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ABSTRACT

The choice of password composition policy to enforce on a password-
protected system represents a critical security decision, and has
been shown to significantly affect the vulnerability of user-chosen
passwords to guessing attacks. In practice, however, this choice
is not usually rigorous or justifiable, with a tendency for system
administrators to choose password composition policies based on
intuition alone. In this work, we propose a novel methodology that
draws on password probability distributions constructed from large
sets of real-world password data which have been filtered according
to various password composition policies. Password probabilities
are then redistributed to simulate different user password reselec-
tion behaviours in order to automatically determine the password
composition policy that will induce the distribution of user-chosen
passwords with the greatest uniformity, a metric which we show
to be a useful proxy to measure overall resistance to password
guessing attacks. Further, we show that by fitting power-law equa-
tions to the password probability distributions we generate, we
can justify our choice of password composition policy without any
direct access to user password data. Finally, we present Skeptic—a
software toolkit that implements this methodology, including a
DSL to enable system administrators with no background in pass-
word security to compare and rank password composition policies
without resorting to expensive and time-consuming user studies.
Drawing on 205,176,321 passwords across 3 datasets, we lend va-
lidity to our approach by demonstrating that the results we obtain
align closely with findings from a previous empirical study into
password composition policy effectiveness.
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1 INTRODUCTION

If we wish to increase the resilience of a password-protected system
to password guessing attacks, our thoughts might turn in the first
instance to password composition policies—sets of rules that dictate
which subset of the space of all supported passwords users are per-
mitted to create on the system. The selection of a suitable password
composition policy, however, has not historically been carried out
according to rigorous selection criteria [8], with a tendency for sys-
tem administrators to base their decision on which one “feels” like it
would lead to a more secure distribution of user-chosen passwords.
For such a critical component of system security, the finding that
the restrictiveness of a password composition policy has little to
no correlation with the value of the assets it protects is somewhat
alarming [14], and makes a strong case for a more rigorous method
of selection.

While much study to date has been conducted on how password
composition policies affect the security of password-protected sys-
tems, such work usually consists of an analysis of either leaked data
sets that have since been released into the public arena [36] or of
passwords that have been collected under different password com-
position policies specifically for the purpose of the study [24, 31].
The former condition means that it is very difficult to estimate how
some of the more exotic password composition policies affect sys-
tem security because databases of passwords created under those
policies are not available. While it might be tempting to merely
filter these datasets according to the policy we wish to examine,
previous work [22] finds that this does not create a dataset that
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is representative of one that is actually created under that policy,
with passwords in filtered datasets tending to be stronger. The
latter condition, while allowing password security researchers to
collect data under any password composition policy they choose,
has considerably less ecological validity; the participants were, after
all, creating passwords in an experimental setting and not on any
real-world system of value to them as individuals. Gathering and
analysing data in this way is also expensive, time-consuming, and
requires significant domain expertise, placing it beyond the reach
of a typical system administrator working in the field. Finally, both
of these methodologies raise privacy concerns. In each case, we are
handling user-generated passwords that may still be in use by those
individuals, or else be usable to infer passwords that are. We are
motivated, therefore, to search for a methodology that permits us to
automatically choose a suitable password composition in a way that
allows us to justify that choice while avoiding the propagation of
the user password data that informs it. This is especially important
considering the recent rise in previously-leaked passwords being
employed in phishing scams [29] against the users they belong to.

In this work, we propose such a methodology, and present Skep-
tic—a software toolchain that puts it into practice. We begin by
drawing on large sets of leaked password data [6, 10, 18] to de-
rive password probability distributions. By redistributing password
probabilities in different ways, we can simulate different modes of
password reselection behaviour that might be exhibited by users
when forced to select a different password by the password com-
position policy. Drawing on work by Malone and Maher [26] and
Wang et al. [35], we fit power-law curves to these password proba-
bility distributions, allowing us to quantify the additional guessing
attack resistance conferred by their associated password composi-
tion policies in isolation from the password data itself. Following
related research into increasing system security by maximising
password diversity [4, 26, 30], we achieve this by using the unifor-
mity of these distributions as a proxy for their overall resistance to
guessing attacks. To maximise the practical utility of the data we
generate, Skeptic includes the Password Composition Policy As-
sertion Language (Pacpal)—a DSL for straightforwardly comparing
and ranking password composition policies using this data.

Using a selection of password composition policies drawn from
relatedwork and data from three large-scale password data breaches,
we demonstrate our methodology and its implementation (as the
Skeptic toolchain) by rigorously and justifiably ranking password
composition policies under a range of different assumptions about
user password reselection behaviour. As our evaluation data, we
use 3 datasets containing a total of 205,176,321 passwords, studying
28 distinct password composition policies. The results we obtain
correlate strongly with those from previous empirical studies on
the effects of password composition policies on the security of user-
chosen passwords, with some interesting findings that warrant
further study. For instance, we find that stricter (i.e. less usable)
password composition policies dramatically reduce password prob-
ability distribution uniformity if we assume that user password
reselection behaviour will converge on a small number of remain-
ing permitted passwords. We further demonstrate that the Skeptic
toolchain supports straightforward specification of password com-
position policies from within the Coq proof assistant, with all the
advantages we would expect from such an encoding, including the

ability to check from within Coq that certain password composi-
tion policies confer immunity to the Mirai and Conficker botnet
malware.

We have introduced the work and its motivation in this Sec-
tion 1. In Section 2, we introduce related work. We then move on
to describing our methodology in detail in Section 3, in a man-
ner designed to facilitate implementation to encourage replication
and experimentation. In Section 4 we describe the implementation
of our methodology as the Skeptic toolchain. Section 5 contains
an evaluation of our approach, in which we attempt to replicate
previous empirical research [31] on password composition policy
effectiveness. Finally, we conclude in Section 6.

2 RELATEDWORK

There exists a wealth of password data online that has been com-
promised from various sources and released into the public arena.
Weir et al. [36] draw on a few different sets of this data in order
to examine the validity of using password entropy as defined in
NIST document SP800-63-1 [8] to determine the security provided
by various password composition policies. The authors conclude,
based on experiments run against some of the same datasets we use
in this work [11], that it is not a valid metric, empirically validating
earlier work by Verheul [34] proving that conversion of Shannon
entropy-like measures into password guessing entropy under dif-
ferent password composition policies is not possible. Such work
demonstrates the effective use of large breached datasets in pass-
word composition policy research, and in Section 5.3 we replicate a
subset of its results as part of validation of our novel methodology.

It is also possible to use these breached user credential databases
straight away to inform our choice of password policy by sim-
ply prohibiting all the passwords we can find in them outright.
The Pwned Passwords web application and API [19] provides this
functionality as a service, aggregating over 500 million unique pass-
words that have been exposed in data breaches and made publicly
available online. Just because a password has not been exposed be-
fore, however, does not mean that it is a good password. At the time
of writing, for instance, “breakfast321” is not present in Pwned Pass-

words but as a dictionary word and run of sequential digits is very
likely to be cracked with minimal effort by any of the great number
of password cracking algorithms in widespread use today [37, 39],
with the popular zxcvbn password strength checking library [38]
estimating that this particular example could be cracked in around
105 guesses—well within the capabilities of even the lowliest at-
tacker. The inadequacy of blacklist-based measures alone motivates
work such as ours, which aims to equip system administrators with
tooling to evaluate the security of arbitrary rule-based password
composition policies.

Other studies such as that by Shay et al. [31] actively recruit
users to create passwords under various password composition
policies, and attempt to quantify the security of those policies by
running password cracking attacks against passwords collected
under these policies. This is considered by many to represent the
gold standard of password composition policy research, and as such
we replicate results from Shay et al. [31] in Section 5.2 to validate
our novel methodology.



Regardless of how it is obtained, it is of vital importance that
any model designed to evaluate the effectiveness of password com-
position policies in reducing the vulnerability of human-chosen
passwords to guessing attacks is in some way informed by human-
generated password data. Password choice varies significantly across
different user demographics (age and nationality for example [5])
and by extension across password-protected systems which have
user bases comprising different proportions of these demographics.
By consequence of this variability, there can be no definitive pass-
word composition policy that will lead to ideal security or usability
outcomes across all systems—such policies must be designed on
a system-by-system basis. Work by Galbally et al. [16] reaffirms
this idea—no password strength estimation metric is ideal for all
passwords under all conditions. With this in mind, the methodology
presented in our work is designed to be attack-independent, and
provide a general idea of the security of password composition
policies when deployed “in the wild” where the shape of password
guessing attacks the system might be subjected to can seldom be
known in detail. The only assumption we make about the threat
model we face is that the attacker is attempting to guess more
common passwords first.

As the weakest passwords are, ostensibly, those that are the
most likely to be chosen by users, we can think of the ideal pass-
word composition policy as the one that induces the most uniform
password distribution on our system. Password policies with poor
usability will cause users to converge on fewer easy-to-remember
passwords and those with poor security will permit the selection
of very weak passwords such as “password” and “123456”. This is
not a novel argument. Work on adaptive password composition
policies [30] supports the view that greater password diversity is
key to system security while research into password composition
policy optimisation [4] focuses on maximising minimum password
entropy—that is, reducing the probability of the most likely pass-
word, analogous to increasing password distribution uniformity.
Malone and Maher [26] highlight that user-chosen password dis-
tributions are non-uniform, and mention that if this were not the
case, attacks that rely on attempting to guess common passwords
would become less effective.

3 METHODOLOGY

In this section, we present our methodology for rigorous and justi-
fiable password composition policy selection in detail, beginning
with raw password data and ending with arbitrary user-specified
password composition policies ranked under various assumptions
about user behaviour.

3.1 Sourcing Human-Chosen Passwords

With the variability of user password choice inmind [5], ourmethod-
ology is parametric on an input set—some collection of password
data that we expect to be representative of the user base we are mod-
elling, given as a password frequency distribution. Input sets can
be sourced from any user credential database where the password
plaintext is known, but those used within this work include:

• RockYou—compromised in plaintext from the RockYou on-
line gaming service of the same name around the year 2009
[11]. The password composition policy in place at the time

enforced a minimum length of 5 characters with no other re-
quirements [17]. The versionwe obtained contained 32,603,048
passwords.

• Yahoo—compromised in plaintext from the Yahoo Voices
online publishing platform around the year 2012 [18]. The
password composition policy in place at the time of the
breach enforced a minimum length of 6 characters with no
other requirements [27]. The version we obtained contained
453,492 passwords.

• LinkedIn—compromised from the professional social net-
working site LinkedIn around the year 2012. The true extent
of this breach was unknown until 2016 when it was revealed
to be much more extensive than was initially made public [6].
Unsalted password hashes in SHA-1 format were compro-
mised, and ≈ 98% of these have subsequently been cracked.
It is these cracked passwords that make up the LinkedIn
dataset we use in this work. The policy in place at the time
of the breach enforced a minimum length of 6 characters [27].
The version we obtained contained 172,428,238 passwords.

3.1.1 Data cleansing. For a dataset to be as representative as pos-
sible, each password within it must have been created by a human
under a known password composition policy which has a permitted
password space that is a superset of that of the password composi-
tion policies we wish to model. It is therefore useful to filter these
datasets according to the password composition policy they were
created under in order to remove any passwords created under old
password composition policies or non-password artifacts [22] that
might be present within them. In cases where this policy is not
known, it is possible to attempt to infer it using a password com-
position policy inference tool such as pol-infer [21]. Each dataset
was first filtered according to the password composition policy it is
known to have been created under. The small proportion of pass-
words containing non-ASCII characters were then removed to avoid
encoding issues that might arise due to multi-byte characters being
stored as multiple characters, artificially inflating password length.
Some passwords in the Yahoo dataset (10,654 passwords) appeared
to be single sign-on flags for integration with an external service,
and were accordingly removed. Likewise, some passwords in the
LinkedIn dataset (174,088 passwords) appeared to be hexadecimal
data (perhaps due to encoding issues), and were also removed. The
sizes of each dataset used in this study after this filtration step are
shown in Table 1.

Table 1: A breakdown of the number of passwords filtered

from each dataset used in this study.

Dataset Filtered size Removed
RockYou [11] 32,506,433 96,615 (0.30%)
Yahoo [18] 434,287 19,205 (4.23%)
LinkedIn [6] 172,235,601 192,637 (0.11%)

3.1.2 Frequencies to probabilities. Following Blocki et al. [3], given
a cleansed input set 𝐼 of 𝑁 user passwords, we use 𝑓𝑖 to denote the
frequency of the 𝑖𝑡ℎ most common password in the set and 𝑝𝑤𝑑𝑖
to denote the 𝑖𝑡ℎ most common password in the set.



The set 𝐼 induces a probability distribution 𝐷 over passwords
defined as:

𝐷 (𝑝) =

𝑓𝑖

𝑁
if 𝑝 = 𝑝𝑤𝑑𝑖

0 otherwise
The probability 𝐷 (𝑝) is the probability that a random user selects
password 𝑝 . We define the magnitude of the distribution induced
by 𝐼 as the number of passwords in 𝐼 . That is, mag(𝐷) = 𝑁 .

3.2 Specifying Password Composition Policies

Our methodology is not tied to any specific representation of pass-
word composition policies. Similar to Blocki et al. [4], we use a
set-theoretic notation, with 𝑝 ∈ 𝜙 indicating that a password 𝑝 is
permitted by a password composition policy 𝜙 . Later on in Sec-
tion 4.1, when we describe our encoding of password composition
policies in Skeptic, we will demonstrate that this affords us the
power to encode password composition policies for arbitrary soft-
ware, and scaffold code for doing so automatically.

3.2.1 Policies studied in this work. We selected and modelled a
selection of password composition policies based on those by Shay
et al. [31] and Weir et al. [36], and follow the naming convention
used by Shay et al. [31] as follows:

• basic7, basic8, basic9, basic12, basic14, basic16, basic20:
to complywith policy basicN, passwordmust be𝑁 characters
or greater in length. No other requirements.

• digit7, digit8, digit9, digit10: to comply with policy digitN,
password must be 𝑁 characters or greater in length, and
contain at least one numeric digit.

• upper7, upper8, upper9, upper10: to comply with policy
upperN, password must be 𝑁 characters or greater in length,
and contain at least one uppercase letter.

• symbol7, symbol8, symbol9, symbol10: to comply with
policy symbolN, password must be 𝑁 characters or greater in
length, and contain at least one non-alphanumeric character.

• 2word12, 2word16: to comply with policy MwordN, pass-
word must be 𝑁 characters or greater in length and consist
of at least 𝑀 strings of one or more letters separated by a
non-letter sequence.

• 2class12, 2class16, 3class12, 3class16: to comply with
policy NclassM, password must be𝑀 characters or greater
in length and contain at least 𝑁 of the four character classes
(uppercase letters, lowercase letters, digits and symbols).

• dictionary8: to comply with policy dictionaryN password
must be 𝑁 characters or greater in length. When all non-
alphabetic characters are removed the resulting word cannot
appear in a dictionary, ignoring case (we used the Openwall
“tiny” English wordlist [28]).

• comp8: to comply with policy compN password must com-
ply with dictionaryN and additionally must contain upper-
case letters, lowercase letters, digits and symbols. Replicates
the NIST comprehensive password composition policy [7].

3.3 Modelling Password Reselection

If a potential user is forbidden from selecting their preferred pass-
word by the password composition policy, they must select a dif-
ferent, compliant password or find themselves unable to use the

service at all. In this way, a password composition policy induces a
change in the probability distribution of passwords on the system.

In this section, we consider the change induced in a probability
distribution 𝐷 by imposing a password composition policy 𝜙 . In
what follows, we write supp(𝐷) to denote the support of distribu-
tion 𝐷 , that is:

supp(𝐷) = { 𝑝 |𝐷 (𝑝) ≥ 0 }
and we write supp𝜙 (𝐷) to denote the support of 𝐷 restricted to
passwords that comply with 𝜙 :

supp𝜙 (𝐷) = { 𝑝 | 𝑝 ∈ supp(𝐷) ∧ 𝑝 ∈ 𝜙 }

We assume that supp𝜙 (𝐷) will always be non-empty.
The change induced in 𝐷 by 𝜙 can be seen as a redistribution of

the probabilities associated with passwords that do not comply with
the password composition policy. The sum of the probabilities that
need to be redistributed is denoted as surplus(𝐷,𝜙) and defined as:

surplus(𝐷,𝜙) =
∑︁

𝑝∈supp(𝐷 )
𝑝∉𝜙

𝐷 (𝑝)

Figure 1 shows a minimal example of a probability distribution
derived from a hypothetical password dataset consisting of 31 user-
chosen passwords, of which 5 are unique, labelled 𝑃1 to 𝑃5 with
frequencies following the powers of 2. That is to say, the frequency
𝑓 𝑟𝑒𝑞(𝑃𝑛) of password 𝑃𝑛 is 25−𝑛 and the probability 𝐷 (𝑃𝑛) of pass-
word 𝑃𝑛 is 1

2𝑛 .. In this section, we visualise the effect of different
reselection modes on this simple example.

Figure 1: The simple, minimal example of a password proba-

bility distribution that we use to visualise different reselec-

tion modes in this section. Probability 𝐷 (𝑃𝑛) of password 𝑃𝑛
is

1
2𝑛 .

While it would be impossible to accurately predict this rese-
lection process for each individual affected user, we can model
certain behaviours that, if exhibited by all users, would give rise
to a best, worst, or average-case security outcome. We refer to
these as macrobehaviours, and examine four of these as part of
this work (though our implementation is modular, see Section 4).
Given a specificmacrobehaviour, the induced distribution obtained
from imposing a password composition policy 𝜙 in a password
probability distribution 𝐷 is denoted as:

Reselection(𝐷,𝜙,macrobehaviour)



3.3.1 Convergent reselection. Every user that must reselect a pass-
word chooses the most common password that remains permitted
(i.e. password choice converges on the most common permitted
password). This represents a worst-case security outcome; a larger
proportion of users now have the same password, which makes the
password probability distribution less uniform and the systemmore
vulnerable to a password guessing attack containing this password.

Formally, we define this reselection mode as:

Reselection(𝐷,𝜙, convergent) (𝑝) =
𝐷 (𝑝) + surplus(𝐷,𝜙) if 𝑝 = max𝜙 (𝐷)
𝐷 (𝑝) if 𝑝 ≠ max𝜙 (𝐷) and

𝑝 ∈ supp𝜙 (𝐷)
0 otherwise

Here, max𝜙 (𝐷) denotes the password with highest probability in
𝐷 that satisfies the password composition policy 𝜙 . This can be
defined as:

choose({ 𝑝 | 𝑝 ∈ supp𝜙 (𝐷) ∧
∀𝑝′ • 𝑝′ ∈ supp𝜙 (𝐷) → 𝐷 (𝑝) ≥ 𝐷 (𝑝′) })

where choose is non-deterministic choice of one element from the
given set (which is non-empty).

Figure 2 shows a simple example of convergent reselection ap-
plied to the example distribution shown in Figure 1 when a pass-
word composition policy prohibiting passwords 𝑃1 and 𝑃2 is applied.
Note that the probability from these prohibited passwords is re-
distributed to the most common password 𝑃3 in the dataset that
remains permitted.

Figure 2: The redistribution of probability in convergent

reselectionmode under a policy prohibiting 𝑃1 and 𝑃2. Dotted
bar outlines show the probability of prohibited passwords,

and stacked bars show the redistribution of this probability.

3.3.2 Proportional reselection. Every user that must reselect a pass-
word chooses a password from those remaining in a way propor-
tional to their probabilities. This represents an average-case security
outcome, with the most common remaining permitted passwords
receiving the largest share of “displaced” users.

Formally, we define this reselection mode as:

Reselection(𝐷,𝜙, proportional) (𝑝) =
𝐷 (𝑝)

1 − surplus(𝐷,𝜙) if 𝑝 ∈ supp𝜙 (𝐷)

0 otherwise

Figure 3: The redistribution of probability in proportional

reselection mode under a policy prohibiting 𝑃1 and 𝑃2.

Figure 3 shows a simple example of proportional reselection ap-
plied to the example distribution under a policy prohibiting 𝑃1. and
𝑃2 Note that the probability from these prohibited passwords is re-
distributed amongst remaining permitted passwords proportionally
to their probability.

3.3.3 Extraneous reselection. Every user that must reselect a pass-
word chooses a new, unique password outside the set of remaining
passwords, as if they had suddenly switched to using a password
manager. This represents a best-case security outcome, increasing
password probability distribution uniformity to the greatest extent.

Formally, we define this reselection mode as:

Reselection(𝐷,𝜙, extraneous) (𝑝) =
𝐷 (𝑝) if 𝑝 ∈ supp𝜙 (𝐷)
1
𝑛

if 𝑝 ∈ fresh(𝑆, 𝜙, 𝐷, 𝑛)
0 otherwise

where 𝑛 = surplus(𝐷,𝜙) ×mag(𝐷) and fresh(𝑆, 𝜙, 𝐷, 𝑛) is a set of
𝑛 new and unique passwords built from symbols in the alphabet 𝑆
that satisfy policy 𝜙 . Formally, it is a set that satisfies:

|fresh(𝑆, 𝜙, 𝐷, 𝑛) | = 𝑛

and

fresh(𝑆, 𝜙, 𝐷, 𝑛) = { 𝑝 | 𝑝 ∈ 𝜙 ∧ 𝑝 ∉ supp(𝐷) ∧ 𝑝 ∈ 𝑆∗ }

Figure 4 shows a simple example of proportional reselection
applied to the example distribution under a policy prohibiting 𝑃1
and 𝑃2. Note that the probability from these prohibited passwords
is redistributed to new, unique passwords 𝑃6-𝑃29.



Figure 4: The redistribution of probability in extraneous res-

election mode under a policy prohibiting 𝑃1 and 𝑃2.

3.3.4 Null reselection. Every user that must reselect a password
simply doesn’t, and never creates an account on the system. This
is modelled while maintaining the probability distribution by dis-
tributing password probability completely evenly amongst all re-
maining permitted passwords.

Formally, we define this reselection mode as:

Reselection(𝐷,𝜙, null) (𝑝) =
𝐷 (𝑝) + surplus(𝐷,𝜙)

|supp𝜙 (𝐷) |
if 𝑝 ∈ supp𝜙 (𝐷)

0 otherwise

Figure 5: The redistribution of probability in null reselection

mode under a policy prohibiting 𝑃1 and 𝑃2.

Figure 5 shows a simple example of null reselection applied to the
example distribution under a policy prohibiting 𝑃1 and 𝑃2. Note that
the probability from these prohibited passwords is redistributed
uniformly across remaining permitted passwords.

3.4 Quantifying Security

After transforming our probability distribution according to the
policies and macrobehaviours we wish to study, we are now faced
with the challenge of quantifying what it means for a distribution of
user-chosen passwords to be “secure”. To achieve this, we take ad-
vantage of the fact that more uniform distributions of user-chosen

passwords are more resilient against certain password guessing
attacks that rely on guessing common passwords first, due to a
smaller proportion of users converging on the same popular pass-
words. The notion of uniformity as a desirable property of the
distribution of user-chosen passwords on a system is not new:

• Previous work by Segreti et al. [30] proposes password com-
position policies that are adaptive—evolving over time with
the express aim of increasing password diversity.

• Blocki et al. [4] focus on maximising minimum password
entropy in order to optimise password composition policies—
analogous to increasing password distribution uniformity.

• Malone and Maher [26] highlight that user-chosen password
distributions are non-uniform, and mention that if this were
not the case, attacks that rely on attempting to guess common
passwords would become less effective.

We approach the problem of measuring the uniformity of pass-
word probability distributions by performing least-squares fitting
of power-law equation to them of the form 𝑦 = 𝑎 × 𝑥𝛼 . By taking 𝛼
(the “𝛼-value” of the policy), we can compare the steepness of the
fitted curves, with a shallower curve (i.e. a curve with an 𝛼-value
closer to 0) signifying a more uniform distribution.

(a) Yahoo

(b) Yahoo (exp. sampled)

Figure 6: The rank-probability distribution of passwords in

the Yahoo dataset, with and without exponential sampling.

This is not completely straightforward, however. Malone and
Maher [26] point out that the tendency for breached password



databases to contain a high proportion of passwords with frequen-
cies in the low-single digits causes a least-squares regression line
fitted to a graph of password rank against frequency (and there-
fore probability) to have a slope that is too shallow (see Figure 6a).
Logarithmic binning of this data (that is, summing all frequencies
between rank 2𝑛 and 2𝑛+1 as one data point) removes this bias, and
results in a much better fit. We reproduce this result for the Yahoo
data set [18] (which we will discuss in detail later) in Figure 6b,
but with an important difference—instead of summing the frequen-
cies in each bin, we simply take every 2𝑛𝑡ℎ data point and discard
those in between; that is to say, we swap logarithmic binning for
exponential sampling. This similarly corrects our regression line,
which now appears to interpolate the data well. Given the rank of
the probability of a password in the database between 1 and the
total number of unique passwords in the database, we can now
approximate its actual probability using only the fitted equation,
without requiring access to the password data itself. This allows us
to justify our choice of password composition policy while avoiding
the ethical concerns involved in propagating the password data
that informed this choice.

Figure 7: The original password probability distribution of

the Yahoo dataset, alongside those induced by the comp8
policy under each macrobehaviour. Fitted power-law curves

are also shown.

Figure 7 shows the rank-probability distribution of the Yahoo
dataset used in this study under its original policy (basic6) and its
transformations under the comp8 policy assuming each of the mac-
robehaviours described in Section 3.3. From the figure, it is readily
apparent that different assumptions about user password reselec-
tion behaviour can lead to drastically different security outcomes
for the system. While proportional, extraneous and null reselection
behaviours lead to a net increase in uniformity under the comp8 pol-
icy (and therefore presumed guessing attack resistance) convergent
behaviour leads to a drastic decrease.

4 THE SKEPTIC TOOLCHAIN

We provide an implementation of the methodology in Section 3
as a toolchain consisting of three pieces of software, designed to
be used together sequentially. We name this three-part toolchain
Skeptic, which consists of: the metaprogramming tool Authority
for encoding password composition policies from within the Coq

proof assistant; the data processing tool Pyrrho for redistributing
password probabilities in the input set according to a password
composition policy and user behaviour model; and finally Pacpal,
a DSL to assist system administrators in comparing and ranking
password composition policies based on output from these tools.
We elaborate on each of these in turn in this section.

4.1 Policy Specification: Authority

Password composition policies are enforced on different systems by
a diverse range of software, which may accept password policies in
different encodings. It is convenient to represent these encodings as
tuples containing software configuration parameters. For example,
software 𝐴 may take a tuple (𝑙 ∈ N, 𝑑 ∈ N) where 𝑙 is minimum
password length and 𝑑 is the minimum number of numeric dig-
its a password may contain; while software 𝐵 might take tuples
(𝑒 ∈ Q,𝑤 ⊂ 𝑆∗) where 𝑒 is the minimum Shannon entropy of the
password, and 𝑤 is a set of prohibited passwords (a “dictionary
check”). If we wish to compare one of each of these tuples, we must
first obtain them in a uniform (i.e. normalised) encoding.

To achieve this, we take advantage of the fact that any password
composition policy is necessarily a predicate on passwords (i.e. a
function with type 𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑 → B). With this in mind, we can
obtain a uniform representation of password composition policies
regardless of the software they were encoded for by devising a
function to decode them to a Boolean normal form. For software 𝐴
for example, we might devise the function in Equation 1 which will
transform a password composition policy encoded for this software
into a predicate in conjunctive normal form.

𝑛𝑜𝑟𝑚𝐴 (𝑙, 𝑑) = 𝜆𝑠.𝑙𝑒𝑛𝑔𝑡ℎ(𝑠) ≥ 𝑙 ∧ 𝑑𝑖𝑔𝑖𝑡𝑠 (𝑠) ≥ 𝑑 (1)
Even though software 𝐵 takes a different configuration tuple,

we need only specify the normalisation function in Equation 2 for
tuples of this type in order to obtain a password composition policy
predicate in the same representation.

𝑛𝑜𝑟𝑚𝐵 (𝑒,𝑤) = 𝜆𝑠.𝑠ℎ𝑎𝑛𝑛𝑜𝑛(𝑠) ≥ 𝑒 ∧ 𝑠 ∉ 𝑤 (2)
Normalisation functions specified in this way are amenable to

formal verification, not only with respect to their correctness (i.e.
their conversion of software-specific configuration tuples to predi-
cates) but also desirable properties of the predicates they generate.
For instance, we can show that a policy mandating a minimum
password length of 16 encoded for software 𝐴 as configuration
tuple (16, 0) and normalised to policy predicate 𝜙 confers immunity
to a guessing attack consisting of passwords in an arbitrary set of
guesses 𝐺 by showing the universal quantification in Equation 3
holds.

𝜙 = 𝑛𝑜𝑟𝑚𝐴 (16, 0) ∀𝑔 ∈ 𝐺.¬𝜙 (𝑔) (3)
Authority is a metaprogramming utility1 that enables the in-

teractive modelling of password composition policies for arbitrary
software, generating a Coq project. From the Coq interactive theo-
rem proving environment, it is then possible to both specify and
verify the correctness of a normalisation function for transforming
password composition policies encoded as software-specific tuples
1We make Authority available as open-source software:
https://github.com/sr-lab/skeptic-authority-template/

https://github.com/sr-lab/skeptic-authority-template/


into predicates (see Section 3.2) as well as desirable properties of
the password composition policies themselves, such as immunity
to certain guessing attacks that malware uses to propagate (see
Section 5.5). This command-line utility asks the user a series of
questions, guiding them through this process:

(1) They are first asked to specify the name, type and description
of each member of the type of software-specific configura-
tion tuple they wish to model.

(2) Then, they may optionally specify an arbitrary number of
different password composition policies encoded as tuples
of this type by specifying policy names and tuple values.

(3) A ready-to-use Coq project is then generated according to
the user’s specifications. All that remains is for the user to
manually specify the normalisation function (see Section 3.2)
to convert the password composition policy tuples into pred-
icates.

For a more detailed overview of the operation of Authority,
see the flow diagram in Figure 8. Included in the generated Coq

project are various tools designed to streamline the process of prov-
ing desirable properties about the password composition policies
encoded using the tool, including a trie implementation for high-
performance dictionary checks, a pre-built notion of immunity and
a simple simulate tactic that can be used to prove properties about
password composition policies with respect to smaller guessing
attacks by simple simulation.

A central feature of Authority is that is can be used by Pyrrho,
the next utility in the Skeptic toolchain, to filter large sets of
real-world user password data in order to model changes in the
distribution of passwords under different password composition
policies and user macrobehaviours. Password composition policies
can therefore be modelled from within Coq, and used directly for
this filtration step. Authority achieves this by making use of the
Coq.io [9] library for writing IO-enabled programs in Coq, and com-
municating with Pyrrho (which is written in Python for optimal
performance) via its standard output stream.

4.2 Password Reselection: Pyrrho

Pyrrho lies at the core of the Skeptic toolchain, a software tool2
written in Python that handles the transformation of password
probability distributions derived from real-world datasets accord-
ing to password composition policies and assumptions about user
behaviour (i.e. the macrobehaviours discussed in Section 3.3). Fig-
ure 9 shows an overview of the Skeptic toolchain, and the position
of Pyrrho within it, with arrows indicating the direction of data
flow between tools.

The utility is parametric on a password probability distribution
derived from a real-world leaked password dataset. Password prob-
abilities are then redistributed according to a password composition
policy (interpreted by Authority), producing output distributions
under each supported macrobehaviour. Its architecture is modular,
allowing user-specified macrobehaviours to be plugged in with-
out any modification to the core of the tool. The Pyrrho plugin
corresponding to the proportional password reselection macrobe-
haviour from Section 3.3 is shown in Figure 10. Here, total is the

2We make Pyrrho available as open-source software:
https://github.com/sr-lab/pyrrho

Figure 8: A simplified overview of the logical flow of a run

of the Authority utility.

sum of all probabilities in the distribution before filtration (which
should be ≈ 1), surplus is the sum of the probabilities of all filtered
passwords, and df is the data frame representing the password
probability distribution to process.

Pyrrho additionally performs power-law curve fitting to the
altered password probability distributions in order to quantify their
uniformity (see Section 3.4), storing the resulting equations encoded
as JSON files alongside them. It is these JSON files that can be used
to compare and rank policies from the Pacpal DSL (see Section 4.3).

While Pyrrho is primarily designed to be used alongside pass-
word composition policies encoded in Coq using Authority, the
inter-process communication involved between the two utilities
makes processing large datasets a time-consuming process. For ap-
plications where the ability to reason about password composition
policies from within Coq is less important, Pyrrho also supports
Pure Python Mode, in which all dataset filtration with respect to
a password composition policy is kept within Pyrrho itself. The
result is a utility which runs on the order of 2.75 times faster (see
Section 5.1), but at the expense of the flexibility of password com-
position policy encoding and reasoning that comes with using
Authority, as Pure Python Mode supports only a limited set of
password composition policy rules.

https://github.com/sr-lab/pyrrho


Input
Distribution

Pyrrho (Python)

Macrobehaviour plugins (×n)

Authority (Coq)

Policy

Equation nDistribution nEquation 1Distribution 1 ...

PaCPAL

Results (policy
rankings etc.)

n output distributions and
equations yielded per policy

PaCPAL works using only the
equation files yielded by Pyrrho

Figure 9: An overview of the function of Skeptic. Arrows

indicate the direction of data flow.

def reselect (total, surplus, df):
divisor = total - surplus
df['probability'] /= divisor
return df

Figure 10: The proportional password reselection macrobe-

haviour from Section 3.3 encoded in Python as a plugin for

Pyrrho.

4.3 Result Extraction: Pacpal

While the data produced by Pyrrho is ostensibly all we need to be
able to assess the relative security of password composition policies
under our assumptions, the nuance of this data is of comparatively
little interest to professionals working in an applied setting (system
administrators, for example).

Users such as this are likely to be far more interested in choosing
the most secure password composition policy for their use-case
than in the data itself. Pacpal3 is an assertion language permitting
power-law equations generated by Pyrrho to be loaded, named,
grouped, compared and ranked, and is designed to assist end-users
in putting Skeptic to work practically in their organisations, lever-
aging the well-documented usability benefit seen with domain-
specific languages when compared to their general-purpose coun-
terparts [2]. An example piece of Pacpal code is shown in Figure 11
in which three fitted power-law equation files produced by Pyrrho
are loaded, bound to names, added to a group and ranked. The
ranking will then be displayed to the user. Also present is a better

3Wemake Pacpal available as open-source software: https://github.com/sr-lab/skeptic-
lang

# Load three equations produced by Pyrrho.
load linkedin-basic16-proportional.json as li_b16
load linkedin-2word16-proportional.json as li_2w16
load linkedin-3class12-proportional.json as li_3c12

# Assert that one policy is better than another.
assert li_2w16 better li_b16

# Build group to rank.
group linkedin_ranking
add li_b16 to linkedin_ranking as basic16
add li_2w16 to linkedin_ranking as 2word16
add li_3c12 to linkedin_ranking as 3class12

# Print group in ranked order (worst to best):
rank linkedin_ranking

Figure 11: A piece of example Pacpal code, demonstrating

ranking of policies based on fitted power-law equations.

assertion which will display an error to the user in the case that
this relationship does not hold. We employ Pacpal to produce the
rankings of all 28 password policies used in this study in Section 5.4.

5 EVALUATION

In this section, we demonstrate the validity of our approach by
replicating results from previous literature across different eval-
uation methodologies. Specifically, we use the Skeptic toolkit to
replicate results from the study by Shay et al. [31] that uses real par-
ticipants recruited via Amazon Mechanical Turk (see Section 5.2),
and the study by Weir et al. [36] that draws on large leaked pass-
word datasets (see Section 5.3). In Section 5.5, we demonstrate the
advantages of the Authority Coq metaprogramming utility (see
Section 4.1) by proving that certain policies confer immunity to
password guessing attacks by some common botnet worms from
within the proof assistant itself.

5.1 Experimental Setup

The password probability distribution processing (via Pyrrho) for
this experiment was conducted on a cluster of 14 cloud-based virtual
machines, each with 6 Intel® Xeon® CPUs at 1.80GHz, 16GB of
RAM and 320GB of hard disk space running 64-bit Ubuntu 18.04.3
(LTS). Times taken by Pyrrho to process each dataset studied in
this work under each policy and macrobehaviour we investigate
are shown in Table 2.

5.2 Replication of Results: Shay et al.

Shay et al. [31] ranked the effectiveness of 8 different password com-
position policies under a password guessing attack at two different
magnitudes—106 guesses and 1014 guesses. These two thresholds
are suggested by Florêncio et al. [15] as being representative of the
cutoff points of contemporary online (i.e. against a live service) and
offline (i.e. against a compromised password hash) guessing attacks
respectively. Passwords were chosen by humans under each policy

https://github.com/sr-lab/skeptic-lang
https://github.com/sr-lab/skeptic-lang


Table 2: Time taken for Pyrrho to process probability dis-

tributions for each of the datasets, policies and macrobe-

haviours investigated.

Dataset Time (s) Uniq. passwords Time/password
Yahoo 17,817 337,168 0.0528
Yahoo* 6,466 337,168 0.0192
RockYou* 339,708 14,308,965 0.0237
LinkedIn* 1,741,996 60,489,959 0.0288

* Computed in Pyrrho’s pure Python mode for reasons of
performance.

using Amazon Mechanical Turk and the attack was multimodal
using both a trained, targeted probabilistic context-free grammar
(PCFG) [22, 37] and the Password Guessability Service (PGS) [33].
Table 3 contains an overview of these results.

Table 3: The results obtained by Shay et al. [31] for passwords

collected under 8 different password composition policies at

both attack magnitudes.

106 guesses 1014 guesses
Policy Cracked (%) Rank Cracked (%) Rank
comp8 2.2 3 50.1 7
basic12 9.1 8 52 8
basic16 7.9 7 29.7 4
basic20 5.6 6 16.4 2
2word12 3.4 5 46.6 6
2word16 1.1 1 22.9 3
3class12 3.2 4 36.8 5
3class16 1.2 2 13.8 1

We attempted to replicate these results using the Skeptic toolkit.
For each of our 3 datasets, and each of the 4 studied macrobe-
haviours, we redistributed probability according to each policy in
Table 3. We then obtained the 𝛼 values yielded by fitting power-
law curves to the resulting distributions using the methodology
described in Section 3.4. In order to quantify how closely our results
reflect the rankings from Shay et al. [31] we plotted the percentage
of passwords cracked under each policy in Shay et al. [31] against
the 𝛼-values we obtained using our methodology and calculated the
Pearson correlation coefficient 𝜌 . A value closer to −1 indicates that
more uniform distributions (i.e. a less negative 𝛼-value) are more
strongly correlated with a lower percentage of cracked passwords
according to Shay et al. [31], while a value closer to 1 indicates the
opposite. A value of 0 indicates no correlation. The complete set
of correlation coefficients and their mean values across datasets 𝜌
can be found in Table 4, while an example visualisation using the
LinkedIn dataset only is shown in Figure 12. Complete results are
shown in the Appendix (Table 11).

From Table 4, it is apparent that 𝛼-values for proportional, ex-
traneous and null macrobehaviours tend to correlate well with
the empirical results from Shay et al. [31]. Using thresholds pro-
posed by Evans [12], correlation strengths range from moderate

(0.40 ≤ |𝜌 | ≤ 0.59) to very strong (0.80 ≤ |𝜌 | ≤ 1.0) for each of
these macrobehaviours across all 3 datasets, with an average cor-
relation strength of strong (0.60 ≤ |𝜌 | ≤ 0.79). By contrast, the
convergent macrobehaviour tends to show a correlation in the op-
posite direction, with less uniform distributions being associated
with lower percentages of cracked passwords. This suggests the

Table 4: Pearson correlation coefficients of percentage of

passwords cracked under different polices by Shay et al. [31]

at 1014
guesses against 𝛼-values yielded by Skeptic.

Mode Yahoo RockYou LinkedIn* 𝜌

Proportional -0.661 -0.591 -0.929 -0.727
Convergent 0.882 -0.069 0.615 0.476
Extraneous -0.722 -0.689 -0.952 -0.788
Null -0.550 -0.565 -0.884 -0.666

* Visualised in Figure 12.

Figure 12: Percentage of passwords cracked by Shay et al. [31]

at 1014
guesses against 𝛼-values yielded by Skeptic for the

LinkedIn dataset in each reselection mode.

convergent macrobehaviour is a poor model of how users actually
reselect passwords in response to password composition policies.

We found 𝛼-values yielded by Skeptic to correlate slightly less
closely with the percentage of passwords cracked by the smaller
online-range guessing attack from Shay et al. [31] (see Table 5 and
Figure 13). We imagine that this is due to the success of smaller
guessing attacks being more dependent on the dataset they are
performed against. It is also possible that the multimodal attack
employed by Shay et al. [31] is causing guessing attacks at lower
magnitudes to be more effective against passwords created under
different password composition policies than at higher magnitudes.

Table 5: Pearson correlation coefficients of percentage of

passwords cracked under different polices by Shay et al. [31]

at 106
guesses against 𝛼-values yielded by Skeptic.

Mode Yahoo RockYou LinkedIn* 𝜌

Proportional -0.866 -0.676 -0.149 -0.564
Convergent 0.217 -0.181 0.615 0.217
Extraneous -0.830 -0.808 -0.462 -0.700
Null -0.684 -0.797 -0.558 -0.680

* Visualised in Figure 13.

The observation that the proportional, null and extraneous mac-
robehaviours offer a more accurate picture of user password rese-
lection than convergent reselection is encouraging, because each



Figure 13: Percentage of passwords cracked by Shay et al. [31]

at 106
guesses against 𝛼-values yielded by Skeptic for the

LinkedIn dataset in each reselection mode.

of these represents a net increase (rather than decrease) in the uni-
formity of the password distribution on the system. This leads us
to the conclusion that implementation of stricter password compo-
sition policies does, in general, lead to an increase in the resistance
of a system to password guessing attacks. Noteworthy, however,
are the outlying 𝜌 values for the convergent macrobehaviour on
the RockYou dataset (see Tables 4 and 5), which seem to indicate
that user password reselection behaviour for this dataset more
closely resembles the convergent macrobehaviour. This is possibly
due to the age of this dataset in comparison to the others (2009
vs. 2012) and consequently less secure password reselection be-
haviours by users of that system. This may be demographics and
use-case-related, with RockYou being an online gaming service that
may have had a higher proportion of younger users less adept at
picking secure passwords, or users who place comparatively little
value on online gaming accounts compared to those tied directly
to their professional or social lives (e.g. the LinkedIn professional
social networking site or Yahoo Voices online publishing platform).

Findings. Overall, Skeptic produces 𝛼-values, and therefore
password composition policy rankings, that are strongly correlated
with the results obtained by Shay et al. [31] from real human users
recruited to create passwords under various password composi-
tion policies. This is particularly true when attack magnitude is
greater (e.g. offline attacks) as opposed to smaller attacks in the
online range which are more sensitive to the specific password
distribution they are conducted against. Because Skeptic takes
password distribution uniformity as a measure of security, and thus
is attack-independent, this is to be expected. This uniformity-based
methodology employed by Skeptic is an accurate measure of gen-
eral resistance to password guessing attacks, but a considerably
poorer measure of resistance to specific, targeted attacks tailored
with a specific password distribution in mind.

5.3 Replication of Results: Weir et al.

We next turn our attention to a study by Weir et al. [36] which
draws on leaked password datasets in order to attempt to determine

password composition policy effectiveness, rather than collecting
passwords from humans themselves under those policies.

Table 6: An approximation of the results obtained by Weir et

al. [36] for passwords obtained under 12 different password

composition policies by filtering their target dataset.

5 × 104 guesses
Policy Cracked (%) Rank
basic7 26.06 12
basic8 23.16 11
basic9 18.98 10
basic10 13.85 8
upper7 13.89 9
upper8 10.71 7
upper9 7.71 6
upper10 5.72 4
symbol7 6.92 5
symbol8 5.57 3
symbol9 4.76 2
symbol10 3.28 1

This work, among other results, presents the percentage of pass-
words cracked at 50, 000 guesses under 4 different password length
thresholds (7, 8, 9 and 10) and 3 different character requirements
(none, at least one uppercase and at least one symbol). Both the
target passwords and the attack were drawn from separate subsets
of the same RockYou dataset [11] we make use of in this work. We
present an approximation of results from [36] in Table 6, obtained
using a plot digitiser4 from the visualisations in the work.

Table 7: Pearson correlation coefficients of password policy

ranks from [36] at 5 × 104
guesses against 𝛼-values yielded

by Skeptic.

Mode Yahoo RockYou LinkedIn Mean
Proportional -0.884 -0.916 -0.885 -0.895
Convergent 0.686 -0.657 0.234 0.089
Extraneous -0.955 -0.951 -0.969 -0.958
Null -0.953 -0.945 -0.967 -0.955

Under these policies, Skeptic produces 𝛼-values that correlate
very strongly with the percentage of passwords guessed by Weir
et al. [36] in proportional, extraneous, and null reselection modes
(see Table 7). The 𝛼-values for the LinkedIn dataset under each
policy and macrobehaviour studied are plotted against percentages
of passwords cracked by Weir et. al [36] in Figure 14.

In convergent reselection mode, Skeptic is much less accurate
for the Yahoo and LinkedIn datasets, but retains a strong correlation
for the RockYou set. We speculate that this is for the same dataset-
specific reasons as presented in Section 5.2 but more pronounced
due to the use of the same dataset in both that work, and this one.

Findings. Skeptic produces 𝛼-values and policy rankings that
are very strongly correlated with results obtained byWeir et al. [36]
from large sets of revealed password data.

4We used WebPlotDigitizer : https://github.com/ankitrohatgi/WebPlotDigitizer

https://github.com/ankitrohatgi/WebPlotDigitizer


Figure 14: Percentage of passwords cracked inWeir et al. [36]

at 5× 104
guesses against 𝛼-values yielded by Skeptic for the

LinkedIn dataset in each reselection mode.

5.4 Policy Ranking

If we wish to make an informed choice of password composition
policy, one way we might go about this is to rank our candidates
in order from most to least secure and use the resulting ranking to
make our decision. Output from Pyrrho (see Section 4.2) enables
us to do this already if we manually extract 𝛼-values from each
equation file produced and perform additional processing in, for
example, spreadsheet software. This introduces a high potential for
human error, however, and requires considerable additional data
processing work that can be readily automated using the Pacpal
DSL (see Figure 11).

Rankings obtained using Pacpal are shown in Table 8. Crucially,
we do not require any access to the password data itself to produce
these rankings, and thus we avoid the ethical issues involved in
propagating user password data while retaining our ability to justify
and reproduce these rankings as-needed. We make the Pacpal
scripts and equation files necessary to reproduce these results freely
available5.

Findings. We demonstrate that it is possible to use the Skeptic
toolchain to inform password composition policy choice, and that
using the Pacpal DSL this can be done without any additional
manual data processing step.

5.5 Policy Immunity

In this section, we demonstrate the utility of encoding password
composition policies in the Coq proof assistant using Authority
(see Section 4.1) by formally verifying the immunity or vulnera-
bility of 14 password composition policies to the password guess-
ing attacks utilised by the Mirai and Conficker botnet worms. We
achieve this by encoding the notion of vulnerability or immunity
to concrete dictionaries of password guesses in Coq and devising a
simple simulate tactic to prove, by dynamic simulation, assertions
that a password composition policy either does or doesn’t confer
immunity to a guessing attack (see Figure 15).

5Access these here: https://github.com/sr-lab/skeptic-example-results

Table 8: All 28 policies investigated in this work, ranked

according to their 𝛼-values given by Skeptic in proportional

reselection mode for each of the 3 datasets studied. Policy

ranking performed by Pacpal.

Policy Yahoo RockYou LinkedIn Average
3class16 1 1 2 1.33
basic20 3 5 1 3
2word16 2 4 5 3.67
2class16 7 3 3 4.33
3class12 4 2 8 4.67
symbol10 9 8 9 8.67
2word12 8 7 11 8.67
symbol9 5 15 7 9
2class12 15 6 12 11
basic14 18 12 4 11.33
comp8 6 9 19 11.33
basic16 19 13 6 12.67
upper9 11 10 18 13
upper10 12 11 17 13.33
basic12 20 14 10 14.67
symbol8 14 18 14 15.33
upper7 10 17 20 15.67
symbol7 16 16 16 16
digit10 17 20 13 16.67
upper8 13 19 22 18
basic10 21 21 15 19
digit9 22 23 21 22
digit7 24 22 24 23.33
digit8 25 24 23 24
basic9 23 26 25 24.67
dictionary8 26 25 26 25.67
basic7 27 28 27 27.33
basic8 28 27 28 27.67

(* The `basic14` policy is immune to Mirai. *)
Example basic14_mirai_immune :

immune "basic14" mirai_dict.
Proof.

simulate.
Qed.

Figure 15: Examples of a proof inCoq, showing that the policy

named basic14 renders a system immune to a guessing attack

by theMirai malware.

5.5.1 Mirai. Mirai is a piece of malware that targets network-
enabled devices running Linux, recruiting them into a botnet that
has been used in several high-profile and extremely disruptive dis-
tributed denial-of-service (DDoS) attacks to date [23]. In order to
propagate, Mirai scans IP address ranges for devices with Telnet
enabled. Upon locating a potentially vulnerable device, the mal-
ware will try a dictionary of 62 username/password combinations
(containing 46 unique passwords) containing the factory defaults
of a number of common internet-of-things (IoT) devices including
CCTV cameras, home routers, and network-enabled printers [1].

Using Coq, at the level of theAuthority, we modelled the attack
used by Mirai to gain access to a device—a dictionary attack con-
sisting of 46 specific guesses. From here, we were able to determine
for a selection of the password composition policies by Shay et
al. [31] whether or not they render a device immune toMirai when
enforced by prohibiting the creation of any vulnerable password.

https://github.com/sr-lab/skeptic-example-results


We are confident that these results (see Table 9) would be useful
to any company producing Linux-based network-enabled devices.
By configuring their devices with a password policy immune to
compromise by Mirai (such as basic16) before shipping, they are
granted assurance that their product cannot be configured to be-
come vulnerable.

Table 9: Whether or not each password composition policy

provides immunity to the dictionary attack used by theMirai
worm, as verified from within Coq.

Immune basic14, basic16, basic20, 2class16, 2word16,
3class16, comp8

Vulnerable basic7, basic8, basic9, basic12, 2class12, 2word12,
3class12

5.5.2 Conficker. Another botnet worm, Conficker [32], which first
emerged in 2008, remains a considerable threat even today through
its use of several different propagation vectors to spread. One of
these is a dictionary attack on password-protected administrative
shares on Windows systems, which if successful allows the worm
to write itself to disk on the remote machine and infect it. The
dictionary used by Conficker for this purpose is, again, quite small
containing only 182 passwords (including the empty password). By
encoding our password composition policies from within Coq, we
can ascertain whether each password policy from Shay et al. [31]
confers immunity against this attack as we did for Mirai. The results
of this analysis are shown in Table 10.

Table 10: Whether or not each password composition policy

provides immunity to the dictionary attack used by the Con-
ficker worm, as verified from within Coq.

Immune basic14, basic16, basic20, 2class12, 2class16,
2word12, 2word16, 3class12, 3class16, comp8

Vulnerable basic7, basic8, basic9, basic12

Interestingly, if any of the policies analysed here are immune
to Mirai, they are also immune to Conficker (i.e. the set of policies
here that confer immunity toMirai are a subset of those that confer
immunity to Conficker). We anticipate that researchers will be able
to use Skeptic like this to discover policies immune to attack from
a wide range of malware.

6 CONCLUSION

In this work, we have demonstrated a new methodology for auto-
matically, rigorously and justifiably selecting the most appropriate
choice of password composition policy from a list of candidates.
We achieve this by using a user behaviour model and password
composition policy to induce a change in password probability
distributions derived from large leaked password databases. We
then take the uniformity of these distributions as a proxy for their
security, demonstrating the validity of this approach by using it
to closely reproduce results from two previous studies, one which
collected passwords from users under specific password compo-
sition policies [31] and one which made use of large breached
password datasets [36]. We find that our approach has the advan-
tage of being attack-independent and broadly applicable, with its

only assumption being that the attacker attempts to guess more
common passwords first, but also that this comes at the expense
of the ability to reason accurately about more attacks specifically
tailored to target a particular system.

We have also described and presented Skeptic, an implemen-
tation of this methodology as a software toolchain consisting of:
Authority, a metaprogramming utility for encoding policies in
arbitrary representations; Pyrrho a user behaviour model to re-
distribute probability according to these policies under different
assumptions about user password reselection behaviour; and finally
Pacpal, a straightforward DSL to make the results of this process
accessible to professionals working in the field. In addition, we have
used this tool to obtain new results, including: a ranking of all 28
password composition policies studied in this work according to
their expected effectiveness at mitigating password guessing at-
tacks, under various assumptions about user password reselection
behaviour; a demonstration that under some user behaviour models,
certain password composition policies can have a negative effect on
password security; and formal verification of the immunity of some
password composition policies to the password guessing attacks
employed by the Mirai and Conficker malware.

6.1 Future Work

We are excited about the future of this project, with the design
of machine learning-based user behaviour models for password
reselection representing a particularly promising potential future
research direction.We also plan to expand the capabilities of Pacpal
to increase its utility, and explore the possibility of employing the
power-law equations fitted by Pyrrho in conjunction with existing
password strength estimation algorithms to estimate the success
probability of concrete password guessing attacks given as lists of
strings.

We are also interested in devising tools and techniques to allow
the synthesis of formally verified password composition policy en-
forcement software such as that by Ferreira et al. [13] from models
of password guessing attacks, informed by policy rankings pro-
duced by Skeptic. Attack-defence trees in particular [25] appear
promising as an intuitive formal representation of password guess-
ing attacks and their mitigation measures from which password
composition policies might be synthesised. We have taken some
steps towards producing a user-friendly software interface for non-
expert users to interact with Skeptic and its satellite tooling with
the Passlab project [20], and we believe with further implementa-
tion work we will be able to realise a fully-fledged graphical tool
for defensive password security.

Acknowledgements. The authors would like to thank the anony-
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Table 11: Appendix. A complete set of policy 𝛼-values rankings for policies evaluated in [31] under each different macrobehaviour studied.

Policy Yahoo RockYou LinkedIn
Shay Skeptic 𝛼 Distance Shay Skeptic 𝛼 Distance Shay Skeptic 𝛼 Distance

Re
se
le
ct
io
n
m
od

es

N
ul
l

3class16 1 1 -0.00015790845 0 1 1 -0.00480967797 0 1 2 -0.00511970014 1
basic20 2 2 -0.00017481256 0 2 2 -0.00773612979 0 2 1 -0.00206544273 1
2word16 3 3 -0.00034446767 0 3 3 -0.01310526071 0 3 3 -0.01271757597 0
basic16 4 6 -0.01237917795 2 4 7 -0.11203436164 3 4 4 -0.11099256297 0
3class12 5 5 -0.00946485322 0 5 5 -0.01818160822 0 5 6 -0.18384198515 1
2word12 6 7 -0.01360245343 1 6 6 -0.07942172914 0 6 5 -0.17379245775 1
comp8 7 4 -0.00619759948 3 7 4 -0.01573345733 3 7 7 -0.21988288974 0
basic12 8 8 -0.16874098618 0 8 8 -0.32090018785 0 8 8 -0.44625701959 0

Pr
op

or
tio

na
l

3class16 1 1 -0.15000000183 0 1 1 -0.32803183792 0 1 2 -0.45101422402 1
basic20 2 3 -0.22731830237 1 2 4 -0.45407429983 2 2 1 -0.45052415132 1
2word16 3 2 -0.18899750304 1 3 3 -0.4346028884 0 3 3 -0.52489585375 0
basic16 4 7 -0.45303574889 3 4 7 -0.579615909 3 4 4 -0.57099747919 0
3class12 5 4 -0.28309796453 1 5 2 -0.33753384767 3 5 5 -0.58017546055 0
2word12 6 6 -0.31745131738 0 6 5 -0.49108150848 1 6 7 -0.61490864585 1
comp8 7 5 -0.2965234856 2 7 6 -0.54963875987 1 7 8 -0.65135140868 1
basic12 8 8 -0.47954187505 0 8 8 -0.58639470743 0 8 6 -0.59158613934 2

Ex
tr
an
eo
us

3class16 1 1 -0.04210526403 0 1 1 -0.1732211426 0 1 2 -0.25848766731 1
basic20 2 4 -0.15048415667 2 2 3 -0.2410656647 1 2 1 -0.2478302857 1
2word16 3 2 -0.05134151255 1 3 4 -0.2463640901 1 3 3 -0.29777195789 0
basic16 4 6 -0.17558403806 2 4 7 -0.38191467167 3 4 4 -0.40219971884 0
3class12 5 5 -0.15869415661 0 5 2 -0.22171184179 3 5 6 -0.43333756896 1
2word12 6 7 -0.18670016936 1 6 6 -0.3512831245 0 6 5 -0.42869639987 1
comp8 7 3 -0.15048415667 4 7 5 -0.29031771829 2 7 7 -0.4594561195 0
basic12 8 8 -0.35504148566 0 8 8 -0.49858696195 0 8 8 -0.53008440019 0

Co
nv

er
ge
nt

3class16 1 7 -1.33181526992 6 1 2 -0.73706003039 1 1 5 -0.84807451306 4
basic20 2 8 -1.65587234842 6 2 7 -0.86310442053 5 2 8 -0.90303209873 6
2word16 3 6 -1.33177869336 3 3 5 -0.79623023624 2 3 7 -0.89905475536 4
basic16 4 5 -1.02369206677 1 4 6 -0.85713632354 2 4 3 -0.79663046993 1
3class12 5 2 -0.77450139244 3 5 1 -0.66271940447 4 5 2 -0.77997709357 3
2word12 6 3 -0.82018732762 3 6 3 -0.74833314449 3 6 4 -0.83475601093 2
comp8 7 4 -0.87004936668 3 7 8 -0.92869922291 1 7 6 -0.84854866977 1
basic12 8 1 -0.77238736541 7 8 4 -0.77957401152 4 8 1 -0.73119269609 7
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