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Deep Precomputed Radiance Transfer for Deformable
Objects
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We propose, DeepPRT, a deep convolutional neural network to compactly encapsulate the radiance transfer of
a freely deformable object for rasterization in real-time.
With pre-computation of radiance transfer (PRT) we can store complex light interactions appropriate to
the shape of a given object at each surface point for subsequent real-time rendering via fast linear algebra
evaluation against the viewing direction and distant light environment. However, performing light transport
projection into an efficient basis representation, such as Spherical Harmonics (SH), requires a numerical
Monte Carlo integration computation, limiting usage to rigid only objects or highly constrained deformation
sequences. The bottleneck, when considering freely deformable objects, is the heavy memory requirement to
wield all pre-computations in rendering with global illumination results. We present a compact representation
of PRT for deformable objects with fixed memory consumption, which solves diverse non-linear deformations
and is shown to be effective beyond the input training set. Specifically, a U-Net is trained to predict the
coefficients of the transfer function (SH coefficients in this case), for a given animation’s shape query each
frame in real-time.
We contribute deep learning of PRT within a parametric surface space representation via geometry images
using harmonic mapping with a texture space filling energy minimization variant. This surface representation
facilitates the learning procedure, removing irrelevant, deformation invariant information; and supports
standard convolution operations. Finally, comparisons with ground truth and a recent linear morphable-model
method is provided.
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1 INTRODUCTION
Rendering photo-realistic appearances entails solving the rendering equation for each point on
an object’s surface. This computation can be extremely demanding, especially considering global
illumination effects where the problem becomes highly recursive. Precomputed Radiance Transfer
(PRT) is a technique intended to overcome this by simplifying the rendering equation but still
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Fig. 1. Overview of our deep deformable PRT compression scheme. 1) we map an object’s surface into a
geometry image [Gu et al. 2002] on the unit square, via Harmonic Mapping, and then resample uniformly. 2)
we generate training data by applying free form deformations to the reference surface pose SR . In addition
to the position images we feed the network with surface normals represented in the same regular structure
(normal images). Given those inputs, the network is trained to approximate the encoded transfer function T .
3) finally, for various deformations of SR , the network is able to accurately predict the transfer coefficients
(or transfer radiance, for glossy surfaces). Our visual validation application’s render time performance is
noted in section 3.2. In the example above, with a fixed U-Net memory of 45MB compared to classic PRT
storage, our method achieves a compression ratio of 44.47:1 sufficient for practical use.

enabling high-quality renderings for complex illuminations. The quintessence is to perform a single
pre-computation step of the light-transport and only evaluate scene relative arithemetic at runtime
to achieve real-time. Classic PRT algorithms function well for static scenes; however, these are
destined to fail in dynamic and/or interactive environments, in which considered objects undergo
significant deformations. Most significant is the component of the rendering equation called the
transfer function which is fully dependent of the shape structure of the object’s surface. That is, any
object deformation implies a re-computation of the transfer function, often using many ray-traced
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samples for each surface point. Hence, using classic PRT to render deformable objects would involve
pre-computing large amounts of data, leading to immense storage consumption, rapidly becoming
unwieldy for such applications.
Additionally, the time and memory consuming pre-computation of these transfer functions,

presumes knowledge of all future deformations of the regarded object. Nevertheless, dynamic or
interactive scenes may require on-the-fly adaptive, previously unknown, object deformations.

We propose a Deep Learning framework to overcome the limitations of traditional PRT algorithms
described above to enable practical use for diversely deforming objects. In particular, we replace
expensive ray-tracing algorithms by a deep Convolutional Neural Network (CNN) that, for a given
deformation, infers the corresponding set of SH - coefficients that represent the transfer function.
Thus, we enable a compact PRT representation that maintains a constant/fixed storage consumption,
regardless of the number of deformations. Moreover, due to the inherent generalization capabilities
of deep Neural Networks, our method is able to accurately predict appearances of previously
unknown shapes. We call our approach Deep Precomputed Radiance Transfer (DeepPRT).

Finding an appropriate representation of shape, or manifold like, data to use in a CNN framework
is a challenging task due to the non-Euclidean nature of the domain in which the data is defined
on. In such domains, basic operations, such as the convolution, are not well defined. Nonetheless,
more recently some authors have started to address non-Euclidean data proposing a variety of
approaches [Bronstein et al. 2016; Maron et al. 2017; Masci et al. 2015] (for further reading: [Monti
2018]). In particular, we propose learning on a regular surface representation geometry images
proposed by Gu et al. [2002]. Surfaces are mapped into squares, we perform harmonic mapping, and
resampled into a regular grid. This regular surface space representation allows standard convolution
operations and shows to be advantageous within the DL context due to its dieffeomorphic property,
as shown by Sinha et al. [2016].
The main contribution of our approach is:

• a method of appearance prediction for PRT enabling more general (free form) and adaptive
deformations, whilst maintaining a fixed compressed representation.

2 RELATEDWORK
Precomputed Radiance Transfer and Extensions
PRT was first proposed by [Sloan et al. 2002] to address global illumination effects on objects for
real-time applications. This technique exploits the limitation of static objects by making a single
pre-computation step of the transfer function, allowing fast computations at runtime.
PRT for dynamic or deformable objects would require pre-computing sequences of transfer

functions to account for every pose, resulting in datasets that expand in proportion to the number
of poses; hence, rapidly becoming unwieldy or inefficient. Memory IO operations can be 3 orders of
magnitudes more energy demanding than floating point summations or multiplications [Horowitz
2014]. Our aim is to extend traditional PRT to deformable geometries while preserving a rather
manageable and limited storage consumption.

One extension of PRT was introduced by Sloan et al. [2005] to enable transfer of local illumination
effects, such as bumps and wrinkles, to arbitrary deformations. Nevertheless, this method cannot
account for distant moving self-shadowing effects, such as cast shadows from a limb to the trunk
from an articulated figure. Our intention is to enhance PRT to account for such self-shadowing
effects within the modeled range of deformable objects.
Other approaches, rely on exploiting the information of a specific dataset to reduce the dimen-

sionality of the problem and thus the storage consumption. For instance, Feng et al. [2007] introduce
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a data-based compression scheme of precomputed radiance transfer matrices. Precomputed trans-
fer matrices of surface samples, deformed by skinning, are clustered and compressed, such that
de-compression and interpolation can be performed efficiently.
An appearance model, that approximates PRT lighting, is presented by James and Fatahalian

[2003]. The model is based on a reduced state space of deformable shapes that allows only very
limited vareity of poses/shapes.

Similarly, Schneider et al. [2017] suggest a linear self-shadowing model to predict the coefficients
of the transfer function from shape parameters of Morphable Models (MoMo) [Blanz and Vetter
1999]. Their proposed model shows good results while operating within the reduced shape space
of MoMo; nevertheless, our aim is to provide a more powerful PRT-model, that endows good
approximations for more arbitrary deformations living within a larger and more generic shape
space. To that end, we rather propose a non-linear model with well known strong generalization
properties, namely a deep Convolutional Neural Network [Karpathy et al. 2014; Krizhevsky et al.
2012; LeCun et al. 2015].

Deep Learning Appearance on Geometry Data
Deep Learning (DL) has been used for appearance predictions before, albeit mostly focusing on
learning illumination effects from screen-space data. In Nalbach et al [2017], Chaitanya et al [2017]
and Thomas and Forbes [2017] learning is conducted on image data gathered from the shading
buffers to predict illumination effects in screen space. However, image-based approaches often suffer
from significant information loss, depending on the visibility of the object, and do not leverage the
underlying structure of the geometry. These factors make the learning procedure harder requiring
large amounts of training data.
A very recent broad approach to apply deep learning to solving light transport given com-

bined geometry, illumination and material [Hermosilla et al. 2018] is available, which solves via
unstructured 3D point clouds into a latent representation for resulting image synthesis. Whilst
interactive rates are achieved, the ability to vary viewpoint and light environment in a solved PRT
representation is much faster and more suitable for real-time interactive 3D graphics applications
where latency is important.

Alternatively, we propose directly learning on geometric data. However, learning on surfaces
using CNNs is a rather challenging task. Due to the non-Euclidean nature of the domain basic
operations such as the convolution are not well-defined, leading current research down different
paths on the effort to adapt CNNs to such domains (we refer the readers to Bronstein et al [2016]
and Masci et al [2016] for a more detailed overview).
One approach, is to circumvent this difficulty by representing the surface data as a probability

distribution on a 3D grid and apply volumetric CNNs [Wu et al. 2015]. However, this extrinsic
representation has many shortcomings when applied to deformable geometries: They are very
sensitive to deformations, are computationally expensive and, equally to the screen-space strategies,
require abounding training data. Conversely, strategies for intrinsic shape representations propose
different adaptations of CNNs to such domains [Boscaini et al. 2016; Maron et al. 2017; Masci et al.
2015].

In our work, we chose a shape representation that, on the one hand, can endow the underlying
shape structure, and on the other hand, supports standard 2D convolution operations. We adopt
a parametric approach introduced by Gu et al. [2002], called geometry images, that transforms a
discrete surface into a regularly sampled unit square. This approach has been extended by Praun
and Hoppe [2003] to smooth out some critical limitations of the original work and later validated
by Sinha et al [2016] as suitable framework for Deep Learning purposes.
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To the extent of our knowledge, our work is the first to tackle the problem of PRT for deformable
objects from a Deep Learning perspective and especially on manifold like data.

3 METHOD
Precomputed Radiance Transfer is a physically-based rendering method to accelerate on-line
computations of the (simplified) rendering equation:

L(ω0) =

∫
Ω
Lϵ (ωi ) f (ωi ,ω0)V (ωi )HN (ωi )︸                        ︷︷                        ︸

T (ωi ,ω0)

dωi (1)

where Lϵ accounts for all incoming radiance over the hemisphere, f describes the surface reflectance
properties f (BRDF), HN is the Lambert’s Law and V the visibility function describing geometric
information of the scene. PRT precisely exploits the essence of static/non-deformable objects by
uniquely determining the integrand T (ωi ,ω0) (called the transfer function), which contains the
costly-to-compute visibility term,

V : S × Ω → {0, 1}

for each surface point s ∈ S ⊂ R3 [Cohen et al. 1993].
Both functions Lϵ and T are projected onto a suitable set of orthonormal basis functions for

faster evaluation of the rendering equation 1. Form number of coefficients of the basis functions
and li , ti being the i-th coefficient of Lϵ andT respectively, equation 1 reduces to, [Sloan et al. 2002]

L(ω0) ≈

m∑
j

lj · tj (2)

We chose a Spherical Harmonics (SH) basis to encode the transfer function T and the light environ-
ment Lϵ .

As mentioned above, our aim is to extend the PRT method to malleable and dynamic objects, but
avoiding costly precomputations and storage of every single transfer function Ti per shape query
Si (with i ∈ [1, 2, . . . ,d] and d : # deformations ).

With this in mind, we suggest a data-based model, a fully convolutional neural network, to
infer the transfer function Ti for any given shape query Si . This makes the costly ray-casting
computations superfluous and solves the exorbitant memory requirements, only necessitating the
storage of the network’s parameters.

Moreover, by choosing to estimate the transfer function, instead of a direct prediction of L, our
method is flexible to dynamic light environments (see figure 2).
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Fig. 2. Dynamic lighting. Rendered appearance of the Pirate Head under three different lighting conditions.
Lighting is interpolated between two light-probes.

3.1 Data: Geometry Images
We propose learning directly on the object’s surface in order to leverage its underlying shape
structure and further to be consistent with regular animated surface geometry representation for
real-time rasterization. Geometry images present a planar and regular shape representation on
which standard 2D CNNs can be applied [Gu et al. 2002; Sinha et al. 2016]. Surfaces with a single
boundary (topological disks) are mapped onto a unit square and later discretized (or re-sampled)
into a regular grid of n × n vertices. We chose harmonic map (HM) as implicit parametrization
of the interior of the 2D domain [Eells and Sampson 1964; Gu 2018]. Further, our intent is that,
for practically zero genus object surfaces, HMs provide the conditions for a homomorphism with
diffeomorphic interior mapping such that the mapped differentiable manifold takes place smoothly
in the image domain.

Importantly, we apply deformations only on the reconstructed object (shape SR in Figure (1) ) in
order to make our shape representation, geometry images, invariant to deformations. By doing
so, we maintain a one-to-one pixel correspondence between deformations; hence, filtering out
deformation invariant information of the representation; and therefore, facilitating the feature
extraction of surface properties that are more closely related to self-shadowing and light transfer
effects. Moreover, this also means that the conversion process of a surface into a geometry image is
required only once and can be performed off-line, saving precious computation time.

In addition to position values P, we use surface normals N as regressor for the network, where

P = [Px , Py , Pz ]
T , N = [Nx ,Ny ,Nz ]

T

and Pi ,Ni ∈ R
n×n being each coordinate image i ∈ {x ,y, z} of positions and normals respectively.

In result, our network predicts a corresponding sequence of images TD,G ,

fCNN (P,N) =

{
TD diffuse
TG glossy
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which, for diffuse materials, consists of the SH-coefficients of the transfer function of the input
shape, as introduced above (see equation 2):

TD = [t1, t2, . . . , tm]
T ∈ Rm×n×n

that is, pixel i of image tj represents the transfer coefficient j of vertex i of the input surface.
For glossy materials, our network predicts the transferred radiance TG consisting of three

radiance channels,

TG = [Rr ,Rд ,Rb ]
T ∈ R3×m×n×n

resulting from the product between the transfer matrixMT and the lighting coefficients Lshi [Sloan
et al. 2002].

Ri = MT · Lshi ∈ Rm×n×n for i ∈ {r ,д,b}.

3.2 Network and Performance
Architecture:
Our deep convolutional network is configured as a U-Net [Ronneberger et al. 2015], consisting of
an encoder and decoder with skip-connections. Both encoder and decoder consist of sequences of
ResNet blocks [He et al. 2015] each comprising a series of 2D-convolutions, batch-normalisation and
ReLU activation layers (illustrated in Figure (3) ). For the last layer of the decoder we use a sigmoid
activation function. Instead of a pooling-layer we perform down-sampling by increasing the stride,
by a factor of two, within a convolutional layer [Springenberg et al. 2014]. To avoid information
loss, we make use of skip-connections passing information between outputs of encoding layers
and corresponding inputs of the decoding layers.

Synthesis of Training Data:
We generate the training data applying sequences of free form deformations onto a given object.
Specifically, for our experiments, deformations are generated either by a physically driven simula-
tion or by linear combinations of blendshapes (figure 7). We also refer readers to the supplementary
video.

Each generated deformation sequence has a total length of 500 frames. At each frame i ∈

[1, 2, . . . , 500] we store the position Pi and normal Ni images of the current deformation, and
perform a full integration using ray samples to compute the corresponding ground truth TD i or
TG i . For our experiments we chose a SH-band number of 4, which corresponds to 16 coefficients.
Moreover, we experimented with image resolutions of 256 × 256 and 512 × 512.
Our implementation for the generation of the ground truth data TD,G requires a duration of

39.6s for diffuse and 49.7s for glossy surfaces, per frame.

Training:
The data is split into a training and validation set consisting of 450 and 50 data samples respectively.
As cost function, we minimize the pixel-wise absolute error between predicted output and the
ground-truth (L1-loss), and the optimizer we use is ADAM [Kingma and Ba 2014].
Convergence varies from object to object, but in most cases 500 to 1000 epochs are sufficient,

whereby we used a batch size of 5. The network is implemented in Keras with Tensorflow as
backend [Chollet et al. 2015] and takes close to 16 hours to compute 800 epochs of training on a
single NVIDIA GetForce GTX 2080 GPU.

Runtime:
In order for DeepPRT to function in real-time, fast network inference is required. However, to
achieve good approximations existing deep neural networks, such as ours, rely on very deep
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Fig. 3. Left: Illustration of the configuration of our U-shaped network. Right: Shows the two kind of operations
performed within our ResNet blocks.

architectures with sufficient quantities of parameters. In particular, our network has approximately
11.8 million parameters, occupying 45Mbytes of CPU memory, and with an inference time of 45ms
on a high-end GPU NVIDIA RTX 2080. In addition, for a network input size of 4.5Mbytes there is a
further upload (loading input images, P and N , from CPU into the GPU) cost of approximately
5ms.

After prediction, the performance for the rendering process differs notably between diffuse and
glossy surfaces: For diffuse surfaces, the dot product between predicted transfer coefficients TD
and the three channels of the lighting coefficients are calculated (eq. 2) and the result passed to the
buffers for final rendering. For our sample geometries with 2562 number of vertices the computation
of the dot product takes 13ms on the GPU, and an upload time of 0.09s for the resulting 4.0Mbytes
exiting radiance vectors. On the other hand, the output of the network for glossy surfaces TG is
three times the size as for diffuse objects, thus for the same sample geometry as above, it occupies
12.0Mbytes. For further rendering, TG is convolved with a BRDF-kernel, based on Kautz et al. [2002],
before passed to the shaders [Sloan et al. 2002]. We perform these steps in the CPU resulting in an
additional duration of 1.29s.

We note that our implementation is far from being optimal. Both, the rendering and the prediction
process can be accelerated significantly. It has been extensively shown that most neural network
models are highly compressible and can be significantly accelerated, eventually making them
deployable to devices with low memory resources and applicable in real-time [Cheng et al. 2017;
Han et al. 2015]. Nevertheless, exploring network optimization methods reaches beyond the scope
of this work. Hence, for our experiments we used the uncompressed U-Net introduced above. In
section 4 we show that even neglecting network optimization our DeepPRT approach already
achieves immense memory savings, compared to traditional PRT.

4 EXPERIMENTS AND ANALYSIS
We test our DeepPRT method against different animated objects: We animate a Pirate Head and a
Fish object using a blendshape model and apply physically-based deformations to animate a Cloth
object. The geometry image mesh resolution of the objects is 256× 256. However, for the Fish object
we increase the resolution to 512 × 512 to avoid reconstruction artifacts such as under-sampling
and the limitation of harmonic mapping to recover sharp features (figure 4)
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256 x 256

512 x 512

Fig. 4. Fish reconstructions after regular sampling of squared harmonic map. Top: Sampled by a 256 × 256
grid, shows detail loss and distortions. Bottom: Higher sampling 512 × 512 needed to preserve detail and
minimize artifacts.

These distortions arise due to the uniform remeshing, while using a sub-optimal choice of
2D surface parametrization (Harmonic Map), leading to poorly sampled surface areas in regions
of higher curvatures. While sufficient for our experiments, a more suited parametrization, that
minimizes distortion after resampling, is the geometric-stretch parametrization [Gu et al. 2002].

Accuracy Train-Loss Val-Loss SSIM
Pirate 0.9817 0.000397 0.000399 0.99386
Fish 0.9729 0.002104 0.002200 0.92451
Cloth 0.9818 0.000078 0.000098 0.98840

Table 1. Network accuracy and SSIM are computed on training plus validation data, first and last columns
respectively. Third and fourth columns show the training and validation losses of the network.

Quality and Memory Savings
For each of the test conditions, our train- and validation sets together comprise 500 distinct object
deformations. Within that deformation set, our U-Net model is able to achieve accuracies up to
98% (table 1). Moreover, the resulting rendered appearances are close to indistinguishable from
the ground truth. We further quantify the quality of the results using the perceptual metric SSIM
visualization (figures 5 and 7). Based on this result, we imply that our trained network is able to
faithfully approximate self-shadowing effects of 500 distinct shapes at the very least. Contrarily
to classic PRT, which involves storing the transfer coefficients of each vertex for every single
shape in the set, whilst our method only requires the storage of the network parameters. Such
classic PRT data could be 10GB for a 10 second animation sequence. The weights of the neural
network we produce on the other hand is only 143MB and as a fixed sized, independent of the
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length animation, is more uniform for practical storage allocation usage. We are able to have close
results both visually and numerically to ground truth shading with our experiments. Across the
metrics errors visualizations, we observe higher error regions that coincide with originating sharp
features of the test objects, such that primarily follows from a limitation of harmonic maps to retain
these geometric events, which may be further addressed by alternative geometry image mapping
approaches.

For our particular network of approx. 11.8million parameters, the example objects with 256×256
and 512 × 512 number of vertices, and a choice of 16 transfer coefficients per vertex, this implies a
compression ratio r = (# PRT parameters)/(# network parameters) of:

rdif f use =

{
44.47 : 1, for 2562 #vertices
177.86 : 1 for 5122 #vertices

rдlossy =

{
133.41 : 1, for 2562 #vertices
533.56 : 1 for 5122 #vertices

for diffuse and glossy surfaces respectively. These numbers grow linearly with an increasing number
of coefficients, deformations or number of vertices.

Ground Truth Prediction SSIM

Fig. 5. Prediction of a test sample (unseen while training) for a diffuse (top) and glossy (bottom) surface.

The measures shown above express the compression ratio taking into account solely the training
and validation sets. Nevertheless, our network shows good generalization properties, also enabling
accurate and qualitatively precise appearance predictions of deformations outside the training set.
Hence, taking this into account the compression ratio grows significantly with potential to cover
the full range of natural/possible motions for a given object within the fixed network footprint.
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As mentioned above, deep neural networks can generally be further optimized, hence making
DeepPRT even more efficient memory, speed and energy-wise [Cheng et al. 2017].

Generality of DeepPRT and Comparison
Generalization Capability: We validate the generalization capabilities of our model by standard
machine learning procedures. We base our parameter tuning on minimizing the validation loss and
later analyze prediction quality using a test set.
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Fig. 6. DeepPRT (ours) vs. MoMoPRT, (a) within training space and (b) moving away from the training space.
Left: Appearance and vertex-wise L2-RGB distance between ground truth and predictions. Right: Plot of the
mean L2-RGB distance for each predicted shape. DeepPRT error is lower overall and close to constant, while
MoMoPRT gets worse with increasing distance to mean shape.
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Comparison with MoMoPRT:. Furthermore, we compare our method with MoMoPRT [Schneider
et al. 2017] and show that DeepPRT it is more accurate and can handle more general deformations.
Here, Schneider et al [2017] proposed a linear model fl in to predict transfer coefficients from shape
parameters of a morphable model.

Clearly, MoMoPRT is limited to shape deformations that are contained within the space described
by a linear-shape-model Sl in . Moreover, although a linear model may be enough to approximate
self-shadowing effects of shapes that are close to the mean shape of the data distribution of the
training set, the model lacks complexity to accurately approximate data samples existing farther
away from the mean shape (under-fitting).

On the other hand, our more complex non-linear model (fCNN ) is able to capture the relationships
between the dataset’s features (shape) and the target variable (transfer coefficients), enabling
accurate approximations for a much larger deformation domain.
For demonstration purposes, we generate a new training set consisting of 500 shapes resulting

from linear combinations between visually more dissimilar basis shapes1: 1) the Pirate Head on
one side, and 2) a simple Plane on the other.

Sl in = α Spirate + (1 − α) Splane

We train both models, fCNN and fl in , and compute their predictions for a series of test-shapes that
are evenly distributed. Figure 6a shows that the prediction accuracy of our fCNN model is higher
and remains almost constant over the entire domain; on the contrary, the prediction accuracy of the
linear model fl in drops significantly moving away from the mean shape (the Pirate/Plane hybrid),
as expected.

Last but not least, we demonstrate that our model approximates data that is contained in a much
larger domain than the one spanned by a linear-shape-model Sl in . The models, fCNN and fl in ,
are fed with a series of sample shapes, starting from the mean shape and increasingly deforming
towards a pirate face expression that was excluded from the training set.

As can be seen in figure 6b, the linear model performs poorly away from Sl in , while our network’s
accuracy remains constant.

5 CONCLUSION AND FUTUREWORK
We present a compact representation of PRT for free form deformable objects, informing of a
non-linear model, namely a deep convolutional neural network, with significant memory savings
demonstrated. We demonstrate that DeepPRT is able to produce good quality appearance estima-
tions for deforming objects by only requiring the storage of the network parameters. In contrast,
classic PRT methods require storing every single light-transport-state for each deformation pose,
which in practice becomes unfeasible.

The model is able to extract the features of the dataset relevant to the light transfer function and
thus generates good visual approximations for a wide spectrum of deformations, with resulting
appearances that are practically indistinguishable from the ground truth.

Moreover, our method shows much higher generalization properties than previous approaches,
allowing deformations from much larger and less constrained deformation spaces.

1More distinguishable between each other, than between each face expressions used in [Blanz and Vetter 1999].
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Fig. 7. PredictionQuality: a) ground truth appearance. b) predicted appearance. c) SSIM. d) L1-Error between
ground truth and predicted transfer coefficients

Although we showed DeepPRT can be much more compact than traditional PRT, our network is
far from being fully optimized. Exploiting network compression and acceleration methods could
be highly beneficial [Cheng et al. 2017; Han et al. 2015]. The memory requirements of a network
can be reduced by using these network compression algorithms, without loosing accuracy, further
reducing the storage requirements and speeding-up the inference time eventually enabling PRT to
be applicable on deformable objects for real-time applications.

Moreover, other network topologies and/or cost functions could be explored in order to achieve
better approximations, for instance, as proposed by Man et al. [2018] to account for individual
object deformations the use of deformable convolutions [Dai et al. 2017] could be investigated.
Further to the transfer function representation, a direct learning of more bespoke and compact
representations [Sloan and Silvennoinen 2018] could also be applied in this context, such as sparse
SH vectors or a CPCA-like compressed basis.
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The particular choice of our basis functions (Spherical Harmonics), currently restricts our method
to low-frequency lighting. However, an extension to all-frequencies is possible by fitting the model
to an alternative representation of the transfer function T , such as non-linear Wavelets [Ng et al.
2003].

The receptive field is a factor that can contribute to the performance of the CNN. Our network is
adapted to the input image resolution with the intention to account for global feature extraction.
Our particular network is deep enough to account for a receptive field that is almost the size of the
input image of 256x256. By using other mappings (instead of the HM) such as the geometric-stretch
parametrization, more flexible image resolutions can be used and possibly reduce the numbers of
necessary layers. We assume and observe that geometry images, as experimented in this work,
appropriately expose intrinsic properties of the surface deformations making the learning process
more adept and due to the smoothness of the images more suitable for global feature extractions.
However, a more explicit study follows regarding this assumption in evaluating performance of
distant occluders and other distant or dislocated fully global illumination events.
The most significant further area of investigation for our method resides within the choice of

our parametrization (harmonic map). In our tests, harmonic mapping performs well for modest
curvature variations and is restricted to surfaces with one boundary (topological disks); however,
using the geometric-stretch parametrization instead and further using the extension proposed by
Praun and Hoppes [2003], the representation would be more accurate in the reconstruction of
shape. The U-Net process in this context of sharp feature reconstruction and non-disk topologies
would need additional measures. In particular, a treatment of the diffeomorphic behavior [Detlefsen
et al. 2018] of these mappings appropriate to efficient deep learning of light transport for animating
arbitrary surfaces would be interesting to further understand the representation trade-offs.
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