
COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 63

TT
he so-called enterprise resource
planning applications market was
one of the fastest growing and
most profitable areas of the soft-
ware industry during the last
three years of the 1990s. Some of
this was clearly attributable to the

Y2K effect. If you still had time, replacement was
often easier than continuing to throw good money
after bad into aged legacy applications. But, also dis-
cernible, there was a strong desire in many organiza-
tions to acquire functionality rather than develop
custom solutions, particularly for relatively unexcit-
ing transactional applications that did not differen-
tiate the business significantly. But we should also
note that some of the packaged application vendors
acquired a poor reputation, being better known for
the time and cost involved in implementation than
the resulting business benefits. So, we observe with

interest that enterprise application providers such as
SAP, Peoplesoft, Oracle, Baan, JD Edwards, and
many others have been investing heavily to upgrade
the architecture of their applications over the past
two years. No prizes are awarded for guessing why.

The market-leading enterprise applications repre-
sent some of the largest, most complex applications
on the planet. The complexity comes particularly
from the highly generalized nature of the packaged
applications and the need to adapt and rapidly evolve
to meet requirements in many different situations.
The packaged application providers therefore have
had a genuinely mission-critical problem to solve.
How to continue adding new functionality rapidly
and at low cost, while making it easier for new cus-
tomers to implement, and existing customers to
upgrade to that new functionality? We should not be
surprised therefore that these vendors were relatively
quick to recognize the benefits of components.

�David Sprott

CCOOMMPPOONNEENNTTIIZZIINNGG
TTHHEE EENNTTEERRPPRRIISSEE
AAPPPPLLIICCAATTIIOONN
PPAACCKKAAGGEESS

Tomorrow’s customers will demand the ability to
buy, reuse, and build their competitive-edge solutions:

Can the package vendors adapt in time?

http://crossmark.crossref.org/dialog/?doi=10.1145%2F332051.332074&domain=pdf&date_stamp=2000-04-01

Enterprise applications are an outstanding case
study for the entire software industry. Most of them
demonstrate all of the real-world problems that typi-
cal businesses have. Legacy applications that simply
can’t be rewritten, monolithic code not built for easy
maintenance, multiple design and execution tech-
nologies that need to be integrated, demand for new
technology support and last, but by no means least,
customers that won’t wait years for a solution.

Reprise: What is a Component?
The concept of componentization is common in
many engineering disciplines and industries other
than software. For example, automobiles, comput-
ers, and mobile telephones are all assembled from
parts that can collaborate within an architecture.
The parts are typically not a homogeneous set, but
comprise many different types and standards. For
example, in the PC, we have the motherboard, the
chips, memory, the keyboard, cables, drives, casing
and so on. However, there are agreed standard inter-
faces that allow the disparate sets of parts to be
assembled, to interoperate and to be upgraded with
newer parts that conform to the same interface.
Some of these standards are dictated by the manu-
facturer; many are de facto industry standards.
When Dell or Compaq release a new Pentium III
model, generally a minority of the part numbers are
new to that model and the new product will be an
evolution and upgrade incorporating older and
newer part numbers. This is made possible because
the product line is based on an architecture designed
to facilitate an evolutionary life cycle.

Regrettably most software produced to date has
been delivered as monolithic code and does not
implement the very sensible concepts of componen-
tization. Today, however, there is widespread consen-
sus that component-based techniques are essential
quality requirements for software. The primary rule
is that you should be able to make use of a software
component without reference to its internals [2].
The only thing you need to know about the compo-
nent is the published interface that specifies the con-

tractual agreement necessary to use the services pro-
vided. It is also important to recognize that a com-
ponent is not restricted to technical implementations
that use COM, Enterprise JavaBeans, or CORBA. A
component can be any form of implementation pro-
viding it adheres to the concepts of separation, inter-
facing, and standardization outlined previously.
There are advantages to using the three component
standards mentioned, but it would be incorrect to
assume that a contract between two processes imple-
mented using XML and messaging software is not
capable of providing many of the benefits of compo-
nentization.

The advantages of a componentized software
architecture are therefore very similar to the architec-
ture of a personal computer, which is designed for
incremental evolution of processor, systems, func-
tions, utilities, and so forth. The parts of a compo-
nentized software product may be constructed by
potentially many different manufacturers and then
brought together to be assembled very rapidly. The
assemblers do not need to be experts in the internals
of each assembled component.

It is useful to consider that the software compo-
nent has two fundamental constructs that deliver rad-
ically different benefits. First the component is a
separate, encapsulated entity and by virtue of its sep-
aration is easier to manage, upgrade, collaborate with
and so on. The granularity, scope boundaries and
internal cohesion are important attributes of the com-
ponent. A fine-grained component will be simple to
upgrade, have fewer relationships but will require
more management because there are likely to be
many more parts to meet the requirement. In contrast
a larger component will be easier to manage but will
require more effort to modify and implement and,
because the scope of the functionality is much
broader, the impact of change is much greater. These
issues are primarily of interest to the developer. Of
course as a consumer I “should” be interested in these
characteristics because they are quality measures that
will affect the ability of my supplier to respond to my
needs, but in principle the granularity and boundaries

64 April 2000/Vol. 43, No. 4 COMMUNICATIONS OF THE ACM

complex problem
ERP VENDORS FACE A

RATHER MORE COMPLEX PROBLEM THAN
ORGANIZATIONS MANAGING IN-HOUSE

DEVELOPED APPLICATIONS.

of the component are architecture and design issues.
The second aspect to consider is that the compo-

nent delivers one or more services. The service is the
function that the user (another server or client) is pro-
vided by the component. In general useful services
will be those that are designed to operate at a level of
abstraction that is understandable by the user. A ser-
vice might therefore be something very simple such as
a LOOK UP SYNONYMS service provided by a
Thesaurus component, or as comprehensive as an
UPDATE NEW CUSTOMER INFORMATION
service provided by a Customer Relationship Man-
agement (CRM) application. A series of services pro-
vided by multiple, disparate components might be
integrated into a common workflow that performs a
unified business purpose. What is important is that
the interface and service provided are independent of
the underlying implementation. As illustrated in Fig-
ure 1, an implementation might be provided by a
legacy VSAM database today, but I could easily swap
out that component and replace it with an object or
relational database with no effect on the user of the
service, providing the interface remains unchanged.

In the context of application packages it is critically
important to understand that the two concepts encap-
sulation and service provision deliver radically differ-
ent benefits and that most application packages have
concentrated on the service provision at the expense
of replaceability and upgradability [1].

The Challenge for ERP Vendors
As discussed earlier, the ERP vendors face a rather
more complex problem than organizations manag-
ing in-house developed applications. The problems
may be examined from two important perspec-
tives—the product development and marketing
challenge for the vendor and the implementation
and integration problem for the consumer.

Product development and marketing. Many ERP
vendors’ packages have evolved from simple begin-
nings and are comprised of large functional modules
such as Finance, Logistics, and Manufacturing. These
modules are often called components by the vendors,
but in reality they are just large application systems,
not components. Some vendors realized they needed
to componentize their applications to make their own
internal product development operations more effec-
tive. For them it was a matter of competitive necessity
to deliver new functionality faster than their competi-
tors. Organizations such as SAP embarked on exer-
cises to break up their larger-scale application
modules. Others such as JD Edwards rebuilt their
applications as components recognizing the commer-
cial necessity for adaptability in the development

phase. It is interesting to note, however, that many
vendors quickly stopped talking about their internal
design and concentrated on communicating their
progress in delivering a service provision layer.

The vendors all recognized their packages would
need to interoperate with other environments, both
packages, in-house applications and legacy. The
widespread package implementation activity
inevitably led to a huge demand on the vendors to
make implementation easier, and in particular con-
text to this article, to facilitate integration. The
response of some companies including SAP and Baan
was to create service-based architectures that enabled
business transactions and information requests from
outside the core application. Some companies,

notably SAP, encouraged third parties to create a
thriving market for add-on components surrounding
the mothership application, providing a huge diver-
sity of solutions, enabled by the open, implementa-
tion-independent services. Most packaged
application vendors were slow to recognize the need
to facilitate integration and a number of third-party
organizations stepped in to fill this gap by enabling
packages to talk to each other.

The current status of componentization could be
considered as “work in progress” for most of the lead-
ing application suppliers, but the benefits are clearly
starting to be realized. What is interesting to note is
that while this radical architectural change is a direct
response to customer needs, the actual change has
been motivated entirely by the suppliers. Many exist-
ing customers are only starting to understand the
implications and opportunities. A significant major-
ity of packaged application users are currently using
monolithic releases and will need to go through at
least one or possibly two release upgrades before
being able to take advantage of the interface architec-
ture and incremental release programs.

Customer integration. For customers buying
packaged software it is perhaps natural to focus ini-
tially on selecting and implementing the package

COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 65

Figure 1. What is a component?

I can get
customer
details

I need to get
customer
details

I SELECT
some data
from the
Customer
Table and
READ some
from a
VSAM file

Interface

Application

Physical Components

Implementation

rather than examining in detail the requirements for
integration. It is an unfortunate fact that a significant
proportion of package implementation projects
undertaken in the late 1990s massively overran time
and cost budgets. It is also a fact that the reasons for
overrun were often related to integrating the package

with other application environments. This was not
usually a technical issue but related to differences in
semantics and business rules between different appli-
cations that were never intended to collaborate. In
fact you might suspect that it was against the manu-
facturer’s interest to facilitate collaboration with
other vendors’ packages. The packages were and are
with few exceptions, designed with an inward focus.
Yet many organizations deliberately chose what they
referred to as “best of breed” meaning they were
choosing the modules with the most relevant func-
tionality, little realizing that to make the modules
actually work together was likely to be a major effort
which in itself might compromise the functionality
of each module because of a lowest common denom-
inator effect.

But in the run up to the Y2K date turnover, the mad
rush to create and acquire packages seemed to affect the
judgement of many vendors and consumer organiza-
tions. It is interesting to note that the fortunes of many

of the package vendors, in terms of profitability and
stock price, have subsequently suffered badly. Because
most of the vendors left their transition to components
and service-based interfaces too late for the peak of
implementation activity, and because they failed to see
the requirement for interoperability standards, the ven-
dors created an opportunity for others to provide spe-
cialist products and services that enabled packages
from different stables to collaborate. Fueled by the
massive implementation activity, this market space
grew quickly to form what was initially referred to as
enterprise application integration, or EAI, and more
recently simply application integration.

Application integration techniques and technolo-
gies [3] are part of the natural evolution of application
delivery that includes improved software componen-
tization and the increasing acquisition of packaged
software. In the past our focus has been more on inte-
gration of in-house developed applications and com-
ponents, which is easier when there is a common
technology base within the project or same IS depart-
ment and can be changed to enable integration. Inte-
gration was then just seen as part of the application
development process. Now we must observe that
application integration is effectively becoming a disci-
pline in its own right. We can also see that the huge
demand for e-business applications will drive the
requirement for continuous reintegration of applica-
tion packages as new integrated business processes
cross organizational and company boundaries and
changing business processes require constant reconfig-
uration to meet business model changes.

Application Standards
Arguably the application integration market would
have emerged regardless of what the application
package vendors did, but it must be said the thriv-
ing and effective application integration market has
changed the dynamics of the application package
market quite dramatically. The package vendors are
now forced into working in collaborative ways. Two
years ago the industry was expecting the component
models and protocols COM and CORBA to be the

66 April 2000/Vol. 43, No. 4 COMMUNICATIONS OF THE ACM

Figure 2. Multiple standards.

Semantic
Agreements BizTalk, CommerceOne, OAG...

Integration
Standards

Component
Interface
Protocols

XML, RosettaNet, UCC, OAGIS, WFMC,
MOMA, EDIFACT, X12, OFX, GOLD, FIX,
SWIFT, ACCORD...

CORBA
CCM

COM+ EJB

dynamics
THE THRIVING AND EFFECTIVE

APPLICATION INTEGRATION MARKET HAS
CHANGED THE DYNAMICS OF THE APPLICATION

PACKAGE MARKET QUITE DRAMATICALLY.

obvious integration platform although it was unclear
how incompatible packages would be integrated at
the semantic level. The good news, however, is that
today we have much more stability because stan-
dards that address the broader need have emerged
and been widely supported and adopted. The pri-
mary reason for industry consensus and rapid action
has little to do with altruistic motives of the package
vendors, but more related to the driving force of the
Internet and in particular the growing e-commerce
market, which demands common standards in order
to enable trade.

Figure 2 shows three important classes of stan-
dards. The first is the widely understood compo-
nent technology interchange protocol. At the next
level we have a plethora of messaging standards that
allow particularly looser coupled interoperability,
with XML being a common thread amongst them.
And at the top layer we have semantic or standards
related to the meaning of business concepts, which
provide the ability to speak the same language. The
Microsoft BizTalk initiative is an extremely impor-
tant driver of this change, bringing market-led san-
ity to a Tower of Babel. Also very important for the
package vendors is the work of the OAG (Open
Applications Group), which has become widely
accepted by package and platform vendors. Driven
by the market forces referred to previously, there is
now much improved opportunity to interchange
information and involve transactions from multiple
sources in common processes. Even more recently
there have been important new initiatives that seem
set to establish consensus on wide areas of business
meaning that will have profound implications for
the package vendors and drive them into greater
collaboration and openness.1 While this activity
may take some time to work through, it is pre-
dictable that the application integration market will
decline as the package vendors are forced to adopt
semantic standards and the requirement for glue
logic diminishes.

Selection Criteria
Most major organizations use at least one and some-
times several enterprise application packages. Some-

times purely for financial and human resource appli-
cations, often for core customer management and
transactional purposes.

The way in which most organizations select and
manage applications is on the basis of business fea-
tures and functionality. Yet, today it is understood
that technology and business processes change much
faster than ever. It seems strange, therefore, given the
high cost of implementation, that the selection crite-
ria should not be very heavily weighted toward the
ability of the application to serve the needs of the
enterprise over a significant time period. Figure 3
identifies four incremental selection criteria
areas organizations should use to choose enterprise
applications.

Applicability. The enormous complexity of the
application needs to be matched with the similarly

high complexity of the business. Some organizations
have been persuaded that it is beneficial to adopt
“best-in-class” processes and systems, and adapt to the
industry norm. The componentized application
architecture will change this mindset because there
will be more choice. The binary choice between
“build or buy” becomes “build and buy and reuse.”
The published interface architectures create opportu-
nities for both the prime vendor as well as third par-
ties to create clone or extension components
providing specific support for functionality that has
either general or niche applicability—to establish
business differentiation where it really matters most.
The emergence of markets surrounding the core
applications, where third-party developers create
extension and even clone components provides a
wealth of additional functionality. This is not a new

COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 67

Figure 3. Incremental selection criteria.

Integration

Upgradability

Adaptability

Applicability

1
Domain-specific initiatives such as the HR-XML Consortium, a nonprofit group

dedicated to the development and promotion of standardized human-resources-related
XML vocabularies, which is creating an XML framework designed to enable Web-
based workforce management and recruiting services. Global initiatives such as the
Electronic Business XML Initiative (ebXML)—see the January 2000 CBDi Forum
report “Open market components”—a joint effort of the United Nation/CEFACT
and OASIS. ebXML is an open, vendor-neutral initiative to establish a global techni-
cal and semantic framework that will enable XML to be used in a consistent manner
for the exchange of electronic business data. See CBDi Forum reports including
“Semantic interoperability,” “Microsoft’s interoperability strategy,” “Framework for
the financial sector”, and others in the CBDi Forum Journal, INTERACT May 1999.

model, but the existence of interface architectures
makes it easy for third parties to create products and
keep them up-to-date.

Integration. The ability to integrate applications
with other packaged, built, and legacy applications
now and in the future, is a key enabler of choice, and
a key determinant of the cost and time required to
implement and effect change. In the future, choosing
the interface architecture together with compliance
with de facto and de jure standards should be one of
the most important selection criteria for any applica-

tion. Increasingly, buyers will be able to exercise
choice and to mix and match application components
to better meet their requirements.

While this requirement is rapidly being addressed
by application integration products and services
including middleware, aids to wrapping and scaveng-
ing, as well as the so-called EAI products from ven-
dors such as CrossWorlds, Neon and others, the
interface architecture of the core package is a critical
criteria that can make the integration task inherently
easier or significantly more difficult.

Adaptability. Few organizations are going to

remain static in the future, therefore adaptability is an
essential characteristic of any application. The extent
to which an application can change to meet new cir-
cumstances is a critical criterion. Types of change that
we should look for include reconfiguration of com-
ponents to work with other applications and or com-
ponents and changes in platform and interoperability
technology. For example, the extent to which the
application system components can be implemented
independently will vary greatly and needs careful
examination.

Upgradability. A major advantage of componen-
tized applications is the incremental release and
upgrade process. This is beneficial in the initial imple-
mentation as well as ongoing enhancement. Unfortu-
nately all suppliers and most existing application users
will have to undergo considerable upgrade pain
before they can achieve this situation. The realities of
upgrading are also not as simple as might be sup-
posed. For example, SAP recommends that even if
only one application system component (sic) is being
upgraded, a complete integration test should be
undertaken because of the high levels of interdepen-
dence between the components.

Application Markets
The huge increase in quality of the componentized
applications will also allow the vendors to deliver
the functionality in a quick and economical man-
ner, which would have previously been impossible.
There is a high probability that the increasing
dominance of application providers in delivering
basic business support will lead to a commoditiza-
tion of the business objects that are most com-
monly used. Figure 4 shows a new perspective on
the conventional layered platform architecture dia-
gram. Already we see component models and tech-
nical infrastructure being subsumed into the
operating system and commodity layers. We may
expect that over the next few years, the basic busi-
ness support will also become commoditized. This
will be reinforced by the move to application host-
ing and the huge size of the total market opportu-

68 April 2000/Vol. 43, No. 4 COMMUNICATIONS OF THE ACM

Figure 4. Commoditization and extension.

Competitive
advantage
systems

Competitive
advantage
systems

Competitive
advantage
systems

Business Operational Infrastructure

Technical Infrastructure

Component Model

Database

Operating System

Platform

changes
THERE IS A GENERAL AGREEMENT IN

THE INDUSTRY THAT SOFTWARE COMPONENTS
WILL BRING PROFOUND CHANGES IN THE WAY

SOFTWARE IS DELIVERED.

nity makes this shift almost inevitable.
Competitive pressures to acquire market share at

all levels will drive the price down, leading to similar
effects we have seen in the technology layers. The
improved application architectures are also enabling
rapid entry into new markets, both vertical and hor-
izontal. Customer management, sales force automa-
tion, and call center support all represent huge,
untapped markets. Even insurance, banking, and
financial services, the last bastions of custom devel-
opment, are under development. Now that the Y2K
crisis is past and many organizations have installed
basic ERP packages the resulting installed base repre-
sents a formidable share of the general business trans-
action market, which provides a ready made
customer base for organic growth for the package
providers. However the basic applications, enhanced
by interface architectures available in the installed
customer base, make extension and integration with
new business areas a significantly easier task than
implementing major new applications from scratch.
The functionality implemented in basic ERP pack-
ages may be considered in many cases as core busi-
ness transactional support or the business operational
infrastructure.

Where differentiation is critical is in how this
operational infrastructure is exploited in for example
e-business applications. In this and other areas of
extension, the availability of interface architectures,
open interface standards and application integration
techniques, products and services will make the
extension market place highly competitive. For
example the interface architectures will facilitate the
acquisition of standard functionality for say auction
management, shopping cart management, shop
windows, credit authorization and many more, but
the package providers will need to compete with
specialists in these areas. So while the package
providers will and do provide extension and com-
petitive edge capabilities, this area is likely to see sig-
nificant acquisition of components from multiple
sources which provide the consumer organization
with added choice and differentiation of the busi-
ness solution.

While it is clear the market share and dominance
of the enterprise application providers is not about
to decline (perhaps because of the level of “lock-in”
that the average package exerts on its user rather
than levels of customer satisfaction), the package
vendors will come under considerable and increas-
ing pressure as they are forced to open up their prod-
ucts, and open market components together with
custom development become increasingly popular
alternatives to customizing and extending base

application packages. In fact the wave of e-business
driven activity will be a stimulus for differentiated
solutions.

Future Trends
There is general agreement in the industry that soft-
ware components will bring profound changes in
the way that software is delivered. The application
package vendors have started to respond to this
challenge and those that are successful will in time
become true component providers themselves, hav-
ing rearchitected their products into sets or kits of
components. The service layers that many of the
vendors have introduced to date will rapidly
become inadequate, as componentized products
exhibit vastly superior adaptability characteristics
demanded by fast-moving e-business and e-com-
merce environments.

The successful vendors will provide their cus-
tomers with a flexible and economic operational
infrastructure, easily integrated with open market
components, that allows their customers to exercise
considerable choice in procurement to create cus-
tomized solutions from readily and widely available
building blocks.

Those vendors that succeed in this will continue to
thrive post Y2K. Some vendors will fail to make this
transition. Tomorrow’s customers will demand the
ability to buy, reuse, and build their competitive edge
solutions to fit their needs, because they know this is
a key business differentiation. Componentization will
become a key business productivity action for suppli-
ers and consumers in the application market.

References
1. Sprott, D. and Wilkes, L. Component Based Development. Butler Group

Report, 1998.
2. Szyperski, C. Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley, 1998.
3. Wilkes, L. and Sprott, D. Application Integration Management Guide.

CBDi Forum, 1999.

David Sprott (david.sprott@cbdiforum.com) is Principal Analyst
and Co-chair of The CBDi Forum (The Forum for Component Based
Development and Integration); cbdiforum.com is an information
resource company with a mission to assist IT and business managers to
better understand the realities of advanced application delivery based
on practical end user and industry expert experience. Business and IT
managers may join the Forum free of charge at www.cbdiforum.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2000 ACM 0002-0782/00/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 69

