skip to main content
10.1145/3321408.3326673acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesacm-turcConference Proceedingsconference-collections
research-article

Multimodality white matter tract segmentation using CNN

Authors Info & Claims
Published:17 May 2019Publication History

ABSTRACT

Diffusion-weighted MRI tractography combining with fiber clustering is a typical approaches of white matter tract segmentation. However, due to the anatomical accuracy of the diffusion-weighted images (DWI) and complicated processing procedure, this approach suffer many inherent limitations that it is difficult to handle complex fibers well and might introduce subtle errors in further processing steps. In this paper, we proposed a novel white matter tract segmentation method with dual input convolutional neural network to fuse two modal data. Specifically, the structural tensor of T1-Weighted (T1W) MR images was introduced to complement to the peaks of fiber orientation distribution function (fODF). The proposed method has been experimented with 105 subjects of Human Connect project and proved to more accurately identify white matter bundles than existing methods.

References

  1. A. H. Jaberzadeh Ansari, M. A. Oghabian, and G. A. Hossein-Zadeh. 2011. Assessment of functional and structural connectivity between motor cortex and thalamus using fMRI and DWI. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 5056--5059.Google ScholarGoogle Scholar
  2. Robert C. Molthen Barjor Gimi (Ed.). 2015. Early postnatal myelin content estimate of white matter via T1w/T2w ratio. Vol. 9417. Kevin Lee and Marie Cherel and Francois Budin and John Gilmore and Kirsten Zaldarriaga Consing and Jerod Rasmussen and Pathik D. Wadhwa and Sonja Entringer and Matthew F. Glasser and David C. Van Essen and Claudia Buss and Martin Styner.Google ScholarGoogle Scholar
  3. Peter J. Basser, James Mattiello, and Denis LeBihan. 1994. MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 1 (1994), 259--267.Google ScholarGoogle ScholarCross RefCross Ref
  4. Christian Beaulieu. 2002. The basis of anisotropic water diffusion in the nervous system âĂŞ a technical review. NMR in Biomedicine 15, 7--8 (2002), 435--455.Google ScholarGoogle ScholarCross RefCross Ref
  5. Nicholas A. Bock, Ara Kocharyan, Junjie V. Liu, and Afonso C. Silva. 2009. Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. Journal of Neuroscience Methods 185, 1 (2009), 15--22.Google ScholarGoogle ScholarCross RefCross Ref
  6. Thomas Brox, Rein van den Boomgaard, François Lauze, Joost van de Weijer, Joachim Weickert, Pavel Mrázek, and Pierre Kornprobst. 2006. Adaptive Structure Tensors and their Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, 17--47.Google ScholarGoogle Scholar
  7. Hirjak Dusan, Philipp A. Thomann, Robert C. Wolf, Katharina M. Kubera, Caspar Goch, Jan Hering, and Klaus H. Maier-Hein. 2017. White matter microstructure variations contribute to neurological soft signs in healthy adults. Human Brain Mapping 38, 7 (2017), 3552--3565.Google ScholarGoogle Scholar
  8. David C. Van Essen, Stephen M. Smith, Deanna M. Barch, Timothy E.J. Behrens, Essa Yacoub, and Kamil Ugurbil. 2013. The WU-Minn Human Connectome Project: An overview. NeuroImage 80 (2013), 62--79. Mapping the Connectome.Google ScholarGoogle ScholarCross RefCross Ref
  9. Eleftherios Garyfallidis, Marc-Alexandre CÃt'tÃl', Francois Rheault, Jasmeen Sidhu, Janice Hau, Laurent Petit, David Fortin, Stephen Cunanne, and Maxime Descoteaux. 2018. Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage 170 (2018), 283--295. Segmenting the Brain.Google ScholarGoogle ScholarCross RefCross Ref
  10. Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S. Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R. Polimeni, David C. Van Essen, and Mark Jenkinson. 2013. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage 80 (2013), 105--124. Mapping the Connectome.Google ScholarGoogle ScholarCross RefCross Ref
  11. Michiel Kleinnijenhuis, Markus Barth, Daniel C. Alexander, and Anne-Marie van. 2012. Structure Tensor Informed Fiber Tractography (STIFT) by combining gradient echo MRI and diffusion weighted imaging. NeuroImage 59, 4 (2012), 3941--3954.Google ScholarGoogle ScholarCross RefCross Ref
  12. Lemieux Louis, Hagemann Georg, Krakow Karsten, and Friedrich G. Woermann. 1999. Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magnetic Resonance in Medicine 42, 1 (1999), 127--135. <127::AID-MRM17>3.0.CO;2-OGoogle ScholarGoogle ScholarCross RefCross Ref
  13. Lauren J. O'Donnell, William M. Wells, Alexandra J. Golby, and Carl-Fredrik Westin. 2012. Unbiased Groupwise Registration of White Matter Tractography. In Medical Image Computing and Computer-Assisted Intervention - MICCAI 2012, Nicholas Ayache, Hervé Delingette, Polina Golland, and Kensaku Mori (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 123--130.Google ScholarGoogle ScholarCross RefCross Ref
  14. Elena Rykhlevskaia, Gabriele Gratton, and Monica Fabiani. 2008. Combining structural and functional neuroimaging data for studying brain connectivity: A review. Psychophysiology 45, 2 (2008), 173--187.Google ScholarGoogle ScholarCross RefCross Ref
  15. Abdel Aziz Taha and Allan Hanbury. 2015. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15, 1 (Aug 2015), 29.Google ScholarGoogle ScholarCross RefCross Ref
  16. J-Donald Tournier, Fernando Calamante, and Alan Connelly. 2007. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35, 4 (2007), 1459--1472.Google ScholarGoogle ScholarCross RefCross Ref
  17. J-Donald Tournier, Fernando Calamante, and Alan Connelly. 2012. MRtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology 22, 1 (2012), 53--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jacques-Donald Tournier, Susumu Mori, and Alexander Leemans. 2011. Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine 65, 6 (2011), 1532--1556.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hui Wang, Christophe Lenglet, and Taner Akkin. 2015. Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain. Journal of Biomedical Optics 20, 3 (2015), 1-11-11.Google ScholarGoogle ScholarCross RefCross Ref
  20. Demian Wassermann, Nikos Makris, Yogesh Rathi, Martha Shenton, Ron Kikinis, Marek Kubicki, and Carl-Fredrik Westin. 2016. The white matter query language: a novel approach for describing human white matter anatomy. Brain Structure and Function 221, 9 (01 Dec 2016), 4705--4721.Google ScholarGoogle Scholar
  21. Jakob Wasserthal, Peter Neher, and Klaus H. Maier-Hein. 2018. TractSeg - Fast and accurate white matter tract segmentation. NeuroImage 183 (2018), 239--253.Google ScholarGoogle ScholarCross RefCross Ref
  22. Zhipeng Yang, Peiyu He, Jiliu Zhou, Zhaohua Ding, and Xi Wu. 2019. Functional Informed Fiber Tracking Using Combination of Diffusion and Functional MRI. IEEE Transactions on Biomedical Engineering 66, 3 (2019), 794--801.Google ScholarGoogle ScholarCross RefCross Ref
  23. Anastasia Yendiki, Patricia Panneck, Priti Srinivasan, Allison Stevens, Lilla ZÃűllei, Jean Augustinack, Ruopeng Wang, David Salat, Stefan Ehrlich, Tim Behrens, Saad Jbabdi, Randy Gollub, and Bruce Fischl. 2011. Automated Probabilistic Reconstruction of White-Matter Pathways in Health and Disease Using an Atlas of the Underlying Anatomy. Frontiers in Neuroinformatics 5 (2011), 23.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Multimodality white matter tract segmentation using CNN

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ACM TURC '19: Proceedings of the ACM Turing Celebration Conference - China
      May 2019
      963 pages
      ISBN:9781450371582
      DOI:10.1145/3321408

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 May 2019

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader