neural-
network (DNN) models: to add random noise to the weights
of a trained DNN model, and to select a model at random
from a pool of train DNN models for each test input. Xie et
al. [43] use randomness in a different way: to resize the image
to a random size, or to add padding zeroes in a randomized
fashion. We discuss two other existing randomization strate-
gies which will be later considered in our evaluation, namely
region-based classification [5] and cropping-rescaling [16], along
with our proposal in Section 4.

3 SECURITY MODEL
In this section, we present a security model for evasion attacks
that allows us to formalize robustness to adversarial samples.
Game-based Modeling of Evasion Attacks. Our model con-
siders an adversary A that aims at defeating a classifier C by
generating adversarial samples starting from “natural” sam-
ples. Following the approach of modern cryptography, our
security model reproduces the above scenario through a se-
curity game between A and C, that we name evasion under
chosen-sample attacks (EV-CSA), as illustrated in Figure 1.

The adversary’s goal is to present a number of adversarial
samples generated from a set XD ⊂ X of “naturally occurring”
(labeled) samples. 1 The number N of adversarial samples,

1In practice, XD represents a set of available images used for testing, e.g., MNIST.



Game EV-CSAA,ϵ,N(C, XD):
1 q← 0, n← 0
2 XA ← ∅
3 A(ϵ, N, ⟨C⟩, XD)Classify,Attack

4 Return n/N

Oracle Classify(x):
5 ŷ← C(x)
6 Give ŷ to A

Oracle Attack(x, x′, yt):
7 If q ≥ N: Go to line 4
8 Enforce (x, ∗) < XA

9 q← q + 1
10 XA ∪← (x, x′)
11 If C(x′) = yt and d(x′, x) ≤ ϵ:
12 n← n + 1
13 Return

Figure 1: Security game for targeted evasion under chosen-
sample attacks (EV-CSA), involving adversary A against
classifier C. Untargeted attacks are captured by replacing the
inputs to theAttack oracle with pairs (x, x′) and, the first con-
dition of line 11 with C(x′) , C(x).

1 ≤ N ≤ |XD|, is a game parameter and can be adapted to
capture different security goals.

We specify the amount of information that A has about the
adversarial task by passing the relevant inputs: the allowed
adversarial perturbation (a.k.a. distortion) ϵ, the number N of
adversarial samples, the classifier’s code ⟨C⟩, and the set XD

of benign samples. Further, by limiting the amount of infor-
mation encoded in ⟨C⟩, our game can cover different adversar-
ial models such as “whitebox” (a.k.a. fully adaptive), mean-
ing that A knows every detail about the classifier, including
neural-network weights and any defense mechanism in place,
“blackbox” (a.k.a. non adaptive), i.e.,A knows only public infor-
mation about C, and intermediate attacker’s models, so-called
“graybox” (a.k.a. semi-adaptive), in which A has only partial
information about the classifier’s internals and/or defensive
layers. Graybox attacks include those agnostic of a defense
mechanism. In this case, the adversary knows the original clas-
sifier fully, hence it is not blackbox, but it does not know the
defense, hence it is not whitebox either (cf. Section 4.4).

We further let the adversary interact with the classifier
through an oracle Classify, i.e., A can query C on any input x
of their choosing and obtain the corresponding label ŷ = C(x).
Observe that the Classify oracle provides no extra power to
whitebox adversaries, as having full knowledge of the classi-
fier allows A to emulate the oracle. It is, however, necessary to
cover weaker attacks, such as transferability attacks [32] (which
are blackbox), and attacks oblivious of the defense (which are
graybox).

The game also provides the adversary with a second oracle,
denoted by Attack, which lets A submit candidate adversarial
samples. This oracle allows us to describe A’s goal formally
and to define robustness to adversarial samples, as we see next.
The adversary can present an adversarial sample by submit-
ting a query (x, x′, yt) to the Attack oracle, where x is the start-
ing sample, x′ is the candidate adversarial sample, and yt is
the target label. Upon being queried, the oracle then checks
whether the adversary reached the query limit q ≥ N, termi-
nating the game in such a case (cf. line 4). Otherwise, it checks
whether the adversarial sample x′ is “fresh”, in the sense that
no other adversarial sample x′′ has been already proposed for
the same starting image x (cf. line 8), which is necessary to
invalidate trivial attacks that artificially achieve high success
rate, e.g., by presenting “the same” adversarial sample over
and over, in a trivially modified version.2 If the query gets
through the checks, the oracle adds the fresh pair (x, x′) to
the adversarial set XA, and further checks whether the clas-
sifier errs on x′ as desired, by predicting its class as yt, and
whether x′ is sufficiently close to x, i.e., d(x, x′) ≤ ϵ according
to some pre-established distance metric d. In case of success,
the game rewards the adversary by increasing the counter n
which records the number of successful samples (cf. line 12).

As soon as the N “chosen samples” are submitted, the EV-
CSA game ends outputting the success rate of the adversary,
that we denote by succev-csa

A,ϵ,N (C, XD) = n/N. An execution
of the EV-CSA game depends on the adversarial strategy A
and the classifier C—both of which may be randomized. In
particular, if the game depends on any randomness (used by
the adversary, by the classifier, or both), the outcome is deter-
mined by the value of the randomness, and the success rate is
a random variable.
Deterministic vs. Randomized Classifiers. We stress that or-
acle Attack does not reflect an actual capability of the attacker,
however, it provides a natural abstraction for determining A’s
success rate. In particular, if only deterministic classifiers were
considered, having A submit their samples through the ora-
cle is equivalent to letting A present a set XA of N samples
directly. That is, the usual notion of success rate against deter-
ministic classifiers is a special case of our notion. The reason
for introducing the Attack oracle is precisely that, when ran-
domized classifiers are considered, it is no longer meaningful
to talk about a set of adversarial examples (a given sample x′

may be correctly labeled for some choices of C’s randomness
while being misclassified for a different randomness).
Defining Robustness. Our security game provides a formal
language to express the effectiveness of a defense in making
a given classifier “more robust” to attacks. For a classifier C,
let Cd denote the classifier obtained from C by applying a de-
fense d. Intuitively, a defense is effective against an attack A
if either A’s success rate after applying the defense is signifi-
cantly smaller than that with no defense, or a larger distortion
is necessary to achieve that success rate. Formally, we say that
2Changing a few pixels of a successful adversarial sample x′ yields a new sam-
ple x′′ , x′ which is very likely to also be successful, thus A should only get
credit for one of them.



a defense d for classifier C is effective against attackA, or equiv-
alently that Cd is more robust than C, if either succev-csa

A,ϵ,N (Cd)≪
succev-csa

A,ϵ,N (C), or succev-csa
A,ϵd ,N(Cd) = succev-csa

A,ϵ,N (C) for ϵd ≫ ϵ.

4 RANDOMNESS-BASED DEFENSES
In this section, we present the three randomness-based de-
fensive techniques which we consider in our empirical eval-
uation from Section 5. While they all apply a randomized
pre-processing layer at test time, the first defense, Cropping-
Rescaling [16], also operates on the training phase, thereby
leading to an “offline” defense. It further uses an ensembling
technique, meaning that classification is based on the model
predictions over an ensemble of samples generated from the
original input. The second defense, Region-Based Classifica-
tion [5], does not modify the training phase—i.e., it is “online”—
but uses ensembling, too. The third defense, Randomized
Squeezing (our design), neither alters training nor relies on
ensembling. Instead, it combines the randomness layer with a
subsequent image-denoising operator based on Feature Squeez-
ing [44].

4.1 Cropping-Rescaling
The Cropping-Rescaling defense by Guo et al. [16] applies a ran-
domized transformation that crops and rescales the image
prior to feeding it to the classifier. The intuition behind the
defense is to alter the spatial positioning of the adversarial
perturbation, so that it no longer causes the desired effect and,
therefore, it makes the corresponding adversarial sample less
likely to succeed. More precisely, cropping-rescaling operates
in two steps, at training and at test time. Training is performed
on cropped and rescaled images, following the data augmen-
tation paradigm of He et al. [17]. Then, to predict the label
of each test image, the classifier randomly samples 30 crops
of the input, rescales them, and averages the model predic-
tions over all crops. Applying the input transformation also
at training yields higher classification accuracy on adversarial
samples [16].

4.2 Region-Based Classification
The Region-Based Classification defense proposed by Cao and
Gong [5] computes each prediction over an ensemble gener-
ated from the input sample in a randomized fashion. Specifi-
cally, this approach samples 10,000 images uniformly at ran-
dom from an appropriately sized hypercube centered at the
testing image, invokes a DNN to compute predictions over
the sampled images, and returns the label predicted for the
majority of the images—therefore, classification is no longer
“point-based” but “region-based”. Here, an “appropriate size”
of the hypercube is chosen so that the region-based classifier
maintains the accuracy of the underlying DNN over a (be-
nign) test set. Taking the “majority vote” over the ensemble
predictions is based on the assumption that while for benign
images most neighboring samples yield the same predicted
label, adversarial samples are close to the DNN’s classification
boundary.

4.3 Randomized Squeezing
The defensive strategy that we propose, Randomized Squeezing,
combines input randomization with a deterministic image-
denoising technique, namely the Feature Squeezing defense
by Xu et al. [44] (cf. Section 2.2). We introduce randomness at
feature level, for each feature component and within a pre-
defined threshold, so that it does not bias the prediction ex-
cessively in any particular direction. Concretely, let C denote
a DL classifier enhanced with Feature Squeezing. Our pro-
posal preprocesses C’s input by adding a perturbation rand,
chosen uniformly at random from the real interval [−δ,+δ],
δ ∈ [0, 1], to each pixel. The intuition here is that adding a
small, carefully crafted perturbation preserves the classifier’s
output on genuine images, and it significantly affects predic-
tions on adversarial images. While the randomness added at
individual feature level does not destroy the patterns of the
pixels, which is critical for correct classification, it does intro-
duce a source of unpredictability in the defense mechanism
which enlarges the search space of the adversary. Indeed, to
craft a successful adversarial sample, the adversary now has
to search for a perturbation that yields the desired prediction
for (most of) the various possible randomness values, which is
a considerably harder task than fooling (deterministic) Feature
Squeezing. The increased robustness achieved by randomized
classifiers clearly depends on the quality of the randomness,
which should be unpredictable from the adversary’s perspec-
tive. Thus, it is crucial for security that the random noise be
generated from a high-entropy key to seed the underlying
cryptographic pseudo-random generator. More specifically,
Randomized Squeezing comprises of the following subrou-
tines:
Setup: This procedure performs any instruction needed to
initialize the original system. In addition, it sets the value δ ∈
[0, 1] for the magnitude of the randomness (setting δ = 0 leaves
the input unchanged, while δ = 1 is almost equivalent to
generating a fresh input uniformly at random), and initializes
the random number generator. The perturbation magnitude δ
should be sufficiently large to be effective against adversarial
samples, and at the same time be sufficiently small to preserve
the classifier’s accuracy on normal samples. In Section 5, we
analyze in details how to choose δ in order to establish a good
tradeoff between the achieved accuracy and robustness.
Training: Since our defense mechanism does not affect the
training phase, this step is the same as for the original system.
Upon completion of this phase, we can assume a trained (de-
terministic) classifier C, based on Feature Squeezing, which
we will use as a basis for our randomized classifier C$, as we
see next.
Classification: Upon receiving an input image x, the random-
ized classifier C$ selects a uniformly random key ks to seed the
underlying pseudo-random generator and expands ks until a
sufficient amount of (pseudo)randomness has been generated
to randomize all pixels of x. The randomization of each pixel
consists in adding a random value rand ∈ [−δ,+δ]. When the



value of the pixel goes outside the allowed intensity thresh-
old (normalized to [0,1] in our experiments), we clip them at
the edges instead of taking a modulo and wrapping around.
This is performed to bias the randomness for pixels that are
close to the intensity thresholds, which helps to preserve ac-
curacy of the classifier for legitimate samples. The process is
repeated for every color channel. Hence, for grayscale images,
we add randomization just once as there is only one chan-
nel, while for color RGB images randomness is added three
times, once for each channel (i.e., “R”, “G”, and “B”, respec-
tively), individually per pixel. The pre-processing routine of
Randomized Squeezing is depicted in Figure 2. Finally, the
resulting image x′ is fed to the (deterministic) classifier C, and
the resulting prediction ŷ = C(x′) is returned as label for x.

Randomizepixels(Pixels, δ)

ks ←$ {0, 1}keylen
for i← 1 to length[Pixels]

do Generate noncei
rand = G(ks, noncei)
� Choose rand randomly from [−δ, δ]
Pixels[i]← Pixels[i] + rand
if Pixels[i] > 1

do Pixels[i] = 1
if Pixels[i] < 0

do Pixels[i] = 0
� Clip pixel values to allowed threshold
i← i + 1

Figure 2: Randomizing image pixels via Randomized
Squeezing. Pixels represents a vector comprising all pixels
of the input image, G denotes a pseudo-random number
generator, and noncei is a fresh nonce for every i.

Note that we introduce randomness to the input only while
testing and not while training: this makes our technique partic-
ularly lightweight and versatile, as it does not increase training
costs and can be applied directly to any pre-trained classifier.
In addition, Randomized Squeezing invokes the underlying
model only once per prediction, without relying on ensem-
bling, which also improves efficiency compared to Cropping-
Rescaling and Region-Based Classification.

4.4 Analysis: Attacks’ Categorization
We briefly discuss the attacks considered in our evaluation
of randomized defenses (cf. Section 5) in the context of the
attacker models from the previous section.
Graybox Attacks. Prominent techniques to generate adversar-
ial examples against DL classifiers are the Fast Gradient Sign
Method (FGSM) [13], the Basic Iterative Method (BIM) [24],
the Jacobian Saliency Map Approach (JSMA) [24], the Carlini-
Wagner (CW) attacks [7], and DeepFool [29]. These attacks
were specifically designed to fool neural networks in a white-
box setting, hence they assume that architecture and parame-
ters are known to the attacker. Generating adversarial samples

according to any of the aforementioned attacks, and then us-
ing these samples against an enhanced version of the neural
network via some defense mechanism,3 results in a graybox
attack—because the neural network’s internals are available
to the attacker, but the defense is not.
Whitebox Attacks. Athalye et al. [2] proposed the Expecta-
tion over Transformation (EOT), a generic method to generate
adversarial samples that remain adversarial over a chosen
distribution of transformations—in particular over random-
ized ones. EOT can handle only differentiable transformations,
hence it is not applicable to image-denoising defenses such
as Feature Squeezing. A second technique, Backward-Pass Dif-
ferentiable Approximation (BPDA) [1], was introduced to cope
with non-differentiable transformations and later employed to
defeat, among others, a generalized version of Feature Squeez-
ing [8]. We evaluate Cropping-Rescaling, Region-Based Clas-
sification, and Randomized Squeezing against the BPDA and
EOT attacks, individually and in combination, appropriately
tuned to each defense. Due to exploiting knowledge of the un-
derlying neural-network parameters and of the defense fully,
both BPDA and the combination BPDA+EOT yield whitebox
(i.e., “fully adaptive”) attacks.

5 EVALUATION AND RESULTS
In this section, we evaluate the randomness-based defenses
presented in Section 4 against graybox and whitebox attacks.
Specifically, we compare Feature Squeezing [44] and Random-
ized Squeezing by testing them against 11 state-of-the-art gray-
box attacks, showing that randomness hardens Feature Squeez-
ing. We further evaluate all three randomness-based defenses
against the whitebox attacks proposed by Athalye et al. [1], and
explore how increasing the amounts of randomness affects
their success.

5.1 Setup
Attacks. As proposed by Xu et al. [44], we analyze two vari-
ations of each targeted attack: (i) next: targets the class next
to the ground truth class modulo number of classes (ii) least-
likely (LL): targets the class which the image is least-likely
to be classified as. Specifically, we consider the following at-
tacks on Feature Squeezing and Randomized Squeezing: Fast
Gradient Sign Method (FGSM) [13], Basic Iterative Method
(BIM) [24], Carlini and Wagner L0, L2 and L∞ attacks (CW) [7]
(Next & LL), DeepFool [29], Jacobian Saliency Map Approach
(JSMA) [33] (Next & LL). We further evaluate Randomized
Squeezing, Cropping-Rescaling, and Region-Based Classifica-
tion, against fully adaptive attacks (BPDA and EOT) proposed
by Athalye et al. [1].
Datasets. We use ImageNet, CIFAR-10, and MNIST datasets to
conduct our experiments. The ImageNet dataset contains 1.2
million images for training and 50 000 images for validation.
They are of various sizes and hand-labeled with 1000 classes.
The images are preprocessed to 224× 224 pixels and encoded

3Here: Cropping-Rescaling, Region-Based Classification, or Randomized
Squeezing.



with 24-bit color per pixel. CIFAR-10 is a dataset of 32× 32
pixel images with 24-bit color per pixel (three color channels
per pixel) and 10 classes. MNIST is a dataset of hand-written
digits (0-9) encoded as 8-bits grayscale images of size 28× 28
pixels (one color channel per pixel).
Target Models. We tested the aforementioned attacks on the
same pre-trained models as in Feature Squeezing [44]. Namely,
we use MobileNet [20] for ImageNet, a 7-layer CNN for MNIST4,
and a DenseNet model for CIFAR-105 [21]. These models achieve
a top-1 accuracy of 99.43%, 94.84%, and 68.36%, respectively.
The prediction performance of these models is at par with
best models6. To study the effects of introducing randomness,
we use the same data samples as used by Xu et al. [44]. We
use 100 adversarial samples for each of the 11 attacks for all
datasets. Each color channel of the pixel is normalized to be in
the range [0, 1]. We use 10 000 legitimate samples for CIFAR-10
and MNIST, and 200 samples for ImageNet (due to high com-
putation cost) to study the effect of adding randomness to the
defenses.
Experimental Setup. We evaluate the efficacy of the 3 de-
fenses proposed by Xu et al. [44]—bit depth reduction, median
smoothing and non-local smoothing, when combined with
randomness. We study each of the 11 attacks against the 3 de-
fenses with varying parameters for 3 datasets. The experiment
is repeated 200 times for each randomness level to compute
the statistics. In our evaluation, the accuracy over adversarial
samples is averaged over 200 runs. We note that for the deter-
ministic case when no randomness is added (δ = 0) the results
do not change.
Implementation. We implemented Randomized Squeezing in
Python and executed it using CPython. Namely, we adapted
the open source code released by Xu et al.7 to implement our
solution. We use a machine with 3.5 GHz processor and 32 GB
RAM for our experiments.

5.2 Graybox Adversaries
This section presents the results of our evaluation of Random-
ized Squeezing, compared to the deterministic Feature Squeez-
ing, against graybox attacks.
Choosing δ. Choosing the randomness magnitude δ appro-
priately is vital to designing an effective defense. The choice
depends upon the nature of dataset and defense used. As we
show in the paragraphs ahead the behavior of defenses can
vary for grayscale and color images. We study these variations
extensively by running experiments for changing δ. We present
our evaluation of ImageNet, CIFAR-10 and MNIST datasets
next.
ImageNet. Figure 3 shows the behavior of accuracy of the
classifier for both adversarial and legitimate samples as input
randomization (δ) is increased. The accuracy decreases as δ

4https://github.com/carlini/nn_robust_attacks/
5https://github.com/titu1994/DenseNet/
6http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_
results.html
7https://github.com/mzweilin/EvadeML-Zoo

is increased. Squeezing via reducing bit-depth shows a dras-
tic drop in accuracy beyond a certain randomness for most
attacks; as δ increases, a larger fraction of pixels breach the
quantization threshold which results in them being flipped
to 0 or 1 despite being very distant earlier, this results in ac-
curacy dropping sharply. The CW0 adversarial samples show
an improvement in accuracy for high δ, this is due to large L0

perturbations being undone due to noise. Median smoothing
methods are less affected by large randomness values due to
the randomness being averaged out. Hence we observe a grad-
ual decline in accuracy with increasing randomness. Note that
CIFAR-10 has color and each pixel has three color channels
each of which are normalized to [0, 1]. We introduce random-
ness individually to each channel for each pixel, hence the
effect of randomness becomes significant even at low δ values.

We conclude that an appropriately chosen δ provides desir-
able security properties, we found that δ = 0.1 provides the
best trade-off between accuracy on legitimate and adversarial
samples. We present the accuracy values in Table 2. We note
that the accuracy decreases slightly over legitimate samples.
For comparison, Table 1 shows the accuracy of defenses when
no randomness is added [44].

We further compare the robustness of Randomized Squeez-
ing with that of the other two randomized defenses, Cropping-
Rescaling and Region-Based Classification. As advocated in [16],
Cropping-Rescaling achieves an accuracy of 45-65% against
FGSM, while Region-Based Classification and Randomized
Squeezing achieve an accuracy of 34.7% and 53.44% (with me-
dian smoothing), respectively. Similarly, for CW2 Next (Next
and LL), Cropping-Rescaling achieves an accuracy of 40-65%
(adapted from [16]), while Region-Based Classification and
Randomized Squeezing achieve an accuracy of 79% and 70%
(with median smoothing), respectively. This shows that online
randomization defenses offer decent robustness to gray-box
attacks even when compared to offline defenses.
CIFAR-10. The results for running Randomized Squeezing
within the CIFAR-10 dataset are similar to ImageNet: adding
randomness helps make misclassified samples unpredictable.
Figure 4 shows that accuracy over both legitimate and adver-
sarial samples drops sharply on increasing δ. Identical to our
evaluation in the ImageNet dataset, we note that Randomized
Squeezing introduces small randomness for each color channel.
The accuracy over adversarial samples improves significantly
at δ = 0.05 for almost all defenses with just a small drop over
legitimate samples (cf. Tables 1 & 2). Large values of δ make
the classifier unusable as accuracy drops.
MNIST. As seen in Figure 5, the results of running Random-
ized Squeezing with the MNIST dataset are similar to Ima-
geNet and CIFAR-10. We present the accuracy values in Ta-
bles 1 & 2. The behavior of accuracy for the MNIST dataset is
similar to that of ImageNet and CIFAR-10 (cf. Figures 4).

Figure 6 shows the probabilities of the prediction errors
when used with 3× 3 median smoothing with and without
randomness. Each row represents a specific attack strategy A;
the x-axis represents the adversarial sample set XA (in par-
ticular |XA| = 100); the color intensity of each cell indicates

https://github.com/carlini/nn_robust_attacks/
https://github.com/titu1994/DenseNet/
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
https://github.com/mzweilin/EvadeML-Zoo
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Figure 3: ImageNet: Behavior of accuracy for magnitudes of randomness δ = [0, 0.05, 0.1, 0.2, 0.3]. We also plot the accuracy of
the model for legitimate samples as δ increases (shown once for each defense as the curve does not change).
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Figure 4: CIFAR-10: Behavior of accuracy for magnitudes of randomness δ = [0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. We also plot the
accuracy of the model for legitimate samples as δ increases (shown once for each defense as the curve does not change).

the estimated probability (over the classifier’s randomness)
that the corresponding adversarial sample succeeds (note, this
probability is binary for a deterministic classifier). However,
when randomness is introduced the error probabilities spread
out for a large number of samples as they are no longer deter-
ministic. For each of the considered attacks A, the empirical
error over XA can be computed by summing up the prob-
abilities that each adversarial sample in XA succeeds, i.e.,

errXA (C$) = 100
i=1 Pr [C$(xi) , f (xi)]. For ease of presentation,

we only present the results applied to one defense in order to
to demonstrate the effect of randomness, the results for other
defenses are similar.
Interpretation of Results. Increase in the magnitude of ran-
domness drives the accuracy of the classifier over legitimate
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Figure 6: MNIST: Unpredictability of errors for Median Smoothing (3× 3) defense, without randomness (top figure, δ = 0)
and with randomness (bottom figure, δ = 0.5)

samples towards 10% as classification becomes akin to guess-
ing (for classification over 10 classes as in MNIST and CIFAR-
10). We made a deliberate choice to clip the pixel values when
they go outside the allowed bounds of [0, 1] rather than wrap-
ping around. A value of δ = 1 and wrapping around the pixel
values when they go out of bounds produces a truly random
pixel, and hence the image. We found that at this level of ran-
domness, accuracy over legitimate samples becomes close to
10%. Even lower values of δ produce a sharp drop in accuracy
over legitimate samples, hence we choose to clip the values
when they go out of bounds.

The primary motivation for our design of Randomized
Squeezing is to perturb the pixels in a manner which subsumes

the adversarial perturbation, and to which the adversary can-
not adapt while keeping the usefulness of the classifier intact.
The optimum magnitude of randomness δ to be used is contin-
gent on the defense used. High values of δ have strong effect
on the accuracy when used in conjunction with bit depth re-
duction, as it could change the value of a pixel drastically if the
bit depth is low. In contrast, methods like local and non-local
smoothing are much more resilient to high δ, as they average
out the noise from sections of images. The noise that we add,
being additive, is filtered out.

Note that we want to use the largest value of δ possible so as
to subsume the adversarial perturbations, while still maintain-
ing high accuracy. Not all defenses are equally potent for all
attacks and datasets, therefore the randomness magnitude δ



Table 1: Accuracy of original Feature Squeezing defenses without randomness (δ = 0) over adversarial samples (%). Xu et
al. [44] omit DeepFool on MNIST as the adversarial samples generated appear unrecognizable to humans; non-local smooth-
ing is not applied to MNIST as it is hard to find similar patches on such images for smoothing a center patch. JSMA is omitted
for ImageNet due to large memory requirement.

Dataset
Squeezer L∞ Attacks L2 Attacks L0 Attacks

All Attacks Legitimate
Name Parameters FGSM BIM CW∞ DeepFool CW2 CW0 JSMA

Next LL Next LL Next LL Next LL

MNIST

None 54 9 0 0 - 0 0 0 0 27 40 13.00 99.43
Bit Depth 1-bit 92 87 100 100 - 83 66 0 0 50 49 62.70 99.33

Median Smoothing 2× 2 61 16 70 55 - 51 35 39 36 62 56 48.10 99.28
3× 3 59 14 43 46 - 51 53 67 59 82 79 55.30 98.95

CIFAR-10

None 15 8 0 0 2 0 0 0 0 0 0 2.27 94.84

Bit Depth 5-bit 17 13 12 19 40 40 47 0 0 21 17 20.55 94.55
4-bit 21 29 69 74 72 84 84 7 10 23 20 44.82 93.11

Median Smoothing 2× 2 38 56 84 86 83 87 83 88 85 84 76 77.27 89.29
Non-local Means 11-3-4 27 46 80 84 76 84 88 11 11 44 32 53.00 91.18

ImageNet

None 1 0 0 0 11 10 3 0 0 - - 2.78 69.70

Bit Depth 5-bit 2 0 33 60 21 68 66 7 18 - - 30.56 69.40
4-bit 5 4 66 79 44 84 82 38 67 - - 52.11 68.00

Median Smoothing 2× 2 22 28 75 81 72 81 84 85 85 - - 68.11 65.40
3× 3 33 41 73 76 66 77 79 81 79 - - 67.22 62.10

Non-local Means 11-3-4 10 25 77 82 57 87 86 43 47 - - 57.11 65.40

Table 2: Accuracy of Randomized Squeezing (%). Bold values indicate an improvement over corresponding values in Table 1.

Dataset
Squeezer L∞ Attacks L2 Attacks L0 Attacks

All Attacks Legitimate
Name Parameters FGSM BIM CW∞ DeepFool CW2 CW0 JSMA

Next LL Next LL Next LL Next LL

MNIST

Bit Depth
(δ = 0.2) 1-bit 88.98 84.06 98.37 98.26 - 77.44 63.19 1.39 0.42 49.26 48.41 60.98 99.31

Median Smoothing
(δ = 0.5)

2× 2 54.78 25.53 50.70 40.22 - 52.20 42.21 40.65 28.27 58.15 54.05 44.68 97.54
3× 3 58.03 27.61 58.53 52.87 - 61.27 55.40 56.86 48.78 77.23 71.67 56.83 97.99

CIFAR-10

Bit Depth
(δ = 0.05)

5-bit 27.33 47.27 71.75 70.89 69.91 76.90 75.06 26.21 23.89 29.84 22.06 49.19 85.03
4-bit 30.70 51.34 68.89 67.29 67.55 72.95 71.08 30.25 26.60 29.36 22.14 48.92 81.27

Median Smoothing
(δ = 0.05) 2× 2 47.66 66.23 83.59 85.90 83.70 84.45 86.50 85.61 86.11 78.54 73.62 78.36 86.80

Non-local Means
(δ = 0.05) 11-3-4 35.27 61.19 88.59 89.39 86.31 91.01 90.52 22.08 24.21 44.05 33.80 60.58 90.90

ImageNet

Bit Depth
(δ = 0.1)

5-bit 34.86 54.97 76.97 79.50 70.73 79.45 80.31 67.52 67.43 - - 67.97 63.00
4-bit 35.63 56.11 76.66 78.92 70.91 79.11 79.69 67.40 66.48 - - 67.88 61.00

Median Smoothing
(δ = 0.1)

2× 2 53.44 62.49 69.11 69.09 67.22 70.13 69.97 68.47 68.20 - - 66.46 57.00
3× 3 52.23 58.88 63.76 63.88 62.87 64.46 63.91 63.76 64.22 - - 62.00 52.50

Non-local Means
(δ = 0.1) 11-3-4 32.53 55.29 78.97 81.28 72.92 81.11 81.52 66.02 68.71 - - 68.71 64.50

Pure Randomness δ = 0.1 34.70 56.33 76.91 79.58 68.84 79.05 80.41 67.06 67.5 - - 67.82 64

must be carefully chosen. Randomized Squeezing can mitigate
the limitation of a weak defense to some extent, as seen in
the case of CIFAR-10 bit depth (5-bit) defense where the accu-
racy over adversarial samples increases by almost 2.5 times.

However, efficacy of the defense is critical to have success in
general.
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Figure 7: Increase in target prediction probability and distortion (in normalized L2 distance) as more confident adversarial
samples are synthesized (dashed lines show extrapolated values).

5.3 Whitebox Adversaries
In this section, we study whether randomness influences the
success of whitebox adversaries. We evaluate the BPDA and
EOT attacks proposed by Athalye et al. [1] against Cropping-
Rescaling [16], Region-Based Classification [5],8 and Random-
ized Squeezing with bit-depth reduction as squeezing func-
tion. Beyond tuning the attacks to each defensive technique,
we chose the attack strategies that are best suited for each of
the defenses, as outlined in [1]. Specifically, we consider: a
pure instantiation of EOT against Cropping-Rescaling, as this
defense applies differentiable transformations; the BPDA at-
tack against Region-Based Classification, and a combination of
BPDA and EOT against Randomized Squeezing, so that both
the non-differentiability of squeezing and the input random-
ization are taken into account when generating adversarial
samples. For completeness, we also ran the attacks against the
deterministic bit-depth reduction.

We evaluated the defenses against the aforementioned at-
tacks on the same set of 100 images, selected at random from
the ImageNet dataset. Each image was assigned a target class
at random. Figure 7 summarizes the results.

Recall that every attack iteration aims to generate adver-
sarial samples with higher confidence compared to the previ-
ous iteration. Correspondingly, in the leftmost plot we depict
the (average) target prediction probability against the num-
ber of iterations. We see that the prediction probability starts
at 0 for all defenses, and approaches 1 as the number of itera-
tions increases. Notice that the prediction probability quickly
reaches 1 for defenses which have no randomness whereas it
grows gradually for randomness-based defenses. For instance,

8Our implementation of Region-Based Classification slightly differs from the
originally proposed version [5], namely we use the same randomization strategy
as Randomized Squeezing (which is equivalent to sampling at random from a
hypercube, cf. Section 4.3) and classify one sample instead of ensembling. Due
to averaging over 100 images, ensembling would lead to the same results as
adversary can chose to defeat a majority of samples.

when randomness is not applied, less than 20 iterations are suf-
ficient to achieve a prediction probability of 0.8. In contrast, for
randomized defenses 20 iterations lead to a prediction prob-
ability of only 0.6 in the best case (i.e., Cropping-Rescaling
with crop size 120), and of less than 0.05 in the case of the
seemingly most robust technique (i.e., Randomized Squeez-
ing for δ = 0.2). Comparing among the randomness-based
defenses, we observe that for a prediction probability of 0.6,
the attacks requires about 20, 35, or 50 iterations for Cropping-
Rescaling depending on the crop size, 35 or 100 iterations in
the case of Region-Based Classification for randomness mag-
nitudes δ = 0.1 and δ = 0.2, respectively, and 45 or 140 itera-
tions against Randomized Squeezing for the same values of δ,
indicating that both online defenses outperform Cropping-
Rescaling.

We also illustrate how the target prediction probability
varies with the distortion, measured as normalized L2 dis-
tance (see the rightmost plot in Figure 7). Again, we see that
randomness-based defenses are more robust than their de-
terministic counterparts, as they force the attacker to intro-
duce larger perturbation. Namely, for all deterministic de-
fenses, high-confidence adversarial samples can be generated
with a distortion below 0.02, while larger perturbations are
necessary to defeat randomized defenses. In particular, high-
confidence adversarial samples against Region-Based Clas-
sification and Randomized Squeezing require perturbations
with L2 distance above 0.025 (for δ = 0.1), and above 0.035 (for
δ = 0.2), respectively, with Region-Based Classification pre-
senting slightly higher robustness than Randomized Squeez-
ing according to this metric. Our results support the intuition
that introducing unpredictability to the classification process
makes it computationally expensive to find adversarial pertur-
bations which are successful regardless of the randomness.



6 RELATED WORK
There has been massive effort to make ML models robust to
adversarial samples, leading to a huge number of defenses pro-
posed in the last few years.9 Here, we discuss only a selection of
these proposals which we find representative of general defen-
sive principles. Following widely-adopted nomenclature, we
differentiate between certified and heuristic defenses to distin-
guish between proposals that come with provable guarantees
and those which do not.
Heuristic defenses. An early proposal is defensive distillation [30,
34], which extends the deep-learning concept of distillation
to the adversarial setting, aiming to extract knowledge from
a given neural-network architecture to improve its own re-
silience to gradient-based attacks. This proposal has been
shown ineffective [31].

A broad class of defenses attempts to detect whether a given
input is adversarial. Early methods derive statistical proper-
ties from large datasets of legitimate, respectively, adversarial
samples, and then inspect these properties to discern the ad-
versarial nature of new and unknown samples [11, 14]. Even
though these techniques where shown to be quite robust, they
are computationally expensive and require large datasets for
the reliability of statistical results. A more efficient approach is
to train a detector to specifically learn adversarial samples, as
done by MagNet [28]. MagNet relies on the assumption that
natural data lie on a manifold of significantly smaller dimen-
sion than the whole input space, while adversarial samples
fall outside the manifold. Based on this, Magnet employs a
detector which deems samples far from the manifold as ad-
versarial. A different kind of detector is instantiated by the
feature squeezing defense by Xu et al. [44] (cf. Section 2.2),
which uses the discrepancy of output predictions between
original samples and their squeezed versions to detect adver-
sarial manipulations.

We note that Randomized Squeezing, while using squeez-
ing routines, does not aim at detecting adversarial samples,
rather at making it harder for the adversary to generate suc-
cessful perturbations. Instead, our proposal can be seen as an
instantiation of so-called input transformation, which applies a
pre-processing step to the input in order to reduce the sensi-
tivity of the model to small changes in input—with the hope
of making the classifier more robust to adversarial perturba-
tions [16].

The most robust among all heuristic defenses to date ap-
pears to be adversarial training, introduced in [13] and later
extended in several works [23, 26]. Adversarial training es-
sentially finds adversarial samples by running known attacks,
and adds those samples to the training set so that the model
learns to correctly classify certain adversarial inputs. Madry et
al. [26] propose a generic training methodology targeting ro-
bustness against all low-distortion adversarial samples, i.e.,
samples generated by applying small perturbations to clean
inputs. This methodology is based on the idea that, if the
training set contains sufficiently representative adversarial

9https://nicholas.carlini.com/writing/2019/all-adversarial-example-
papers.html

samples, the resulting classifier will be able to withstand all
low-distortion attacks. Based on this, the authors heuristically
generate “sufficiently representative” adversarial samples us-
ing projected gradient descent (PDG), an attack strategy which
generalizes first-order attacks. The resulting trained networks,
based on MNIST and CIFAR datasets respectively, achieve
different levels of robustness against FGSM, PGD, and CW
attacks. Although various works demonstrated the feasibility
of this technique, adversarial training requires a large number
of samples that are expensive to generate. In addition, it cannot
resist unknown attacks.

Except for adversarial training, all the aforementioned tech-
niques were shown, in a way or another, vulnerable to adaptive
attacks.
Certified defenses. The idea of ensuring robustness to all at-
tacks within a certain class has been investigated further, foster-
ing a line of work aimed at developing certified defenses [10, 19,
35, 36, 42]. In contrast to heuristic defenses, certified defenses
provide provable guarantees against bounded adversarial per-
turbations. More specifically, given a classifier and an input
sample, a certified defense comes with an upper bound on
the worst-case loss against norm-based attackers: the bound
provides a “certificate of robustness”, and it guarantees that
no perturbation within the allowed threshold can turn the
starting input into an adversarial one, therefore ruling out all
attacks which are restricted to the given threshold. Certified
defenses offer a promising direction towards ending the arms
race between attackers and defenders.

To improve early certification techniques, which do not scale
to large dataset such as ImageNet, PixelDP [25] leverages dif-
ferential privacy to generically increase the robustness of a
based classifier, offering probabilistic certificates of robust-
ness for several datasets, including ImageNet. This solution
trades scalability with clean-data accuracy, which drops sig-
nificantly as the allowed adversarial perturbation increases.
In a similar vein, recent works prove the certified robustness
of randomized smoothing, a pre-processing technique similar
to Randomized Squeezing and Region-Based Classification
which adds Gaussian noise to the classifier’s input (instead of
uniform noise) [9, 22].

On the downside, robustness certificates only hold with
respect to the original input, meaning that only test inputs
can be certified [6]. It is thus unclear which guarantees a ro-
bustness certificate can offer for data that has not been seen
before. In addition, recent work by Ghiasi et al. [12] shows an
attack, so-called shadow, to bypass certified defenses, hinting
that certified robustness does not truly capture robustness to
all realistic attacks. More specifically, the shadow attack gener-
ates adversarial samples which do not respect the norm-bound
imposed by the certificate, and thus are technically outside
the adversarial model; however, those samples are indistin-
guishable from the original samples, and cause the classifier
to generate a “spoofed” certificate of robustness, ultimately
bypassing the defense.

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html


7 CONCLUDING REMARKS
In this work, we investigated whether randomness can help in
increasing the robustness of DL classifiers against adversarial
samples. We thoroughly analyzed three heuristic defensive
techniques that employ randomness in different ways, namely
Cropping-Rescaling [16], Region-Based Classification [5], and
Randomized Squeezing (which we propose), and compared
their effectiveness against state of the art graybox and whitebox
attack strategies.

Our results show that randomness can enhance robustness
against graybox attacks. This is in line with prior work investi-
gating, among others, randomized input transformations as a
defense against (blackbox and) graybox attacks [16]. In contrast
to prior findings [16], our results demonstrate that random-
ized transformations can be effective even when applied in a
purely online fashion, i.e., without the need of augmenting
training with the same transformations.

None of the analyzed defenses can deter whitebox attacks,
though. In fact, designing secure solutions against fully-adaptive
adversaries is an extremely challenging open problem [4, 27,
37, 38]. Although recent works investigate certified defenses [10,
19, 35, 36, 42], which provide provable guarantees against
bounded adversarial perturbations, these solutions are limited
by the prior knowledge of the inputs, i.e., only inputs that are
included within the test set can be certified, and were recently
bypassed by out-of-the-model, yet realistic, attacks.

A close look at our experimental results reveals that, al-
though the strongest currently known whitebox attacks can
successfully generate robust adversarial samples against the
three defenses, increasing the amount of added randomness
requires a higher number of iterations for the attack to succeed
or, similarly, a larger distortion to achieve a certain success
rate. That is, larger randomness makes the task of generating
adversarial samples “moderately harder”. This may be good
enough for applications in which the attacker has limited time
to generate an adversarial sample, or is restricted to small
distortion.

An interesting future direction would be to further explore
the effect of randomization on the attack’s cost, in terms of
lower bounds for the number of iterations, respectively, amount
of perturbation needed to generate robust adversarial samples.
We therefore hope that our paper motivates further research
in this area.
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