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ABSTRACT
In this paper, we propose an attack detection framework in the In-
ternet of Things (IoT) devices. The framework applies a data-centric
method to process the energy consumption data and classify the
attack status of the monitored device. We implement the framework
in real hardware, and emulate common types of attacks to evaluate
the performance of the attack detection framework. Due to the
characteristic of the energy data, not only cyber attacks but also
physical attacks such as heating are also emulated and tested. To
shorten the detection time, a two-stage strategy is also proposed
to first apply a short time window for a rough detection, then a
long time window to the fine detection of anomalies. The accuracy
of short-term detection is 90%, while in the long-term detections
the accuracy reaches 99.5%. Due to the nature of information from
energy consumption data, the framework is more secure in cases
the kernel of the device is already compromised.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malwaremitigation; •Networks→Network security; Sensor
networks; • Computing methodologies → Machine learning.
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Cyber-physical attack detection,Internet of Things, Energy con-
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1 INTRODUCTION
Computer systems use energy, and energy provides information
about the system [29]. This information can be utilized in for secu-
rity purposes. As the computer systems are more connected than
before, the chance of a device getting affected by attacks are higher
today. When human beings involve in the computational tasks a
lot for computers and laptops, it is easier for the operators to find
the attacks as their operations are affected by the attacks directly.
However, for Internet of Things (IoT) systems, attacks are usually
hard to be detected as the impacts can be delayed [25]. The security
issues in IoT has become more important in recent days as IoT is
more attainable to our daily life recently.

There are a lot of attack detection technologies are specifically
developed for IoT systems to address the IoT security issue [14, 21,
25, 28]. Among the works solving the issues of IoT security, the de-
tection methodologies are categorized as software-based methods
and data-driven methods [13, 24]. While the software-based meth-
ods like blacklisting [32], firewalls [15] are not versatile enough
for the changes in attacks, the data-driven methods are capable to
adjust to changing attacks. The data-driven detection results are
generated from the observations of the system usages and statistics,
and thus is more secure [34]. However, since the system usage and
statistics data are reported from the kernel, once the computer is
compromised, the data integrity cannot be guaranteed. Moreover,
the traditional data-driven methods are usually designed for de-
tections of cyber attacks, but they rarely cover physical attacks.
Some more recent works focus on using energy to detect anomalies
[6, 11, 18, 19], but none of them dedicated to classify the category
of attacks.

Energy consumption information from devices are good resources
for monitoring the system security. This information is monitored
outside from the operating system kernel, and thus cannot be com-
promised by hackers in the kernel of the monitored devices. Given
the monitoring device is not participating on the computation and
information sharing tasks of IoT, we use local networks for the mon-
itoring devices to secure the energy consumption data integrity.
Thus, we propose using energy consumption data as a more secure
data driven solution for IoT attack detection. Moreover, previous
works mainly focus on the cyber attacks, while for the physical
attacks, our framework is a better fit naturally because of the data
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source. For example, in the attacks of Virus, the energy consump-
tion is mainly from the computation of CPU, while in the physi-
cal attack of Heating, the actual usage of each component is not
changed, but as the temperature increases, less heat cannot be ra-
diated out from the devices, and thus the total energy usage is
increased. In most existing methods, the data source is the system
statistics or usages, which is the internal information of the sys-
tem [24]. Energy consumption data is more capable as a physical
data source for the physical attacks.

A data-centric framework for detecting attacks in IoT devices
is proposed in this paper. In the framework, we attach a low-cost
energy meter to monitor and collect the energy consumption data.
The collected data is sent to a centralized server. Six major cyber or
physical attacks including Virus, Intrusion, Deny of Service
(DoS), Heating, Trojan, Power Line Cut for IoT devices are
then emulated in the devices. The collected energy consumption
data is labeled accordingly. We train and store statistical models
based on the labeled data on the server. Once new data is collected
from the devices, the models perform two-stage classifications.
Within a short time, the short-term model detects whether the
device is with anomalies, and within a longer time, the long-term
model performs a finer classification of the attack type in the device.

The main contribution of this work is summarized as below:
• A data-driven framework of energy data based fast attack
detection is designed, implemented and evaluated.

• The proposed framework is also able to detect not only cyber
attacks and anomalies but also physical attacks.

• Six common cyber and physical attacks are emulated in IoT
devices, device energy consumption data are collected.

• A two-stage detection strategy is designed and a statistical
model is trained on the collected data, through which the
security status of IoT devices are detected. Both cyber and
physical types of attacks are classified with the model.

The rest of this paper is organized as follows. Section 2 describes
the proposed system design, the architecture, and attacks we de-
signed. The data processing is also introduced in this section. The
analysis of our proposed framework, and its comparison with exist-
ing related schemes are presented in Section 3. Finally, we present
our concluding remarks and future research directions in Section 4.
2 ANOMALY DETECTION SYSTEM DESIGN
The system of the framework is designed as shown in Figure 1. In
this section, we first introduce the hardware design of the proposed
IoT security system, then we introduce the data processing and
classification of the framework.

Figure 1: The proposed framework.

2.1 Hardware design
In the emulation of the energy monitoring and attack detections, we
use the Raspberry Pi 3 Model B [3] as the IoT devices. This model
is powered by USB cables and has GPIO pins for external inputs
and outputs. The Raspberry Pis are installed with Raspbian [4] as
the operation system. Raspbian is a Linux based system specifically
designed for Raspberry Pis. Inside the Raspbian kernel, we install
a background program to emulate the normal behaviors of IoT
devices. The background programs by default periodically collect
data from sensors, and store the data locally, then send the data to
the processing server by batch. To achieve this, the Raspberry Pis
are mounted with sensors for background program data collection.
In our experiment, we also use the energy meters as the sensors.

We use INA 219 [1] as the energy meter in our experiment
settings. The INA 219 energy meter is a lightweight and low-cost
energy consumption sensor. It can be easily attached on the side of
IoT devices. The USB cables are cut open and the positive power
conductors are series connected with the energy meters. Every
device is monitored by one energy meter.

Figure 2: Hardware design of the proposed framework.
Shown in Figure 2 is our hardware of the framework. The IoT

device B in the figure is the device to be monitored, and the device A
is the monitoring device. As introduced, the INA 219 energy meter
is shown in the area in the red frame, covered by the electrical
tape. In the cover of the tape of B, as the USB offers energy for
device B, the energy consumption is collected by the energy meter
and sent to the device A through the GPIO pins. The power of the
energy meter is also supplied by device A from the GPIO pins. The
energy consumption data sampled at 1 Hz in device A is sent to a
centralized InfluxDB [2] server, then processed for attack detection.
2.2 Data flow and visualization

Figure 3: The data flow in the processing server.
In the processing server, the data is processed as shown in Figure
3. The data is first preprocessed and features are extracted for
machine learning. We match the anomaly or normal situation of the
collected data, and label the data in categories of Normal, Virus,
Intrusion, DoS, Heating, Trojan, Power Line Cut. The
labeled data is then trained with machine learning models, and the
models are stored locally on the server. Once new data is collected
from the devices and sent to the server, same preprocessing and
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feature extraction operations are applied and classifications are then
performed by the trained model. The results of the classifications
are stored in InfluxDB for visualization.

Figure 4: The visualization of proposed framework.

After the data is collected to the server, visualization is available
in Grafana [12]. The visualization is shown in Figure 4, where we
have four IoT devices monitored, and energy consumption data are
plotted in separate panels. The detection results are in the first two
panels of every row. The first panel of each row is the short term
detection result, and detects whether the monitored device is under
abnormal situation. The second panel of each row is the long term
detection results, and shows the fine-grained detection result of the
attack category that the anomaly belongs to.

2.3 Attack Design
We design the attack prototypes to perform the concept of attacks
while avoid making malignant impacts on the systems. Recently, dif-
ferent attacks have been emulated in works from industrial IoT [27],
smart home [10], smart phone [30] application scenarios. Accord-
ing to these works, the length of attacks can be long or transient.
We decided to focus on the long attacks because of the limitation
of the sampling rate of the energy consumption data. The length
of a single attack prototype is set as 2 minutes. In total, we have 6
types of attacks, the cyber attacks are designed as below:

• Virus [23]: A program that continuously consume compu-
tational resource is created. The program performs prime
factorization continuously for 2 minutes, stores the results
locally, and then sleep for another 2 minutes.

• Intrusion [7]: The attacking device continuously guess the
password of the monitored device, and try to use ssh com-
mand to log in the kernel.

• DoS [33]: Considering the similarity of DoS attack and port
scanning, we use port scanning in the simulation of DoS
attack. Another device continuously scan the port of the
monitored device.

• Trojan [16]: One major characteristic and threat of trojans
is that it will send critical informations to the controller of
the trojans. We create a program that sends a trained deep
learning model to the server every 2 minutes to simulate the
process of sending data through networks.

The physical attacks are designed as below:
• Heating [9]: We place a 12 watt light bulb within 5 cm of
the monitored device to heat the device.

• Power Line Cut [22]: The power line is directly pulled off
in this attack type to simulate the situation that power lines
are cut.

With the settings of emulated attacks, energy consumption data
are collected and used to classify anomalies in the IoT devices.

2.4 Preprocessing and feature extraction
The collected signal is noisy and unstable. To get more stable read-
ings, in the preporcessing part, a Savitzky-Golay filter [26] is applied
to smooth the signals in a sliding time window. Since the normal
and abnormal status are continuous and no transient attacks are
emulated, we assume the short and intense value spikes in the col-
lected data are noises. Median filters has been applied to eliminate
these noisy spikes.

After getting the denoised and smoothed data, statistical and
spectral features are extracted. As investigated on the related works
[8, 31], features listed below are applicable for anomaly detections:

• Mean,Standard deviation, Skewness, Kurtosis: The
first, second, third and forth moment of the windowed signal.

• Min, Max: The minimum and maximum value of the win-
dowed signal.

• Interquartile range (IQR): The distance of the first and
third quartile of the windowed signal.

• cumulative sum (CUSUM): The cumulative sum of the win-
dowed signal.

• Fast Fourier transform (FFT): The real part of the FFT
on the windowed signal.

The extracted features are concatenated with the smoothed sig-
nal for the classification model training and evaluation. Due to the
high dimensionality of the data, we apply principle component
analysis (PCA) on the concatenated data for a faster classification.
In the PCA process, we select the eigenvectors with the 10 highest
eigenvalues, which contains 99.56% information from the original
selected features, which are originally with a dimension of 548.

2.5 Two-stage detection
Due to the design of the system, the classification is based on the
newest data available, and thus the detection speed is dependent
on the sliding window of the detections. Since the system requires
a fast detection, we separated our detection tasks into two stages,
namely short-term and long-term classification.

For the short-term classification, we only use the smoothed signal
without the features extracted in a short sliding time window, and
for the long-term classification, we use the concatenated data con-
taining the extracted features. The classification process requires a
longer sliding time window to perform a higher performance.
2.6 Classification algorithms
In the framework, models are leveraged in the anomaly classifi-
cation. As indicated, features of different attacks are different ac-
cording to the attack characteristics. To distinguish the different
distributions of the features, we apply k-nearest neighbor (KNN)
[20] algorithm and neural networks (NN) [17] with different param-
eters, and also provide a performance comparison for evaluation.

In KNN algorithm, the neighbors within the k distance are as-
signed with a weight of 1/k . The classification precess is described
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in the equation below:

ŷ = arдmin
c ∈C

∑
xi ∈N

wi | |x − xi | |2, (1)

where, the neighboring samples in the neighborhood N labeled as
c are denoted as xi , and the corresponding weight is denoted aswi .
In our situation,wi is assigned as 1/k . The input is classified as the
label of samples that have a minimal weighted distance.

NN is a statistical model that use multi-layer perceptrons to build
the classifier. In our comparison, we use Adam [5] as the optimizer
and rectified linear unit (ReLU), denoted as R(·), as the activation
functions. In each layer, the NN perform a linear transformation
from the previous layer:

hi+1 = R(wihi + bi ), (2)

where the i-th layer’s input is hi ∈ Rmi×n , the weight and bias
on the layer are respectively denoted as wi ∈ Rmi+1×mi and bi ∈
Rmi+1×n , giving the sample size is n. The classifier employs a Soft-
max function to calculate the final possibilities of the label that the
input sample is classified as. The Softmax function is described as:

ŷ = arдmax
c ∈C

hL(c)∑
c ∈C hL(c)

, (3)

where the total layer of the model is L, and hL ∈ RC×n . The total
number of classes is denoted as C .
3 EVALUATION
We evaluate the framework in two parts. After introducing the
experiment settings, we first evaluate the classification accuracy,
and then due to the fast requirement, we also evaluate on the
detection speed of the framework.
3.1 Experiment settings
In the experiments, we launch the proposed attacks in four Rasp-
berry Pi 3 models, and collect the energy consumption data in the
attacked devices. We also collect the energy consumption data from
the devices under the normal status as comparisons. It should also
be noticed that according to the attack prototype design, we do not
consider transient attacks in the evaluations.

In the classification period, the evaluation is based on 10-fold
cross-validations to make sure the evaluation result is validated.
We compare KNN and NN as the classification algorithms. The NN
algorithms in training phase has the maximum iteration as 200,
learning rate as 0.001. For 1 layer classifications, the layer has 100
feature nodes, and for 2 layer classifications, the features nodes are
100, 20 respectively. In short-term classifications, the length of time
window is 10 seconds, while for long-term classifications, the time
window length is 180 seconds.

The dataset consists of recordings from 4 IoT devices. Different
real attacks are performed and emulated, and each recording is of 2
hours length. 3 recordings are collected from each device. In total,
85666 samples from 12 recordings are collected, among which half
are the normal data, and another half are different attack data, from
different categories of attacks.
3.2 Anomaly detection performance
The long-term anomaly detection performance is shown in Table 2,
and the short-term anomaly detection performance are shown in
Table 1. In the confusion matrices, every row is the ground truth,

and the every column is the classification results. The positive is
defined as the anomalies. The metrics that we use are accuracy,
false positive rate (FPR), and sensitivity. The accuracy evaluates the
general performance of the classifiers, while FPR and sensitivity
evaluate the false alarms and missing detections respectively.
Table 1: Short-term anomaly detectionmodel performances

Model Accuracy FPR Sensitivity
1-layer NN 61.7% 12.7% 36.9%
2-layer NN 85.5% 8.7% 79.9%

2-nearest neighbor 85.3% 21.1% 91.5%
7-nearest neighbor 90.0% 6.9% 87.1%
12-nearest neighbor 89.9% 7.4% 87.2%

In the short-term classifications, the detection time is satisfying,
which is only 5 seconds. For performance, the NN based models
cannot classify the anomalies correctly, especially in 1 layer model.
The KNNmodel performs better than the NNmodel in this situation,
and achieves around 90% accuracy in k = 7 and k = 12 models.
The accuracy is not satisfying in short-term situation, we further
evaluate on the long-term version for a comparison.
Table 2: Long-term anomaly detectionmodel performances

Model Accuracy FPR Sensitivity
1-layer NN 97.2% 0.3% 94.8%
2-layer NN 97.8% 0.2% 95.8%

2-nearest neighbor 99.4% 0 98.8%
7-nearest neighbor 99.4% 0 98.9%
12-nearest neighbor 99.4% 0 98.8%

In the long-term classifications, the accuracies are satisfying. For
NN based classifiers, the accuracy is around 97% to 98%, while for
the KNN based algorithms, the accuracy is above 99%. The only
misclassifications happen in the classification of Trojan and Virus,
since both of them are periodical, and the periods of them are set as
same in our experiment. and The classification accuracy is compara-
ble with the software based anomaly detection in most state-of-art
works. This result also shows that our proposed framework pro-
vides flexibility in the model that is chosen. However, the long-term
classification requires long time window, which means that the
classification is not stable until collecting the full time window of
data. This is the reason we keep the short-term model available in
the framework for a faster detection.
3.3 Anomaly detection speed
Since the detection speed is also important factor in real-time frame-
works, we also compare the detection speed of different classifi-
cation algorithms. The averaged classification time of each of the
80000 sample of the inputs are shown in Table 3. The experiment is
performed on a PC with Intel Core i5-2500 CPU 3.30GHz, and the
memory size is 32 GB.

Table 3: Detection time of anomaly detection models

Model Short-term(s) Long-term(s)
1-layer NN 1.78 × 10−6 1.49 × 10−6
2-layer NN 7.01 × 10−6 1.86 × 10−6

2-nearest neighbor 5.57 × 10−5 2.04 × 10−5
7-nearest neighbor 8.29 × 10−5 4.98 × 10−5
12-nearest neighbor 1.02 × 10−4 8.82 × 10−5
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The detection time of a single anomaly classification depends
on the time window length in our framework. The comparisons
show that with a detection of less than 0.1 microseconds, the im-
plementation of the framework satisfies with the requirement of
our attack detection system.

4 CONCLUSION
In this paper, a framework for IoT cyber-physical attack detection is
introduced, implemented and evaluated. The energy consumption
based method is a data centric method, and more secure than kernel
data based methods because of the nature of side channel analysis.
The framework is not only able to detect some common types of
the cyber attacks, but also physical attacks such as power line cut
and heating. The system currently is able to detect the anomalies
in a time range of around 5 seconds. In order to provide a more
accurate classification, we use the long-term classification to detect
the anomalies with an accuracy of more than 99% in 3 minutes.
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