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ABSTRACT
SQL injection (SQLi) attacks pose a significant threat to the security
of web applications. Existing approaches do not support object-
oriented programming that renders these approaches unable to
protect the real-world web apps such as Wordpress, Joomla, or
Drupal against SQLi attacks.

We propose a novel hybrid static-dynamic analysis for PHP
web applications that limits each PHP function for accessing the
database. Our tool, SQLBlock, reduces the attack surface of the
vulnerable PHP functions in a web application to a set of query
descriptors that demonstrate the benign functionality of the PHP
function.

We implement SQLBlock as a plugin for MySQL and PHP. Our
approach does not require any modification to the web app. We
evaluate SQLBlock on 11 SQLi vulnerabilities in Wordpress, Joomla,
Drupal, Magento, and their plugins. We demonstrate that SQLBlock
successfully prevents all 11 SQLi exploits with negligible perfor-
mance overhead (i.e., a maximum of 3% on a heavily-loaded web
server).
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1 INTRODUCTION
The growing number of users for services such as social networks,
news, online stores, and financial services makes these services a
tempting source of sensitive information for attackers. Symantec’s
recent report [7], shows an increase of 56% in web attacks from 2017
to 2018. Moreover, according to Akamai [1], 65.1% of web attacks
were SQLi attacks. SQLi is a type of code injection attack, where
an attacker aims to execute arbitrary SQL queries on a database.
In 2018, the number of SQLi vulnerabilities discovered in the top
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four most popular web apps (i.e., Wordpress, Joomla, Drupal, and
Magento) increased by 267% compared to the prior year.

There has been a great deal of research into identifying SQLi
vulnerabilities and defending against SQLi attacks on web apps.
Proposed approaches used various techniques such as static anal-
ysis [10, 11, 20, 22, 35], dynamic analysis [3, 6, 15, 21, 24, 25, 37],
or a mix of static-dynamic analysis [5, 17, 28]. While static analy-
sis approaches can be promising, static analysis cannot determine
whether input sanitization is performed correctly or not [34]. If the
sanitization function does not properly sanitize user-input, SQLi
attacks can still happen. Moreover, to the best of our knowledge,
prior static analysis approaches for finding SQLi vulnerabilities in
PHP web apps do not support Object-oriented programming (OOP)
code. Such shortcomings in static analyses leave SQLi vulnerabili-
ties undetected in web apps such as Wordpress, Joomla, and Drupal
that more than 40% of active websites use [29].

Prior dynamic analyses use taint analysis [15, 18] and compar-
ison of query parse trees [3, 6, 25, 26, 36, 37] for detecting SQLi
attacks on web apps. Such dynamic analyses follow an incomplete
definition of SQLi attacks where a SQLi attack always alters the
syntactic structure of an SQL query. Ray et al. [31] show that this
incomplete definition in CANDID [3], SQLCheck [36], WASP [15],
and SQLPrevent [37] does not prevent specific SQLi attacks and also
blocks benign requests. Other dynamic approaches have attempted
to create a profile of the executed SQL queries and enforce the
profile at runtime [25, 26]. The profiles are a mapping between the
parse tree of the benign issued SQL queries and the PHP functions
that issued the queries. The profiles created by such approaches
are too coarse-grained. Particularly, modern and complex web apps
such as Drupal and Joomla define database APIs that perform all
database operations. Database APIs create SQL queries using the
principle of the encapsulation that allows the local functions to
issue an SQL query to the database without passing the SQL query
as an argument. In such cases, existing approaches map SQL queries
to functions in the database APIs instead of mapping to the func-
tion that uses database API for communicating with the database.
Hence, the prior approaches create a coarse-grained mapping that
can allow an attacker to perform mimicry SQLi attacks.

Specifically, Mereidos et al. in SEPTIC [25] propose an approach
to block SQLi attacks inside the database. During training mode,
SEPTIC records a profile that maps the parse trees of benign issued
SQL queries to an identifier. SEPTIC generates the identifier in
mysql and mysqli; two database extensions in PHP for commu-
nicating with a MySQL database. The identifier is inferred from
the PHP call-stack that issued a call to one of the methods in the
mysql or mysqli API for executing an SQL query on the database
(e.g., mysql_query). The identifier is a sequence of functions in the
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PHP call-stack that pass the SQL query as an argument. In enforce-
ment mode, SEPTIC checks the parse tree of the SQL query against
the profile it obtained during training mode. The design of SEPTIC
leaves two unsolved challenges. (i) The strict comparison of the SQL
query’s parse tree against the profile leads SEPTIC to reject a range
of dynamic yet benign SQL queries, thus causing false positives. (ii)
The coarse-grained mapping of SEPTIC’s profile allows an attacker
to perform mimicry SQLi attacks successfully. The approach for
creating the identifier in SEPTIC does not consider the fact that
web apps do not necessarily pass the SQL query as an argument. As
a result, SEPTIC assigns the SQL queries to a small set of functions
in database API as an identifier.

We evaluated SEPTIC’s protection model against the Drupalged-
don vulnerability in Drupal [8]. Database API in drupal uses the
encapsulation concept that means Drupal’s functions do not pass
the SQL query as an argument to the database API. Hence, SEPTIC
maps all issued SQL queries to the same sequence of functions in
the database API instead of the function that interacts with the
database through the database API. During training mode, SEPTIC
creates its profile by mapping all the received SQL queries to a
single identifier. This mapping in the profile means that any func-
tion that communicates with the database in Drupal can issue all
the SQL queries in the SEPTIC’s profile. For instance, an attacker
can exploit the Drupalgeddon vulnerability in the presence of the
SEPTIC and use the login functionality to issue an SQL query for
creating an admin user.

Considering the challenges and open problems with existing de-
fenses against SQLi attacks for PHP web apps, we propose a novel
hybrid static-dynamic analysis and its implementation SQLBlock
to defend OOP web apps against SQLi attacks. SQLBlock consists
of four steps for defending web apps against SQLi attacks. In the
first step, SQLBlock collects benign inputs through unit tests or
benign browsing of web apps and creates a mapping between the
issued SQL query and the function that issued the query. The static
analysis is necessary to determine the database API precisely and
subsequently identify the PHP function that uses this API to com-
municate with the database correctly. In the next step, SQLBlock
creates a profile based on the issued query from each function in
the web app during the training mode. The profile in SQLBlock
is a mapping between the function that issues the SQL query and
a query descriptor that describes the benign functionality of the
SQL query. In the last step, SQLBlock enforces the profile inside
the database to prevent the execution of any SQL query that does
not match the profile at the runtime. We evaluate our system on a
total of 11 known SQLi vulnerabilities of the top four most popular
real-world web appsWordpress, Drupal, Joomla, Magento, and their
plugins. SQLBlock defends against all SQLi exploits, while SEPTIC
can only defend against four SQLi attacks in our dataset.

In summary, we make the following contributions:

• We recognize that the object-oriented programming para-
digm poses challenges for existing systems that lead to false
positives and reduced protection against SQLi attacks. We
propose a novel system to statically and precisely identify
database API in a PHP web app, and dynamically restrict the
SQL queries that MySQL executes based on the PHP function
that composes the SQL query.

• We present a prototype implementation called SQLBlock as
a MySQL plugin. It can be used with minimal modifications
to MySQL for defending against more types of SQLi attacks
against PHP web apps than prior work. (more details in § 3)

• We evaluate SQLBlock for its security and performance char-
acteristics on four popular PHP web apps and seven plugins.
SQLBlock protects the database and the web app against
11 previously known SQLi vulnerabilities in our evaluation
dataset with an acceptable performance overhead (<3%).

We will open source our implementation of SQLBlock, including the
testing and evaluation dataset. Our dataset includes 11 vulnerable
PHP web app and plugins, as well as automated Selenium scripts
recorded from human interactions with each web app.

2 BACKGROUND
In this section, we provide an overview of object-oriented program-
ming in PHP and the PHP extensions that are used to communicate
with MySQL databases. Afterward, we discuss MySQL and its plu-
gin architecture. Understanding the OOPmodel in PHP is necessary
for our static analysis. Besides that, the knowledge of database ex-
tensions in PHP for communicating with MySQL and the power
of MySQL plugins shapes the implementation of SQLBlock. We
then discuss different types of SQLi attacks that impact the profile
created in step 3 of SQLBlock.

2.1 PHP
PHP is an open-source server-side scripting language. According
to W3Techs [30], 79.1% of all websites use PHP as their server-side
language. PHP supports binary extensions called plugins that pro-
vide PHP with additional features such as cryptographic algorithms,
mail transfer, or database communications.

Database API in PHP provides an interface for communicating
with a database. Database API can be database-specific such as
MySQL and SQLite, or a general interface such as PHP Data Ob-
jects (PDO) for accessing various databases. The mysqli extension
provides functionality to access MySQL databases in PHP scripts.
Compared to mysql, which is another PHP extension for access-
ing MySQL, mysqli provides three additional features: support for
prepared statements, multiple statement queries, and transactions.
PHP web apps tend to use mysqli due to aforementioned additional
capabilities.

PDO is an abstraction layer that provides a consistent API for
accessing databases regardless of the database type. This feature
allows a PHP script to use the same piece of PHP code to connect
to different types of databases and issue queries. Although PDO
delivers a clean and simple API for accessing the database, it only
provides generic query-building functionality. For instance, PDO
neither supports multiple SQL queries in one string, asynchronous
queries, nor automatic cleanup with persistent connections.

PHP supports the Object-Oriented Programming model, which
introduces three new concepts for developing PHP web apps: in-
heritance, polymorphism, and encapsulation. Inheritance and poly-
morphism let developers extend the functionality of classes or im-
plement an interface in more than one way. Encapsulation bundles
data and methods into a single unit. Hence, OOP allows developers
to create modular programs and extend the functionality of PHP



database extension. Additionally, PHP provides dynamic features,
such as creating objects from dynamic strings. new is the keyword
for creating objects from a class in PHP. The argument for the new
keyword, can be a class name or a string that represents the name
of the class. An example is shown in Figure 2, line 22, where the
value of getDriver() defines the class that should be instantiated.

Besides the object-oriented design of database APIs, PHP web
apps also implement database procedures. Database procedures
handle instantiating objects from the database API and return an
object from the database API or a sub-type of the database API.
Throughout this paper, we call the database API and procedures
as the database access layer. The database access layer in the web
app handles the communication of the web app’s modules with the
database. SQLBlock determines the database access layer in PHP
web apps by reasoning about the source code of the PHP web app
statically with respect to the OOP implementation of the web apps.

2.2 MySQL
MySQL is an open-source database management system. As of Au-
gust 2019, according to Datanyze [12], MySQL is used in 46.03% of
the deployed websites on the Internet. MySQL supports a plugin
API that enables developers to extend the functionality of MySQL.
MySQL Plugins can implement user authentication, query rewrit-
ing components, or new parsers for additional keywords and ca-
pabilities. MySQL plugins have access to different data structures,
depending on their role. Of particular interest to this paper is the
query rewrite plugin, which can examine and modify a query when
MySQL receives the query before execution.

Query rewrite plugin has access to the parse tree of the SQL
query that MySQL received. Each node in the parse tree based on
its type contains information regarding the element it represents
from the SQL query. For instance, the function node (e.g., IN, <)
contains information regarding the number of arguments passed to
the SQL function. SQLBlock uses the information that each node
contains during its training and enforcement. Postparse plugins
also have access to the information regarding the type of the SQL
query (e.g., SELECT, INSERT) and the name of the table that the
SQL query needs to access. SQLBlock uses the information above
to create and enforce the query descriptors for each received SQL
query.

2.3 SQL Injection attacks
SQL injection (SQLi) is a code injection attack in which an attacker
is able to control a SQL query to execute malicious SQL statements
to manipulate the database. SQLi attacks are classified into eight
categories [11, 16]:

(1) Tautologies: The attacker injects a piece of code into the
conditional clause (i.e., where clause) in a SQL query such
that the SQL query always evaluates to true [16]. The goal of
this attack varies from bypassing authentication to extracting
data depending on how the returned data is used in the
application.

(2) Illegal/Logically incorrect Queries: By leveraging this vul-
nerability, an attacker can modify the SQL query to cause
syntax, type conversion, or logical errors [16]. If the web
app’s error page shows the database error, the attacker can

learn information about the back-end database. This vulnera-
bility can be a stepping stone for further attacks that reveals
the injectable parameters to the attacker.

(3) UnionQuery: In union query attacks, the attacker tricks the
application to append data from the tables in the database for
a given query [16]. An attacker adds one or more additional
SELECT clause, which start with the keyword UNION, that
leads to merging results from other tables in the database
to the result of the original SQL query. The goal of such an
attack is to extract data from additional tables in the database.

(4) Piggy-backedQuery: Piggy-backed query enables attackers
to append at least one additional query to the original query.
Therefore the database receivesmultiple queries in one string
for execution [16]. The attacker does not intend to modify
the original query but to add additional queries. Using the
piggy-backed query, an attacker can insert, extract, or modify
data as well as execute remote commands as well as extract
data from the database. The success of the attack depends
on if the database allows the execution of multiple queries
from a single string.

(5) Stored procedures: Stored procedures are a group of SQL
queries that encapsulate a repetitive task. Stored procedures
also allow interaction with the operating system [16], which
can be invoked by another application, command line, or an-
other stored procedure. While a database has a set of default
stored procedures, the SQL queries in a stored procedure
can be vulnerable similar to SQL queries outside the stored
procedure.

(6) Inference: In this type of attack, the application and the
database are prevented from returning feedback and error
messages; therefore, the attacker cannot verify whether the
injection was successful or not [16]. In the inference attacks,
the attacker tries to extract data based on answers to true/-
false questions about the data already stored in the database.

(7) Alternate Encoding: In order to evade detection, the attack-
ers use different encoding methods to send their payload to
the database. Each layer of the application deploys various
approaches for handling encodings [16]. The difference be-
tween handling escape characters can help an attacker to
evade the application layer and execute an alternate encoded
string on the database layer.

(8) Second order injections: One common misconception is
that the data already stored in the database is safe to ex-
tract [11]. In a second order attack, an attacker sends his
crafted SQL query to the database to store his attack payload
in the database. The malicious payload stays dormant in the
database until the database returns it as a result of another
query, and the malicious payload is insecurely used to create
another SQL query.

3 RELATEDWORK
In this section, we review the relevant literature on defending web
apps against SQLi attacks. We also compare SQLBlock with five
existing approaches and explainwhy prior systems are not sufficient
for PHP web apps that utilize OOP to communicate with databases.



Our comparison based on the SQLi attack type is presented in
Table 1. For each SQLi attack type in Table 1, means the tool can
defend against the type of attack, means the tool is ineffective,
and means that the tool can partially defend the web app against
SQLi attack. Partially defending means that either the tool can
only defend web apps that do not use OOP for implementing the
communication with the database, or the definition of SQLi attacks
in the tool is incomplete. The last column of Table 1 shows the
number of SQLi exploits from our dataset in Table 3 that each tool
can prevent.

Static Analysis: Several proposed approaches focus on detecting
injection vulnerabilities statically in the source code of web appli-
cations [10, 11, 18, 20, 38]. Dahse et al. [10] proposed RIPS, an inter-
and intra-procedural data flow analysis for detecting XSS and SQLi
vulnerabilities in web apps. Pixy [20] implements a flow-sensitive
data flow analysis to find XSS and SQLi vulnerabilities in web apps.
WebSSARI [18] uses taint analysis to track untrusted user-inputs to
detect command injection vulnerabilities. Dahse et al. [11] imple-
ment a context-sensitive taint analysis to analyze read and write
operations to the memory locations in webserver for finding the
second-order injections. Wassermann et al. [38] proposed a static
analysis for detecting the injection vulnerabilities in web apps. A
major drawback of prior analyzes are the inability to detect SQLi
vulnerabilities in web apps such as Wordpress, Joomla, and Drupal
that utilize OOP for communicating with databases.

Dynamic Analysis: Dynamic approaches track user-inputs [3, 6,
36, 37], or build a profile of benign SQL queries [24–26, 34] to pre-
vent SQLi attacks on web apps. SQLPrevent [37] analyzes generated
queries for the existence of HTTP request parameters and raises
an alert when an HTTP request parameter modifies the syntax
structure of a query. SQLGuard [6] proposed a dynamic approach
for comparing the parse tree of issued queries at runtime before and
after the inclusion of user inputs. SQLGuard needs to modify the
source code of the web app. WASP [15] proposes a taint analysis
to detect SQLi attacks on web apps. CANDID [3] records a set of
benign SQL queries that the web app can issue by instrumenting
the web app’s source code and dynamically executing the SQL
statements with benign inputs. CANDID, SQLGaurd, WASP, and
SQLPrevent assume that if the input does not change the syntax
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SQLrand [5] 0
SQLCheck [36] 0
Merlo et. al. [26] 0
SEPTIC [25] 4
DIGLOSSIA [34] 5
SQLBlock 11

Table 1: Comparison of SQLBlock with other techniques
with respect to SQLi attack type. SQLBlock provides the
most effective protection.

structure of a SQL query, then a SQLi attack has not occurred. Such
an assumption can leave the web app vulnerable to SQLi attacks
and also blocks benign generated queries [31]. Unlike CANDID,
SQLGaurd, WASP, and SQLPrevent, SQLBlock does not detect SQLi
attacks based on the modification to the syntax structure of the SQL
query. SQLBlock generates a set of query descriptors for benign
queries that each PHP function issues to the database. SQLBlock
allows functions in the web app to issue queries, as long as the
query matches its query descriptors. Beyond this, SQLBlock does
not need to modify the source code of the web app for its operation.

SQLCheck [36] tracks user-inputs to SQL queries and flags a
SQL query as an attack if user-input modifies the syntactic struc-
ture of the SQL query. This incomplete definition of SQLi attacks
prevents SQLCheck from defending against tautology, inference,
stored-procedure, and alternate encoding attacks. These four at-
tacks do not necessarily modify the syntax structure of a SQL query.
Considering this weaknesses, SQLCheck cannot protect web apps
against any of the vulnerabilities in our dataset mentioned in Ta-
ble 3.

Diglossia [34] proposed a dual parser as an extension to the
PHP interpreter. Diglossia maps the query without user-inputs
to a shadow query, and then it checks whether the parse tree of
actual query and the shadow query are isomorphic or not. If both
parse trees are isomorphic and the code in the shadow query is
not tainted with user-inputs, Diglossia passes the query to the
back-end database. Diglossia is unable to defend against Second-
order injection since Diglossia only checks queries with user-inputs.
Moreover, Diglossia cannot detect alternate-encoding and stored-
procedure attacks since these attacks do not modify the parse tree
of the SQL query [25]. As shown in Table 1, SQLBlock defends web
apps against more variants of SQLi attacks than Diglossia.

SEPTIC [25] creates a profile for each issued query during the
training phase and enforces this profile to protect web apps against
SQLi attacks. During the training, SEPTIC creates a query model
that includes all the nodes in the parse tree of a SQL query. The
profile in SEPTIC is a mapping between the query model and an
ID. The ID is the sequence of functions that pass the query as an
argument. During the enforcement, SEPTIC uses this sequence of
functions as an identifier and finds the appropriate query model
in the profile. If the issued query matches the query model in the
profile, SEPTIC allows the database to execute the query. Enforcing
a profile based on the exact model of the generated queries that
includes the name of table columns and number of SQL functions
preventsweb apps from generating dynamic yet benign SQL queries,
which causes false positives in SEPTIC. For instance, assume there
is a webpage for searching for published music albums and users
can search based on the name of an album, an artist’s name, or
the released year. If SEPTIC is trained with SQL queries that only
includes the album’s name or the released year, it rejects any SQL
queries from a user that searches using the artist’s name. SQLBlock
solves this problem by creating query descriptors for SQL queries.
Query descriptors generalize the benign SQL queries, which allows
the web app to produce a range of dynamic queries.

Furthermore, to create an identifier for each issued query in the
profile, SEPTIC uses the information in the PHP call-stack that
issued the call to methods frommysql ormysqli. SEPTIC checks the
sequence of functions in the PHP call-stack for the presence of SQL
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query in function’s arguments. Since OOP web apps do not pass
the SQL query as an argument, SEPTIC cannot generate a correct
identifier for SQL queries. Instead, it creates the same identifier
for all the issued queries in the OOP web app. Consequently, an
attacker can use a vulnerable function in the web app to issue any
query from the profile. Considering the coarse-grained mapping
that SEPTIC builds for the web apps that use OOP, SEPTIC can
defend against only four variants of SQLi attacks in our dataset. All
4 SQLi attacks that SEPTIC can defend against reside in Wordpress.
Wordpress does not use the encapsulation concept in its database
API, and its modules provide SQL queries as function arguments;
consequently, SEPTIC can correctly create its mapping. SQLBlock
overcomes this problem by utilizing a static analysis that identifies
the database API in the web app, which helps SQLBlock to correctly
determine the function that interacts with the database.

Merlo et al. [26] proposed a two step approach. First, it intercepts
every function call to mysql_query and records a profile for benign
issued SQL queries. The profile is amapping between the issued SQL
query and the PHP function that calls the function mysql_query.
During enforcement, [26] looks for the received SQL query in its
mapping profile and if the query does not syntactically match with
any recorded query for the PHP function, [26] blocks the query.
The proposed approach in [26] maps all the SQL queries to the
internal functions in the database API instead of the appropriate
function that uses the database API for communicating with the
database. Besides that, enforcing a strict comparison of the parse
tree limits the functionality of the web app for generating dynamic
SQL queries. Table 1 shows that the proposed approach in [26]
cannot protect web apps against any of the SQLi attacks in our
dataset.

Hybrid Analysis: Amnesia [17] builds a model of benign queries
in Java web apps statically. At runtime, Amnesia checks the queries
passed to the database against the built model. Amnesia highly
depends on the benign queries that are built during the static anal-
ysis, which leads to a high number of false positives when applied
to programs that generate SQL queries dynamically. SQLRand [5]
proposed a randomization technique for randomizing queries in
web apps. SQLRand randomizes the SQL queries in the web app
and uses an intermediary proxy for de-randomizing before sending

the queries to the database. Since web apps generate SQL queries
dynamically, randomizing the queries using SQLRand is a challeng-
ing task. Using an intermediate proxy introduces overwhelming
overhead to web app performance [16, 36]. Besides that, since there
is one static key that modifies SQL keywords, the knowledge of
new SQL keywords can compromise the security of SQLRand [6].

4 SYSTEM OVERVIEW
In this section we explain how SQLBlock records benign SQL
queries and limits the access of functions in a web app to the data-
base. Figure 1 shows an overview of how SQLBlock defends web
apps against SQLi attacks. Specifically, SQLBlock records a profile
by observing benign issued queries by a web app. SQLBlock then
enforces the profile from inside the database for every query that
the web app sends to the database.

In step 1 , SQLBlock performs a static analysis over the web
app to identify the database procedures that are used across the
web app’s scripts. This analysis is done once per web app and
SQLBlock uses this information during training and enforcement
of the profile.

In step 2 , SQLBlock is in the training mode and records the
benign issued SQL queries by the web app. SQLBlock can use benign
browsing traces or the web app’s unit tests in its training. SQLBlock
creates a mapping between the benign SQL queries that MySQL
receives and the functions in the web app that used the database
access layer to issue the query to the database.

In Step 3 , SQLBlock leverages the information from the first
two steps to assemble a trusted database-access profile. The profile
is a set of allowed tables, SQL functions, and type of SQL queries
that each function in the web app can issue. At the end of the third
step, SQLBlock acquires the necessary information to protect the
web app from SQLi attacks.

In step 4 , SQLBlock protects the running web app against
unauthorized database access by filtering access to the database
according to the trusted profile generated in step 3 . The modified
database extension (e.g., PDO in PHP) appends the execution infor-
mation (i.e., call-stack) at the end of each SQL query as a comment
before sending it to MySQL. Prior to the execution of each SQL



query, SQLBlock extracts the appended execution information from
the SQL query and identifies the function that communicate with
the database using the database access layer. SQLBlock checks the
query against the profile that corresponds to the function that is-
sued the query. Finally, if the SQL query matches the profile, MySQL
executes the query and returns the results.

4.1 Static Analysis of Web apps
The web app database access layer provides a unified interface to
interact with different databases. In step 1 , SQLBlock identifies
the database access layer by statically analyzing the web app. To
this end, SQLBlock creates a class dependency graph (CDG). The
CDG is a directed graph CDG = (V ,E), where the vertices (V ) are
classes and interfaces in the web app. An edge e1,2 ∈ E is drawn
between v1 ∈ V and v2 ∈ V if v1 extends class v2, implements
interface v2 .

After creating the CDG, SQLBlock extracts the list of classes and
interfaces in the web app that extend database APIs (e.g., PDO in
PHP). To do so, we manually identify database extension classes
(e.g., mysqli in PHP). Afterwards, SQLBlock iterates over the ver-
tices of the CDG and checks whether a vertex is connected to the
database API. If a vertex is connected to the database API, SQLBlock
adds it to the database access layer. SQLBlock also adds classes to
the database access layer if their methods initialize an instance of

1 $id = $_GET["id"]

2 function get_public_info{

3 include dirname(__FILE__)."/db/database.php";

4 $users = executeQuery("public_info", $id);

5 ...

6 }

7 get_public_info();

(a) get_public_info.php

1 class DatabaseConnectionmysqli

2 extends mysqli {

3 private $query;

4 function __construct(){

5 parent::__construct("localhost","admin","admin","mysqldb");

6 }

7 public function setQuery( $query ){

8 $this->query = $query;

9 ...

10 }

11 public function execute(){

12 return parent::query($this->query);

13 }

14 public function multi_execute(){

15 $result = parent::multi_query($this->query);

16 ...

17 }

18 }

19 function executeQuery( $tbl, $arg ) {

20 $query = "SELECT * FROM ".$tbl." WHERE id > ".$arg;

21 $classname = "DatabaseConnection".$this->getDriver();

22 return new $classname()->setQuery($query)->multi_execute();

23 }

(b) /db/database.php

Figure 2: Illustrative PHP code snippets demonstrating dy-
namic inputs to new keyword

database API in PHP (e.g., mysqli_init). At the end of this itera-
tion, SQLBlock possess a list of all classes and interfaces in the web
app that extends the database API.

Besides the object-oriented design of database APIs in web apps,
operations on databases (e.g., SELECT operation) also have proce-
dures [13]. Database procedures handle creation of objects from
database API and setting correct parameters for modules in the
web app. A database procedure returns an object from a sub-type
of a database API. SQLBlock analyzes the body of the functions and
procedures in the web app for the returned objects. If the returned
object is from a sub-type of a database API in the web app, then
SQLBlock considers it as a database procedure. At the end of this
step, SQLBlock extracts information regarding the database API as
well as database procedures. This step is necessary for SQLBlock
to find the function that used the database access layer for com-
municating with the database during training and enforcing of the
profile.

Figure 2b shows a snippet of PHP code from a class that ex-
tends the database API mysqli. There is also a database proce-
dure called the executeQuery in Figure 2b that return an object
from DatabaseConnectionmysqli that is a subclass of mysqli.
Figure 2a shows another snippet of code implementing a function
called get_public_info that uses executeQuery to retrieve data
from the database. SQLBlock identifies DatabaseConnectionmysqli
as a subclass of mysqli and executeQuery as a database procedure.

4.2 Collecting information regarding database
access in the web app

In step 2 , we train SQLBlock using benign traces or unit tests to
learn benign SQL queries. Step 2 consists of two components that
work together to create a mapping between the received SQL query
in MySQL and the function that composed the SQL query. The first
component, appends the execution information at the end of each
SQL query before sending it to the database. The execution infor-
mation includes the call-stack in the web app that led to sending a
SQL query to the database using database extensions (e.g., PDO or
mysqli in PHP).

The second part, a MySQL plugin, intercepts the execution of
the incoming SQL queries to MySQL. When MySQL receives a SQL
query through benign traces or unit tests, SQLBlock records the SQL
query that MySQL receives including the execution information
appended to the SQL query. Since SQLBlock has access to the parse
tree of the SQL query, SQLBlock traverses the parse tree and records
information regarding the type of nodes in the parse tree of the
SQL query. SQLBlock also logs the list of tables that the SQL query
accesses, as well as the type of operation (e.g, SELECT operation) in
the SQL query.

4.3 Creating the profile
SQLBlock in step 3 , leverages the access logs collected from benign
SQL queries in step 2 and generates a profile that defines the access
to the database for each function in the web app that interacted
with the database. Particularly, the profile contains a set of query
descriptors for each function in the web app. A query descriptor
comprises four components. Each component specifies a different
aspect of the database access, that we explain below.



• Operation: denotes the type of operation in the SQL query.
The operation can be SELECT, INSERT, UPDATE, DELETE,
etc. [9]. The profile records the type of operation in each
SQL query. Enforcing the operation type removes the possi-
bility of a SQLi attack performing a different operation. For
instance, when the profile only specifies a SELECT operation,
the SQL query cannot perform an INSERT SQL query.

• Table: determines the tables that the SQL query can operate
on. Restricting the tables used in a SQL query prevents an
attacker from executing a SQL query on a different table.

• Logical Operator: indicates the logical operators [9] used
in the SQL query. Logical operators limit the ability of an at-
tacker to use a tautology attack in a SQL query for extracting
data from a table.

• SQL function: determines the list of functions that the query
uses. The component also records the type of arguments that
are passed to each function. The list of functions restricts the
attacker to use only the functions that are recorded during
the training. This limits the attacker’s capability to use al-
ternate encoding and stored-procedures attacks against the
database.

At the end of step 3 , SQLBlock acquired a set of query descriptors
for each function in the web app that issued a SQL query based on
the training data that was obtained in step 2 .

4.4 Protecting the Web app
In the last step, SQLBlock is in enforcement mode and uses the
profile created in step 3 to restrict access to the database for each
function in the web app. When the database receives a SQL query,
SQLBlock extracts information regarding the type of operation,
table accesses, and parse tree of the received SQL query. Subse-
quently, SQLBlock extracts the function that issued the SQL query
from the execution information appended to the incoming SQL
query. Afterwards, SQLBlock looks up in the profile and retrieves
query descriptors associated with the function that composed and
issued the SQL query. For each query descriptor associated with
function, SQLBlock compares each component of the query descrip-
tor with the obtained information from the received SQL query.
First, SQLBlock checks whether the type of operation in the re-
ceived SQL query and in the query descriptor is the same or not.
Second, SQLBlock examines the list of tables in the received SQL
query. The list of table in the received SQL query must be a subset
of the list of tables in the query descriptor. For the logical operators,
SQLBlock checks whether the logical operators in the SQL query
that MySQL received is subset of the logical operators in the query
descriptor. Finally, SQLBlock inspects the functions used in the
received SQL query as well as the type of arguments. The functions
and the type of arguments must be in the recorded query descriptor.
SQLBlock takes a conservative approach and allows the database
to execute the SQL query only if all four components of a query
descriptor associated with the function authorize the SQL query.

5 IMPLEMENTATION
In this section we elaborate on the implementation challenges that
needed to be addressed build SQLBlock. First, we explain how SQL-
Block statically analyzes PHP web apps to identify the database ac-
cess layer. Afterwards, we describe how SQLBlock uses the MySQL
plugin API to record the SQL queries that the database receives.
We explain how SQLBlock creates a precise profile for each PHP
function based on the SQL queries issued to the database. Finally,
we describe SQLBlock’s approach for using a MySQL plugin API to
restrict database accesses.

5.1 Static Analysis of web apps
In step 1 , SQLBlock analyzes the web app to determine the data-
base API and database interfaces across the PHP scripts in a web
app. SQLBlock performs a flow-insensitive analysis, which focuses
on finding database API, interfaces, and procedures.

SQLBlock identifies all PHP files in the web app, using libmagic.
We use php-parser [33] to parse each PHP script into an abstract syn-
tax tree (AST). SQLBlock identifies classes, interfaces, and abstract
definitions by scanning AST nodes that represent their correspond-
ing definitions. SQLBlock examines interface and class definitions
across the PHP web app to reason about the dependencies between
classes and interfaces, During analysis, SQLBlock creates a class
dependency graph (CDG) and draws an edge between interfaces
and classes when: 1) An interface extends another interface. 2) A
class implements an interface. 3) A class extends another class.

After creating the CDG, the static analyzer ( SA ) iterates over
the nodes of the CDG to identify classes and interfaces that facilitate
communication between the PHP web app and the database. To
accomplish this, SQLBlock starts with the PDO and mysqli classes;
two of the most popular database extensions in PHP. SQLBlock
creates a list of classes and interfaces that share an edge with PDO or
mysqli classes in the CDG. For example, after creating the CDG for
the code in Figure 2b, SA identifies DatabaseConnectionmysqli
as a subclass of mysqli.

SA must identify database procedures as well. SA decides
whether a procedure is a database procedure or not by analyzing
the type of object it returns. If a procedure returns an object from a
subclass of the database API, SA marks that function as a database
procedure. For determining the object type that a function returns,
SA analyzes the AST node of the return statement. There are two
cases that SA is interested to follow:

• Instantiating an object using the new keyword: If the
function is instantiating an object using the new keyword
in the return statement, SA analyzes the argument that
is passed to the new keyword. If the argument is the name
of a subclass of a database API, SA marks the function
as a database procedure. If the argument is a variable, SA
performs a lightweight static analysis as a limited form of
constant folding over strings that compose the value. SA
marks the function as a database procedure, if the resolved
value is a subclass of database API.

• Variable: If the function returns a variable, SA iterates
backward on the AST to the last assignment of the variable
and checks whether the assignment is a class instantiation



1 SELECT * FROM public_info where id > 0 # mysqli::multi_query@DatabaseConnectionmysqli::multi_execute@executeQuery@get_public_info

2 FIELD@FUNC:>@2@FIELD@LITERAL # recorded info regarding the nodes in the SQL query

3 public_info@0 # recorded info regarding the table and operation type of the SQL query

Figure 3: recorded information regarding the execution of function get_public_info

or not. If it is a class instantiation, SA tries to resolve the
type of instantiated object as described above.

As discussed in § 2.1, PHP web apps often use variables as an
argument for creating objects from classes using the new keyword.
During analysis, SA keeps track of arguments passed to new in
PHP scripts using a string representation.

5.1.1 String Representation. SA encounters strings when han-
dling variable assignments and constant definitions. Strings can
be a mixture of literal components, function return values, and
variables.

When SA iterates over an assignment node in the AST, it
records a set of information from the assignment node in a hash
table. SA keeps track of the name of the variable and the com-
ponents on the right side of the assignment. SA also records the
name of the function or the name of the class and method that
the assignment statement occurs in. For example, in Figure 2b at
Line 21, the function executeQuery has an assignment statement.
The right side of the assignment concatenates a constant string
and a return value from a function. SA records the name of the
variable on the left side of the assignment as well as the value of
the constant string and the return value from the function. SA
also records the type of operation on the right side (as discussed
next, it is a concatenation operation). SA implements common
string operations to resolve the value of the assignment.

5.1.2 String Operations. SQLBlockmanages frequent string-related
operations.

Variables: The argument passed to new can contain variables
defined in the script. SA keeps track of variable definition in
the scope of script, class, or functions. When there is a variable
assignment, SA creates an object for the variable and its value.

Concatenation: In PHP, strings can be constructed by joining
multiple components with the . and .= operators. SA handles
string concatenation by creating an object for concatenation and
adds components that exist in the concatenation statement.

5.1.3 Identifying Database Procedures. To identify database pro-
cedures, SA iterates over the assignments and resolves the value
of variables in the strings by looking for variables in the same
class and function. If there is a variable without a value, SA rep-
resents the value as a regular expression .* wildcard. SA looks
for a match between the generated regular expression and the
list of database API subclasses. For example, in Figure 2b, line 21,
SA cannot determine the return value of $this->getDriver. Instead,
SA represents the value as a .* wildcard. SA searches the list
of database API subclasses for a class that matches the regular
expression DatabaseConnection*, and finds such a class named

DatabaseConnectionmysqli. SA marks executeQuery as a data-
base procedure.

At the end of this step, SA has a list of database access layer
classes, interfaces, and procedures.

5.2 Profile Data Collection
This step trains SQLBlock to create a mapping between issued SQL
queries and the web app’s function that relied on the database
access layer to issue the SQL query. The collected information in
this step is necessary for generating query descriptors in step 3 .
As described in § 4, the information collected for each SQL query
contains the operation, the access tables, the logical operators, the
SQL functions that the query used, and the type of arguments in
each SQL function.

5.2.1 Attaching a PHP call stack: When MySQL receives a SQL
query, SQLBlock must infer which PHP function actually issued
the SQL query. To achieve this, we modified the source code of the
MySQL driver for the PDO and mysqli extensions. This modification
appends the PHP call-stack at the end of the query as a comment
before sending it to the database.

To access the PHP call-stack, we use the Zend framework’s built-
in function called zend_fetch_debug_backtrace. Zend keeps the
information regarding the call-stack for the executing PHP script.
This information includes the functions, class, their respective ar-
guments, the file, and the line number that issued the call. The
modified database extension ( DE ) extracts the PHP call stack and
appends it as a comment to the end of the SQL query.

5.2.2 Extracting information from the parse tree: Recorder plugin
( PR ) acts as a post-parse MySQL plugin. PR has access to various
information regarding the parsed SQL query in MySQL: the type of
operation (e.g. SELECT operation, etc.), the name of the table, and
the parse tree of the SQL query. MySQL provides a parse tree visitor
function that PR uses to access the parse tree of SQL queries.

However, MySQL only allows plugins to access literal values
of the query, such as user inputs in the parse tree. Because SQL-
Block needs more information regarding the parsed SQL query,
we modified the source code of MySQL-server so that the plugin
can access non-Literal values as well. When MySQL invokes PR ,
PR records the SQL query that MySQL receives. Afterwards, PR
iterates over the parse tree of the SQL query and records the type
of each node. If the node represents a SQL function in the SQL
query, PR also records the number of arguments used in the SQL
function. The node that represents the SQL function in the SQL
query also holds the number of arguments used in the SQL function.
Afterwards, PR records the type of arguments passed to the SQL
function as they appear in the parse tree of the SQL query. Lastly,
PR logs the table and the type of operation for the SQL query that
MySQL received. In MySQL the information regarding the type of



operation for a SQL query is shown as a number. Hence, PR logs
the type of operation for a SQL query as an encoded number in
the profile. Figure 3 shows the recorded information in the profile,
when function get_public_info executes.

At the end of step 2 , SQLBlock has detailed information on the
received SQL queries for training.

5.3 Creating the Profile
In step 3 , profile generator ( PG ) creates a profile for each PHP
function in the web app that accesses the database. PG relies on
the training data from step 2 as input.

PG reads the recorded information from step 2 . As shown in
Figure 3, the first line is the SQL query including the PHP call-stack.
Using the list created in step 1 , PG must infer which PHP used
the database access layer to send the SQL query to the database.
This is a difficult problem, because the last function on the call stack
might be a helper function that issues all queries for the application
(and, in fact, this is how modern real-world PHP applications such
as Wordpress and Joomla are written). PG iterates over the stack
of functions in the PHP call-stack and checks whether the function
or the method was recognized as a database procedure or database
API method in step 1 . PG iterates over the stack starting from
the last call in PHP call-stack until a function is not a database
procedure or database API method. PG identifies this function as
the function that created the database query.

As an example, the Line 1 in Figure 3 shows the SQL query that
MySQL receives including the PHP call-stack. PG detects mysqli
as a database extension in PHP and DatabaseConnectionmysqli

as a class that extends mysqli. Then, PG visits the next function
executeQuery, whichwas identified as a database procedure in step
1 . The next function in the PHP call-stack is get_public_info.
get_public_info is not in the list of database procedures from
step 1 , therefore PG identifies it as the PHP function that used
database access layer to send the SQL query to the database. PG
will then update get_public_info’s query descriptor.

Afterwards, PG iterates over the nodes of the SQL query’s parse
tree and extracts all the logical operators. If all the logical operators
are the same, PG updates the cond with the respective value. If
both logical operators (i.e, both OR and AND) are in the nodes
of SQL query’s parse tree, PG sets cond to "Both". If there is no
logical operators in the SQL query, PG sets cond to "None". Based
on Figure 3, PG specifies that get_public_info does not use any
logical operators in its SQL query.

PG iterates over the list of nodes from the parsed tree of the
SQL query and extracts the name of the used functions in the SQL
query as well as their respective arguments. Since the number of
arguments passed to the SQL function can be variable, PG does not
record each argument’s type. Instead, PG summarizes the types of
arguments that a SQL function relies on. There are multiple types
of functions in MySQL such as numeric, string, comparison, and
date function. All of the aforementioned types of SQL functions
except the comparison type either receive less or equal to two
arguments or modifies the content of the first argument passed
to the function. Comparison functions in MySQL (e.g., <, IN, etc.)

compare a single argument to a variable sized argument array.
Moreover, the single argument appears as the first argument in the
SQL comparison functions. Owing to this, PG records the type
of the first argument passed to a SQL function separately. If the
argument is a table column, PG records it as a FIELD argument,
otherwise PG records it as a LITERAL argument. Afterwards, PG
iterates over the rest of the arguments passed to the SQL function.
If the type of all the other arguments are the same type (i.e., FIELD
or LITERAL), then PG records the value of the respective type in
the profile. Otherwise PG sets the type as var. For instance, based
on Figure 3, PG specifies that function get_public_info used
function ">", that the first argument is a table column and the
second argument is a LITERAL.

Lastly, PG reads the information about the name of the table
and the type of SQL query. For instance, based on line 3 in Figure 3,
PG deduces that function get_public_info accesses the table
public_info using a 0-type SQL query (i.e., SELECT SQL query).

At the end of step 3 , PG has a set of query descriptors for
each PHP function in the web app that issued a SQL query during
training in step 2

5.4 Protecting the web app
In step 4 , the enforcer plugin ( PE ) is on enforcement mode. PE

uses the profile that was generated in step 3 and protects the
database from queries that deviate from the profile. Similar to PG ,
PE is implemented as a postplugin, which gives it access to the
parse tree of the received SQL query. PE also uses the same PHP
database extensions as described in § 5.2.1. PE reads the profile
for each PHP function and uses it to analyze the received queries.

After receiving a query, MySQL parses the SQL query and calls
PE . PE locates the call-stack and extracts the PHP function that
issued the query with the same approach described in § 5.3. Af-
terwards, PE finds the query descriptors in the profile associated
with the PHP function. PE checks the query against all four com-
ponents of each query descriptor found for the PHP function. For
operation type, PE checks whether the received SQL query has
the same operation type as it is recorded in the profile. PE also
examines that the list of tables accessed for the received SQL query
is a subset of table access listed in the query descriptor. The logi-
cal operators used in the received SQL query must be a subset of
the logical operators in the query descriptor. Finally, the received
SQL query can only use a subset of functions listed in the query
descriptor. PE also checks whether the arguments passed to each
function has the same type as it is recorded in the query descriptor.
Only if the SQL query matches with all four components of at least
one query descriptor in the profile, PE allows MySQL to execute
the SQL query and return the results. Otherwise PE returns False
to MySQL-server, aborting execution of the query and returning
an error to the web app, thus preventing a potentially malicious
attacker-controlled SQL query from executing.



6 EVALUATION
We assessed the ability of SQLBlock to prevent SQLi attacks on
a set of popular PHP web apps. We also examined SQLBlock’s
false positive rate during the benign browsing of the web app.
Additionally, we evaluated the performance overhead of step 3 for
the benign browsing. For our evaluation, we answer the following
research questions:
RQ1 How precise is SQLBlock’s static analysis?
RQ2 Is SQLBlock effective against real world SQLi vulnerabilities in

popular web apps?
RQ3 How practical is SQLBlock regarding performance overhead and

false positives?

6.1 Evaluation Strategy
In our evaluation, we performed our static analysis once for each
web app in Section 6.2. We evaluated the database access layer re-
solved by our static analysis in RQ1. Then we leveraged our database
access layer to answer RQ2 and RQ3. We trained and built the profile
for SQLBlock using the official unit tests of each web app once and
used the generated profile for the experiments to answer RQ2 and
RQ3. The official unit tests examine the correctness of functions in
the web app by executing test-inputs and verifying their results.
The advantage of unit tests over web crawlers is that there is no
need for manual intervention of administrators, specifically for
providing semantically correct inputs for each form in web apps. A
web app’s unit tests are specifically tailored to its implementation
and therefore are likely to achieve higher code coverage. Figure 4

Figure 4: The line coverage for unit tests and Burp suite on
Drupal 7.0

shows that Drupal’s unit tests achieve higher line coverage com-
pared to Burp suite and also covers almost all the lines that Burp
Suite [23] covered. However, alternative approaches such as web
crawlers can also be used for training SQLBlock.

6.2 Evaluation Dataset
We evaluated SQLBlock on the four most popular PHP web apps,
Wordpress, Joomla, Drupal, and Magento. According to W3Techs,

these web apps hold 70.5% of the market share among all existing
content management systems (CMS) and power 38.4% of all the
live websites on the Internet combined [30]. Administrators install
plugins and additional components to customize the web app and
extend its functionality. To reflect this behavior in our evaluation,
we also evaluate SQLBlock on plugins. We installed four vulnera-
ble Wordpress plugins called Easy-Modal, Polls, Form-maker, and
Autosuggest. We also installed three vulnerable plugins in Joomla
named jsJobs, JE photo gallery, and QuickContact. To assess the
defensive capability of SQLBlock, we selected recent versions of
the web apps and plugins that contain known SQLi vulnerabilities.
We also considered the type of SQLi vulnerability in our dataset to
include all types of SQLi exploits for a comprehensive evaluation.
We collected a total of 11 SQLi vulnerabilities in different web apps
and plugins.

6.3 Resolving The Database Access Layer (RQ1)
In step 1 , SQLBlock scans the PHPweb app to identify the database
access layer that is used to communicate with the database. Step
1 is a crucial step to identify the correct function in the PHP call-
stack that relies on the database access layer for interacting with
the database.

Table 2 presents the resolved database access layer statistics.
The resolved subclasses column specifies the number of classes that
extends the database API in PHP. The resolved database procedures
column presents the number of functions that returns an object
from a subclass of the database API. Since there is no ground truth
for the database access layer in the web apps, we manually analyze
the output of SA for true positives. Subclasses of database APIs in
the PHP web apps also implement interfaces to facilitate actions
such as iterating over elements in the object and counting elements.
For instance, Drupal implements Iterator and Countable so that
the PHP script can iterate over or count the number of records that
the database returns to the PHP script. Since Drupal implements
Countable and Iterator in the subclasses of database API, SA
adds these two interfaces to the database access layer. As shown in
Table 2, the only false positives we observed during our evaluation
are caused by the Iterator and Countable interfaces. All the web
apps in our dataset except for Wordpress, use encapsulation in their
database API subclasses and database procedures that show the
necessity of identifying the database access layer for creating a
profile. Without identifying the database access layer, SQLBlock
would operate similar to SEPTIC and map the received queries to a
single identifier.

Web app Resolved subclasses (FP) Resolved database procedure
Wordpress 4.7 1 -
Drupal 7.0 44 (2) 38
Joomla 3.7 30 (0) -
Joomla 3.8 30 (0) -
Mangeto 2.3.0 15 (0) -

Table 2: Resolved database access layer



6.4 Defensive Capabilities (RQ2)
We assessed the defense capabilities of SQLBlock against 11 SQLi
vulnerabilities listed in Table 3. We built and deployed five Docker
containers that run a vulnerable version of a web app and a plu-
gin. We exploit the vulnerabilities using exploits from Metasploit
Framework [27], exploit-db [32], and sqlmap [4]. We consider an
attack successful if an attacker can inject malicious SQL code into
the generated query in the web app and the database executes the
malicious SQL query.

For this evaluation we used the results of our static analysis
in RQ1. We trained SQLBlock using the official unit tests of web
apps in their respective repositories. After creating the profile, we
configured SQLBlock in the enforcement mode and assess whether
the exploits in exploit-db and Metasploit Framework are successful
or not. Adversaries are not limited to use exploits in our evaluation
and can craft their SQL queries to circumvent SQLBlock. To evaluate
the potential of such attacks, we also used sqlmap [4] to generate
various exploits for the vulnerabilities listed in Table 3.

In Table 3, we present the list of SQLi vulnerabilities that SQL-
Block defends the web apps against. The second column in Table
3, represents the ID assigned to each vulnerability. We marked the
SQLi vulnerabilities that reside in the core of web apps by C . The
third column shows the type of attacks we performed to exploit the
respective vulnerability. SQLBlock protects the web apps against
all 11 SQLi exploits in our dataset, while SEPTIC can only defend
against four SQLi exploits that only reside in Wordpress plugins.

To evaluate the potential of circumventing SQLBlock, we also
listed the available query descriptors for the SQL queries that the
vulnerable PHP function in each web app or plugin can issue. For in-
stance, any potential exploit against the first vulnerability in Table 3
is restricted to an UPDATE query exclusively on table wp_em_modals
without further logical operators. Furthermore, the exploit can only
use SQL functions "=" and "IN".

6.5 Performance (RQ3)
Performance/responsiveness is a crucial factor for web apps. There-
fore, we evaluate SQLBlock’s performance overhead. In SQLBlock,
the first three steps can be performed offline. Steps 1 and 3 are
automatic and do not rely on help from the administrator. In step
2 , the administrator must perform unit tests or create benign
traffic in the web app to train SQLBlock. Step 4 is deployed as
a MySQL plugin and a set of modified PHP database extensions
to sandbox databases against malicious SQL queries. The MySQL
server loads SQLBlock’s protection plugin upon launch. SQLBlock
loads the profile and waits for incoming SQL queries. We perform
our experiments on a 4-core Intel Core i7-6700 with 4Gb of memory
2133Mhz DDR4 that runs Linux 4.9.0, with Nginx 1.13.0, PHP 7.1.20,
and MySQL 5.7.

For the performance evaluation, we created a Docker [19] con-
tainer that runs with a default configuration of PHP, Nginx, and
MySQL containing the Drupal 7.0 web app. We measure the per-
formance overhead of SQLBlock using ApacheBench [14], a tool
for benchmarking HTTP web servers. We simulated a real-world
scenario by increasing the level of concurrency in ApacheBench.
The level of concurrency shows the number of open requests at a
time. We measured the network response time of index.html in

Drupal 7.0 that issues 26 queries to MySQL. For more precise re-
sults, we measured the response time for 10,000 requests at multiple
levels of concurrency. Table 4 presents our results for the afore-
mentioned scenario. The first column in Table 4 shows the level of
concurrency for each test. The next two columns in Table 4 present
the network response time for Drupal with/without SQLBlock. As
shown in Table 4 SQLBlock incurs less than (2.5%) overhead to the
network response time of the server. Based on the strong protec-
tions afforded by SQLBlock, we consider this overhead acceptable.
Furthermore, SQLBlock is a prototype with no emphasis on per-
formance optimization. Such optimizations likely could reduce the
overhead even further.

We also measured the execution time of queries in MySQL. We
modified the source code of MySQL to calculate the time it takes
for MySQL to execute a SQL query. For this experiment, we used
ApacheBench to send 10,000 requests to index.html in Drupal 7.0,
which issued a total of 260,000 queries to MySQL. We measured the
average execution time of issued queries for two different scenarios.
The first scenario is MySQL without SQLBlock’s plugin, and in the
second scenario, we enabled SQLBlock’s plugin in MySQL. The
last two columns in Table 4 present the average execution time of
all the received queries to MySQL. The performance overhead of
SQLBlock in MySQL is less than 0.31 ms for each query.

Server Response Time(ms) MySQL Execution Time(ms)
Concurrency Unprotected Protected Unprotected Protected

1 27.792 28.338 (1.96%) 0.150 0.23
4 11.644 11.813 (1.45%) 0.669 0.90
8 8.907 9.127 (2.46%) 0.732 1.02
16 8.885 9.084 (2.23%) 0.740 1.05
32 8.971 9.182 (2.35%) 0.747 1.02

Table 4: Response times for requests to Drupal index.php

6.5.1 False Positive Evaluation. We count an operation as a false
positive if SQLBlock blocks a benign query to the database. For the
false positive evaluation, we evaluated SQLBlock with Wordpress
4.7 and Drupal 7.0. For each web app we used the profile that
we built in RQ2. Then, we configured SQLBlock in enforcement
mode and replayed browsing traces collected by Selenium [2]. Our
browsing traces explored the web app as a user and administrator
with the goal of covering the web app as much as possible.

Based on Table 5, only 10.11% of the issued queries during benign
browsing and the unit test had the same query structure. This legit-
imate difference in the query structure of issued queries renders
prior approaches that build their profile based on query structure
unable to distinguish benign SQL queries from malicious ones. For
instance, SEPTIC has above 89% false positive on the same test for
Drupal 7.0. SQLBlock allows a query to execute in MySQL as long as
the query matches at least one of the query descriptors associated
with the PHP function in the profile. In the false positive test for
Drupal, SQLBlock did not block any query from the benign Sele-
nium browsing. This shows that although the PHP functions during
training and testing used different queries, the query descriptors
were the same.

Table 5 shows that 82.57% of queries in our benign browsingwere
similar to queries recorded for SQLBlock’s profile. Although the



Application Vulnerability SQLi Type Available query descriptors
Wordpress 4.7 CVE-2017-12946 Taut., Infer., Alt. Encoding (update, wp_em_modals, none, [(=,field,literal),(IN,field,literal)])
Wordpress 4.7 polls-widget 1.2.4 Taut., Infer., Alt. Encoding (update, wp_polls, none, [(=,field,lietral)])
Wordpress 4.7 CVE-2019-10866 Infer. (select, wp_formmaker_submits, and, [(=,field,literal)])
Wordpress 4.7 WPVDB-9188 Taut., Infer. (select, wp_posts, and, [(=,field,literal)])
Drupal 7 CVE-2014-3704 C Taut., Union, Piggy-back, Stored Proc., Infer., Alt. Encoding (select, users, and,[(=,field,literal)])
Joomla 3.7 CVE-2017-8917 C Union, Infer.,Alt. Encoding (select, [users, languages, fields], both, [(=,field,literal),(=, field, field),(IN, field, literal)])
Joomla 3.8.3 com_jsjobs 1.2.5 Infer. (select, js_jobs_fieldsordering, none, [(=, field, literal)])
Joomla 3.8.3 com_jephotogallery 1.1 Union, Infer. (select, jephotogallery, none, [(=, field, literal)])
Joomla 3.8.3 CVE-2018-5983 Infer. (select, jquickcontanct_captach, none, [(=, field, literal)])
Joomla 3.8.3 CVE-2018-17385 C Second order inj. (select, template_styles, and, [(=, field, literal)])
magento 2.3.0 CVE-2019-7139 C Infer., Alt. Encoding (select, catalog_product_frontend_action, and, [(>=, field, literal),(<=, field, literal)])

Table 3: Exploits blocked by SQLBlock

rate of similar issued queries during training and testing of Word-
press is higher that Drupal, SQLBlock blocked 7 unique queries
during the benign browsing, which corresponds to 5% of all issued
queries. There are two main reasons for the false positives in Word-
press. The first reason is MySQL modifying the query based on
the arguments passed to SQL function in the query. For instance,
if the length of the array passed to the IN statement in a query is
one, MySQL modifies the IN statement to an equal (=) statement.
This modification in the query and subsequently in the parse tree
of the query leads to false positives for SQLBlock since SQLBlock
encounters a different function in enforcement than what is in the
profile. The second reason is missing PHP functions in the profile.
During the enforcement, SQLBlock blocks the SQL query if SQL-
Block does not find any query descriptor for a PHP function that
issued the SQL query. Six out of seven false positives in Wordpress
was due to lack of query descriptors for the PHP function during
benign browsing, which implies that covering all the functions that
can issue a query during the training is an important factor for
SQLBlock (Discussed further in § 7).

web app Unit tests Selenium (Unit tests ∩ Selenium) False Positive
Drupal 299961 336 34 (10.11%) 0

Wordpress 3099 132 109 (82.57%) 7
Table 5: Number of unique SQL queries during unit testing
and Selenium browsing

6.6 Artifact Availability
SQLBlock implementation is open-source and available at https:
//www.github.com/BUseclab/SQLBlock. Additionally, we provide
the five Docker containers that include a total of 11 vulnerable
PHP web apps and plugins that we used in our evaluation. Our
vulnerability dataset and the automated scripts were a significant
part of our evaluation, and we think that it can be useful for future
works in this area.

7 DISCUSSION AND LIMITATIONS
In this section, we discuss the limitations of the SQLBlock and
possible future works in this area.

eval Function: PHP web apps use dynamic features imple-
mented in PHP extensively, such as the eval function, which evalu-
ates a string argument as a PHP code. Currently, SQLBlock does not
handle function and class definitions inside eval. A web app can use
eval for defining the database API or procedures dynamically and

use it across the web app. This leads to generating a non-complete
list of PHP database API and interfaces for a PHP web app in the
step 1 . In such cases, SQLBlock maps the query descriptors to a
small set of PHP functions that can allow the attacker to execute a
malicious query. In future work, the static analyzer in SQLBlock
can be improved to handle the static PHP code passed to eval, to
determine a more precise database access layer.

Incomplete coverage during training: PHP web apps gener-
ate dynamic queries based on user inputs. This approach makes it
impossible to issue all possible queries to the database during the
training phase. Dynamic analyses suffer from incomplete training
phases, and SQLBlock is not an exception. Our Wordpress false pos-
itive test shows that the incomplete coverage of the issued queries
leads to SQLBlock blocking benign queries.

8 CONCLUSION
We present SQLBlock, a hybrid dynamic-static technique, to restrict
the PHP web app’s access to the database. During the training step,
SQLBlock infers issued SQL queries and their respective PHP call-
stacks. Using a lightweight static analysis, SQLBlock extracts a
list of database API and procedures in the PHP web app. In the
third step, SQLBlock creates a set of query descriptors for each
PHP function in the PHP web app that issued a SQL query to the
database. In the final step, SQLBlock acts as a MySQL plugin to
restrict the interaction of the PHPweb app andMySQL based on the
generated query descriptors. SQLBlock can prevent SQLi attacks
against 11 vulnerabilities in the top four most popular PHP web
apps and seven plugins without any false positives for Drupal 7.0
and a low number of seven false positives for Wordpress benign
browsing.
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