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ABSTRACT
This paper focuses on recommender systems based on item-item

collaborative filtering (CF). Although research on item-based meth-

ods is not new, current literature does not provide any reliable

insight on how to estimate confidence of recommendations. The

goal of this paper is to fill this gap, by investigating the conditions

under which item-based recommendations will succeed or fail for

a specific user.

We formalize the item-based CF problem as an eigenvalue prob-

lem, where estimated ratings are equivalent to the true (unknown)

ratings multiplied by a user-specific eigenvalue of the similarity

matrix. We show that the magnitude of the eigenvalue related to a

user is proportional to the accuracy of recommendations for that

user.

We define a confidence parameter called the eigenvalue confi-
dence index, analogous to the eigenvalue of the similarity matrix,

but simpler to be computed. We also show how to extend the eigen-

value confidence index to matrix-factorization algorithms.

A comprehensive set of experiments on five datasets show that

the eigenvalue confidence index is effective in predicting, for each

user, the quality of recommendations. On average, our confidence

index is 3 times more correlated with MAP with respect to previous

confidence estimates.
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1 INTRODUCTION
Confidence in recommender systems is defined as the system’s

trust in its recommendations. Both algorithm and user-interface

designers can benefit from observing confidence scores. From the

algorithmic point of view, given two recommenders that perform

similarly on some quality metrics, it can be desirable to choose the

one that can provide more confident recommendations [18]. From

the user-interface point of view, adding a confidence display to a
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list of recommended items has the potential to improve user trust

in a recommender system [8, 19].

This work first focuses on confidence estimation in item-based

(or item-item) collaborative filtering (CF) recommender algorithms.

Results are later extended to model-based matrix-factorization (MF)

algorithms.

Given a set of users, a set of items and a set of ratings (collected

either implicitly or explicitly), item-based CF techniques use avail-

able ratings to build relationship between items in the form of an

item similarity matrix, in order to predict ratings for the unknown

user-item pairs, or provide a list of items that the user might find

relevant.

Estimating confidence of rating predictions from CF algorithms

has been a topic of interest in the literature [8, 18]. Most works relay

on the empirical intuition that CF recommenders tend to improve

their accuracy as the amount of data over users or items grows [3].

Other works design ad-hoc algorithms able to simultaneously pre-

dict ratings and estimate confidence of predictions [13]. However,

little research has been performed toward identifying reliable and

easy-to-derive confidence estimates for CF recommenders.

The goal of this paper is to complement existing works by in-

vestigating the theoretical foundation of confidence estimation in

item-based CF recommendations and to experimentally explore the

following research question:

RQ: are there any requirements a user profile must
exhibit in order to receive "good" recommendations from
an item-based algorithm?

We show that item-basedmethods are analogous to an eigenvalue
problem, where each user profile (i.e., the vector of ratings from a

user) is a left eigenvector of the similarity matrix. Moreover, each

user is associated with an eigenvalue, and the magnitude of the

eigenvalue is correlated with the accuracy of recommendations for

that user [7]. We call this analogy the eigenvector analogy.
The eigenvector analogy leads to a number of interesting proper-

ties of item-based methods, that will be empirically demonstrated

through the rest of the paper:

(1) each user in the user-rating matrix is associated with a cor-

responding eigenvalue;

(2) the magnitude of the eigenvalue is proportional to the ac-

curacy of recommendations for that user and it is a reliable

measure of confidence for predicted ratings;

(3) users with eigenvalues close to zero will receive poor quality

recommendations, regardless of the item-based model.

It is worth noting that the eigenvector analogy does not make any

assumption on how the similarity matrix has been computed, but

in this paper we will focus on item-based CF approaches. We later
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extend the results to model-based matrix-factorization algorithms

[4].

Thanks to the eigenvector analogy we introduce a new confidence

parameter, analogous to the eigenvalue, that we call the eigenvalue
confidence index. Experiments show that the correlation between

quality of recommendations for a user and number of ratings in

the user’s profile, studied in past research work [3], is not always

strong. We show that the eigenvalue confidence index is a much

better predictor of the quality of recommendations than the number

of ratings in then user profile.

In summary, we make the following contributions:

• We investigate some theoretical properties of item-based

algorithms leveraging a similarity with the eigenvalue prob-

lem, which has never been explored by existing literature. To

the best of our knowledge, this is the first attempt to provide

a theoretical evidence of accuracy capabilities of item-based
methods.

• We provide a reliable way to estimate confidence of recom-

mendations to a given user for CF item-based algorithms.

• We extend these results to model-based matrix-factorization
algorithms.

• We provide extensive empirical evidence on five datasets that

the quality of recommendations to a given user is strongly

correlated with the eigenvalue confidence index associated

with that user.

The rest of the paper is organized as follows. In Section 2 the

relevant existing methods are presented. Section 3 introduces the

details of the eigenvalue analogy. Section 4 describes how to com-

pute the eigenvalue confidence index. Sections 5 and 6 present the

results of the experimental evaluation, together with the method-

ology and the datasets used for the evaluation. Finally, Section 7

provides some concluding remarks.

2 RELATEDWORKS
Although there is a vast literature on item-based methods, the

evaluation of their predicting capabilities, in terms of accuracy

of recommendation lists, is purely empirical and has never been

formally investigated.

Some works in the literature propose methods to empirically

estimate the quality of recommendations (i.e., confidence of pre-

dictions). The estimated confidence is either used to improve the

recommendation algorithm [10, 15] or to provide explanations to

users [2, 8, 19].

Adomavicius et al. [1] observe that recommendations tend to be

more accurate for users and items exhibiting lower rating variance.

However, their approach can be applied only to explicit datasets.

Cremonesi et al. [3] empirically show that there is some correlation

between number of ratings in the user profile and recall of recom-

mendations, while there is no correlation with perceived relevance

or satisfaction. Shyong et al. [19] empirically show that the total

number of ratings for each item is related to the mean-absolute-

error (MAE) of predicted ratings. Koren et al. [13] empirically esti-

mate whether a model’s predicted rating is within one rating level

of the true rating. Mazurowski [15] shows that re-sampling of rat-

ings and injection of noisy ratings can be both used to empirically

estimate confidence of prediction. However, this method is com-

putationally expensive as it requires to retrain the model several

times in order to have reliable confidence estimates.

A disadvantage of these approaches is that confidence estima-

tion is based only on user and item statistics, without taking into

account the properties of the prediction model. Most works focus

on estimating confidence for individual rating predictions, and as

such they are limited to explicit datasets.

In this work we introduce a different concept of confidence,

which is more suitable for Top-N recommendation scenarios and

works for both implicit and explicit datasets. We propose a method

for estimating recommendation confidence which takes into ac-

count the ranking performance of the algorithm for each user. Our

method does not take into account only the statistics of the ratings

(the user-rating matrix), but also the structure of the model (the

similarity matrix), and as such is able to provide better confidence

estimates with respect to other approaches.

3 PROBLEM FORMULATION
3.1 Notation
In this paper, all vectors are represented by bold lower case letters

and they are row vectors (e.g., ru ), unless differently specified. All

matrices are represented by bold upper case letters (e.g., R, S). A
predicted value is denoted by having a ˜ (tilde) over it (e.g., R̃). We

use calligraphic letters to denote sets (e.g., R+).

Matrix R will be used to represent the user-item rating matrix
(URM) of size NU × NI (number of users × number of items).

Symbols u and i are used to denote individual users and items,

respectively. An entry rui in R is used to represent the feedback

information for user u on item i . User-rating matrices can be both

explicit or implicit. In the first case, rui corresponds to the rating

value given by user u to item i . In the second one, if user u has

provided a positive feedback for item i , then the corresponding

value rui is 1, otherwise it is 0 (i.e., R is a binary matrix). The u-th
row of the user-rating matrix R is represented by the row vector

ru , and it referred to as the user profile.
Matrix S will be used to represent an item-based similarity matrix

of size NI × NI . An entry si j in S measures how similar is item i
with item j and it is somehow related to the probability that, if

users like item i , they will also like item j. The j-th column of the

similarity matrix S is represented by the column vector sj . Note
that the similarity matrix is not necessarily symmetric, i.e., si j can
be different from sji .

3.2 Motivation
The methods developed in this work are motivated by the analogy

between the generic formulation of an item-based model and the

eigenvector problem.

A generic item-based model predicts the ratings r̃u of a user u
for all items as

ruS = r̃u (1)

where ru is the profile of the user and S is a similarity matrix.

Our goal is to find a solution S to equation (1) which is different

from the identity matrix (in such a case, each item is identical

to itself and different from all other items). The above equation

can be used to model any type of item-based method, the only
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difference being on how matrix S is computed. For instance, matrix

S can be a traditional KNN similarity computed with the cosine

between vectors of item ratings (CF) or item attributes (CBF) [6, 14].

Alternatively, matrix S can be directly estimated from the URM

using a machine learning approach, as with SLIM methods [17].

We now assume to have an ideal item-based recommender, able

to predict all the user ratings (both known and unknown).

Because of this assumption, we can rewrite (1) for an ideal item-

based method as

ruS = ru (2)

The item-based model described by (2) is analogous to the left

eigenvector problem

ruS = λu ru (3)

where ru is a left eigenvector of matrix S and λu is the correspond-

ing eigenvalue.
1
Eigenvectors of S are the only non-trivial solutions

to (3), the trivial solution being ru = 0 [11].

There is one important difference between the original formula-

tion (2) and the eigenvector formulation (3). In the original "ideal"

formulation (2), predicted ratings are equivalent to the ratings in

the user profile

r̃u = ru

In the eigenvector formulation (3), predicted ratings are equiva-

lent to the ratings in the user profile multiplied by the eigenvalue
associated with the user

r̃u = λu ru (4)

The two formulations coincide if and only if λu = 1 for each user u.
The original formulation (2) has the property of providing rec-

ommendations which are perfect in terms of error metrics, such as

RMSE and MAE.

The same property does not generally hold for the eigenvalue

formulation, as eigenvalues can be smaller or larger than one, or

they can even be complex numbers.

However, the eigenvector formulation (3) has still the property

of providing recommendations which are perfect in terms of Top-N

and ranking metrics, such as precision, recall, MAP and NCDG. This

happens because, for a given user u, the corresponding eigenvalue

λu is constant and the items in the predicted vector of ratings have

the same ranking of the items in the user profile.

Another interesting property emerges from the analysis of (4):

if, for a given user u, we have λu = 0, the predicted ratings for that

user are all identical and equal to zero. For such a user, even a per-

fect item-based method that satisfies the eigenvector formulation

described by equation (3) will not be able to make predictions for

that user.

More in general, for each user, the corresponding eigenvalue

can either flatten out (if very small) or amplify (if very large) the

differences between predicted ratings. The closer an eigenvalue

is to zero, the more difficult will be for the item-based method

to correctly rank items and to distinguish between relevant and

non-relevant items.

1
Please, note that this problem is slightly different from the more classical right
eigenvector problem, where there is a column vector that right multiplies a matrix.

However, all the literature results on the right eigenvector problem applies seeming-

less to the left eigenvector problem with only minor modifications.

Thanks to the properties of eigenvalues in item-based meth-

ods, we can provide an answer to our research question, with the

following observation:

Observation 3.1. When using an ideal item-based method, eigen-
value λu can be used to predict the accuracy of recommendations for
user u. The larger is the eigenvalue, the more accurate will be the
predictions.

In other words, we can say that the eigenvalue of a user can give

us an estimation of the confidence we can have on the recommen-

dation list generated for that user. In this case, with confidence we
do not intend the ability to predict the correct rating of a user for

an item, but instead how accurate we expect the recommendation

list to be, where the accuracy depends on how many relevant items

are recommended.

It is important to point out that, based on our observation, users

with the same profile length but with different ratings might have

different eigenvalues (i.e., different accuracy of recommendations).

4 FROM THEORY TO PRACTICE
From a practical point of view, given a similarity matrix S, we
can not guarantee to satisfy all the conditions necessary for the

eigenvector analogy:
• matrix S is not guaranteed to be ideal, i. e. we are not sure

that it preserves the correct ranking of each user profile,

• a user profile ru is unlikely to be an eigenvector of matrix S
and, consequently, the corresponding λu will hardly be an

eigenvalue.

Anyway, the intuition about the correlation between the parameter

that solves Equation 3 and the accuracy of the recommendation

is still valid. For correctness, we do not call this parameter eigen-

value, because it is not guaranteed that it satisfies all the necessary

conditions, but we will use the term eigenvalue confidence index.
Rewriting Equation 3 in matrix form we have

RS = ΛR (5)

where R is the user-rating matrix, S is the similarity matrix and

Λ is a diagonal matrix with eigenvalue confidence indices on its

diagonal:

Λ =


λu1

λu2
. . .

λuNU


Each eigenvalue confidence index λu in Λ is associated with a

user and corresponds to a user profile ru in R.
A unique solution forΛ can be found by using theMoore-Penrose

pseudoinverse
2 R+ of the user rating matrix R and solving the

equation

Λ = RSR+ (6)

However, the computation of the pseudoinverse is very expensive

in terms of memory and time consumption and this solution to the

problem becomes intractable with large datasets.

2
Note that the pseudoinverse is necessary because R almost never satisfies the condi-

tions of invertibility
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For this reason we approximate the computation of the eigen-
value confidence indices with a different approach. We consider the

model described by (5) as a regression problem with loss function

E(Λ) defined as the sum of squared errors

E(Λ) =
U∑
u

I∑
j
(ru sj − λuruj )

2
(7)

A unique solution for Λ is obtained by minimizing the convex

optimization problem

argmin

Λ
E(Λ) (8)

We solve the minimization problem using stochastic gradient de-

scent. Deriving the loss function E(Λ) we obtain the gradient

∂E(Λ)
∂λu

=

I∑
j
(ru sj − λuruj )ruj (9)

and the update rule

λt+1u = λtu − η
∂E(Λ)
∂λu

. (10)

From equation (10) we observe two interesting properties:

• there are Nu independent problems, one for each user

• for each user, the parameter to estimate is updated only

when the value of the interaction ruj is non-zero.

These properties speedup consistently the solutions of (8), since

they reduce the number of computational steps and divide the

problem into several parallelizable tasks.

Note that Λ depends on both the user rating matrix R and the

similarity matrix S, which means that, even on the same dataset,

we may have different values for the eigenvalue confidence index

of a user, depending on the algorithm used to compute S.

4.1 Extension to Matrix-Factorization
Matrix-Factorization (MF) algorithms factorize the user-item rating

matrix R to a product of two lower rank matrices, one containing

the so-called user factors (A), while the other one containing the
so-called item-factors (B)

R = AB. (11)

Examples of MF algorithms are SVD++ [12] and OrdRec [13]. MF

algorithms can be re-designed so that user factors are approximated

in terms of a new set of item factors C

A = RC (12)

providing a model-based formulation for MF algorithms

R = RCB. (13)

Examples of model-based MF algorithms are AsySVD [12] and

PureSVD [4].

By comparing (13) with (5) we can consider the product CB
equivalent to a similarity matrix S. As such, we can extract eigen-

value confidence indices also from the model-based formulation of

MF algorithms.

Table 1: Details of datasets used

Dataset Users Items Ratings Density Explicit

ML 20M 138K 27K 20M 0.53% Yes

Netflix 473K 17.7K 100M 1.20% Yes

LastFM 1.9K 17.6K 92.8k 0.28% No

TVAudience 13.6k 17.5K 5.9M 2.49% No

Xing2017 261K 1.3M 5M <0.01% No

5 EXPERIMENTAL EVALUATION
5.1 Datasets
We evaluated the correlation over five different real datasets:

ML20M is a dataset obtained from the MovieLens research

project
3
.

Netflix is the dataset used for the Netflix Prize
4
.

LastFM is the dataset that contains music artist listening in-

formation collected from LastFM website
5
.

TVAudience contains the TV viewing habits of 13k users over

217 channels during a period of 4 months in 2013. It includes

either over-the-air (digital terrestrial broadcasting) or satel-

lite, free or pay-TV [20]
6
.

Xing2017 is the dataset of the ACM RecSys challenges of 2017,

containing users’ interactions with job postings from the

Xing website
7
.

Some statistical properties of the datasets are reported in Table 1.

5.2 Evaluation Methodology
To evaluate the performance of the algorithms we employed leave-

one-out. We kept only users with at least 2 ratings in the dataset

and the test set was built by randomly selecting one of them among

most popular items.
8

All the other interactions compose the training set, that is used

to build the model and get the similarity matrix S. That matrix

is used to generate a ranked list of N items for each user (top-N
recommendation task), solve the regression problem and calculate

the eigenvalue confidence indices. We performed several tests with

different values of N , but, since the results were similar, in this

paper we will report only the results with N = 10.

We evaluated the models by comparing the ranked list of recom-

mended items with the item in the test set and we measured recom-

mendation quality using both classification metrics and ranking-

dependent metrics [9, 18]: Hit-Rate (HR), Mean Average Precision

(MAP) and Normalized Discounted Cumulative Gain (NDCG).

To measure the correlation between quality of recommendations

and confidence indices, we used Spearman’s rank correlation coef-

ficient and Pearson’s correlation coefficient. Pearson’s correlation

is a very common measure of the linear correlation between two

variables. However, in our case we are not trying to prove that

3
https://grouplens.org/datasets/

4
https://www.netflixprize.com/

5
https://grouplens.org/datasets/hetrec-2011/

6
http://recsys.deib.polimi.it/datasets/

7
https://github.com/recsyschallenge/2017

8
Popular items are defined as those cumulatively accounting for the 33% of all ratings

in the dataset.
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Table 2: Performance @10 of item-based algorithms

Dataset ItemKNN PureSVD
HR MAP NDCG HR MAP NDCG

Explicit

ML 20M 0.3618 0.1651 0.2110 0.4485 0.2190 0.2728

Netflix 0.2786 0.1211 0.1578 0.3407 0.1501 0.1946

Implicit

LastFM 0.4601 0.2413 0.2927 0.4945 0.2672 0.3208

TVAudience 0.3259 0.1636 0.2015 0.3393 0.1767 0.2147

Xing2017 0.7363 0.5614 0.6052 0.8198 0.6176 0.6672

the correlation is explicitly linear, but, instead, we are interested

to show that it is monotonically increasing, a behaviour better

described by Spearman.
9

As baseline confidence indices, we used the profile length, as

proposed in [3], and the variance of the user ratings, as proposed in

[1]. This last confidence index is available only on explicit datasets.

To measure the correlations we ordered and grouped users by

increasing values of the confidence index. Each group is composed

by 200 users and is represented by the average of both the metric

value and the parameter value of the users in it. Note that LastFM

is a peculiar dataset, because it has a low number of users, so

we adopted smaller groups of 50 users each to avoid that a low

number of points could influence too heavily the real value of the

correlation.

5.3 Algorithms
To calculate the similarity matrix S we used an item-based CF

algorithm and a model-based matrix-factorization algorithm.

ItemKNN is a neighborhood based method that computes the

item-item similarities si j as the cosine of the ratings between
item i and item j[5].

PureSVD is a machine learning approach based on Singular

Value Decomposition of the user rating matrix[4]. It has been

shown to be equivalent to an item-based method where the

similarity matrix is obtained from the product between the

items’ latent factors matrix calculated by SVD and its own

transpose[16].

Note that we did not tune the algorithms for best absolute perfor-

mance, as our interest is not to maximize recommendation accuracy,

but, rather, we wish to explore if a correlation exists between accu-

racy of recommendation and confidence indices.

Table 2 reports the accuracy of the different algorithms over the

various datasets.

6 RESULTS AND DISCUSSION
In this section we compare the quality of the eigenvalue confidence

index λu , with the profile length PL, described in [3], and with the

user rating variance σu , described in [1]. We expect λu and PL to

be positively correlated with accuracy of recommendations, while

σu to be negatively correlated with accuracy.

Tables 3 and 4 show Pearson’s and Spearman’s correlation co-

efficient values for both the algorithms over implicit and explicit

datasets, respectively.

9
Please note that we also tested Kendall’s coefficient, but the results were very similar

to Spearman’s ones, so, for brevity, we will not report them in this paper.

The results over implicit datasets in Table 3 show that the eigen-

value confidence index λu is a better confidence estimator than

profile length in every tested configuration. For instance, λu is, on

average, 3 times more correlated with MAP@10 than the profile

length, and this ratio is consistent among datasets and correlation

metrics. The profile length, instead, exhibits an unexpected inverse

(negative) correlation with accuracy on the LastFM dataset.

The results over explicit datasets in Table 4 confirm the eigen-

value confidence index λu as the best confidence estimator. Taking

also in this case the MAP@10 performance as an example, on av-

erage λu is 4 times more correlated than the profile length and

2.5 times more correlated than the user rating variance. The user

rating variance has a consistent behaviour among the different

datasets, metrics and algorithms, even though it does not show a

good correlation on the Netflix dataset. The profile length confirms

an inconsistent behaviour, with negative correlations on the Netflix

dataset.

In order to further investigate the predictive behaviour of the

different confidence indices and the inconsistent behaviour of the

profile length, Figures 1 and 2 plot MAP@10 on Movielens and

Netflix datasets, respectively, as a function of the confidence indices.

Users have been sorted and grouped following the same proce-

dure described in Section 5.2, but we used bigger groups of 2000

users each, in order to reduce the noise and have smoother curves.

Note that, for an optimal visualization, in these plots the eigenvalue

confidence indices have been normalized to have the same range

of values.

We also fixed the superior limit of the horizontal axis in the

profile length plot, Figure 1b, keeping out only the last point of the

graph, in order to better show the behaviour of the correlation with

shorter profiles, where the density of the points is sensibly higher.

The first plot of both figures highlights the monotonicity of the

correlation between the eigenvalue confidence index λu and the

MAP@10 performance. Moreover, the values of λu are uniformly

distributed in the range between the minimum and the maximum.

The decreasing monotonicity of the user rating variance is less

evident and noisier if compared to the λu increasing one, which

explains the low values of the correlation coefficients.

More peculiar are the plots for the profile length PL in Figures

1b and 2b. For both algorithms on Netflix, and for PureSVD on

Movielens, the plots are divided into three regions, based on the

profile length, each one with different properties.

• Short profiles – profiles with less than 20 ratings: there
is a very strong correlation between profile length and accu-

racy.
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Table 3: Comparison on implicit datasets of the correlations between performance @10 and estimation parameters

Recommender Dataset Correlation HR MAP NDCG
λu PL λu PL λu PL

ItemKNN

LastFM

Pearson 0.6722 −0.3586 0.5967 −0.1589 0.6342 −0.2242

Spearman 0.6727 −0.2700 0.6275 −0.1871 0.6440 −0.2197

TVAudience

Pearson 0.7525 0.6339 0.7732 0.6517 0.7795 0.6662

Spearman 0.7486 0.6326 0.7656 0.6976 0.7795 0.7024

Xing2017

Pearson 0.5864 0.3814 0.3879 0.2148 0.4514 0.2648

Spearman 0.7332 0.6481 0.4387 0.2734 0.4477 0.3194

PureSVD

LastFM

Pearson 0.5471 −0.2909 0.5699 −0.1097 0.5871 −0.1672

Spearman 0.5070 −0.2616 0.5264 −0.1220 0.5843 −0.1546

TVAudience

Pearson 0.5816 0.2109 0.4947 0.1759 0.5403 0.1967

Spearman 0.5653 0.1114 0.3925 0.1393 0.4675 0.1390

Xing2017

Pearson 0.4653 0.2267 0.2935 0.1527 0.3528 0.1811

Spearman 0.6607 0.4380 0.3433 0.2193 0.3495 0.2589

Table 4: Comparison on explicit datasets of the correlations between performance @10 and estimation parameters

Recommender Dataset Correlation HR MAP NDCG
λu PL σu λu PL σu λu PL σu

ItemKNN

ML 20M

Pearson 0.9534 0.6891 −0.6330 0.9465 0.7704 −0.5740 0.9547 0.7655 −0.6138

Spearman 0.9554 0.4171 −0.5628 0.9516 0.5036 −0.5471 0.9594 0.4982 −0.5721

Netflix

Pearson 0.8824 0.7476 −0.2475 0.8874 0.7544 −0.1747 0.8934 0.7619 −0.2075

Spearman 0.8922 0.4335 −0.3041 0.8954 0.4535 −0.2060 0.9023 0.4516 −0.2528

PureSVD

ML 20M

Pearson 0.8258 −0.0106 −0.6013 0.7729 0.0154 −0.5232 0.8017 0.0050 −0.5752

Spearman 0.7672 −0.5495 −0.5928 0.6858 −0.4863 −0.5533 0.7267 −0.5287 −0.5974

Netflix

Pearson 0.8022 0.4862 −0.1511 0.8151 0.4640 −0.0966 0.8250 0.4816 −0.1201

Spearman 0.8450 0.0178 −0.2333 0.8468 0.0694 −0.1592 0.8620 0.0473 −0.1960

• Intermediate profiles – between 20 and 50 (Movielens),
between 20 and 100 (Netflix): there is a strong negative
correlation between profile length and accuracy.

• Longer profiles: the correlation becomes again moderately

positive.

These unexpected results make the profile length an unreliable

confidence estimator of the recommendation quality.

A possible explanation for this behaviour derives from the con-

sideration that users with very short profiles will likely have rated

mainly popular items or items within one specific category (for

instance, only action movies) [4]. The recommender algorithm is

able to well model these users, and the model improves its quality

with the number of ratings in the user profile. Users with longer

profiles will likely have rated more diverse items, and this diversity

makes the recommendation task more difficult. For these users, the

longer is the profile length, the greater is the confusion for the al-

gorithm in correctly modelling users’ taste. Only when the number

of ratings in the profile is large enough, the algorithm is able to

correctly capture the diverse interests of the user on to provide

more and more accurate recommendations.

A similar inversion of correlation is present for the eigenvalue

confidence index, limited to ItemKNN (Movielens) and PureSVD

(Netflix). However, this inversion is limited in amplitude and does

not affects significantly the overall correlation between eigenvalue

confidence index and accuracy.

7 CONCLUSIONS
In this paper we investigate confidence estimation for item-based

CF algorithms. We show that an ideal item-based method can be

formulated as an eigenvalue problem, where estimated ratings are

equivalent to the true ratings multiplied by a user-specific eigen-

value of the similarity matrix. We show that the magnitude of the

eigenvalue is strongly correlated with the accuracy of recommenda-

tions for that user and it can provide reliable measure of confidence

for predicted ratings. Thanks to the eigenvalue analogy, we present

a new confidence index. Experiments show that the proposed confi-

dence index outperforms other approaches in estimating reliability

of recommendations. The results presented in this paper are not

limited to item-based methods but can be used also with a broad

class of model-based matrix-factorization algorithms.
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(a) Eigenvalue confidence index

(b) Profile length

(c) User rating variance

Figure 1: Comparison of MAP@10 and estimation parame-
ters on the Movielens dataset.

(a) Eigenvalue confidence index

(b) Profile length

(c) User rating variance

Figure 2: Comparison of MAP@10 and estimation parame-
ters on the Netflix dataset.
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