skip to main content
10.1145/3321408.3326681acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesacm-turcConference Proceedingsconference-collections
research-article

A quantum key distribution scheme based on quantum error-avoiding code in decoherence-free subspace

Authors Info & Claims
Published:17 May 2019Publication History

ABSTRACT

Countering channel noise is an urgent problem to achieve safe and efficient quantum communication. In order to solve this problem, a quantum key distribution (QKD) scheme based on quantum error-avoiding code (QEAC) in decoherence-free subspace (DFS) is proposed. Firstly, we use group theory to design a simple method for constructing QEAC based on the DFS, which is a better solution to overcome quantum channel noise. Secondly, the constructed QEAC is applied in the construction of the QKD scheme for error avoidance. The idea of QEAC for quantum key distribution can effectively overcome the noise in the channel without complicated systems. The proposed method of constructing a QKD scheme for quantum secure communication skillfully utilizes DFS for analysis and research, and improves the quantum bit efficiency and security of quantum key distribution.

References

  1. A. Aguado, E. Hugues-Salas, P. A. Haigh, J. Marhuenda, and et al. 2017. Secure NFV Orchestration Over an SDN-Controlled Optical Network With Time-Shared Quantum Key Distribution Resources. Journal of Lightwave Technology 35, 8 (2017), 1357--1362.Google ScholarGoogle ScholarCross RefCross Ref
  2. C. Bennett and G. Brassard. 1984. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of IEEE international Conference on Computers, Systems and Signal Processing, 175--179.Google ScholarGoogle Scholar
  3. A. Bocharov, M. Roetteler, and K.M. Svore. 2016. Factoring with Qutrits: Shor's Algorithm on Ternary and Metaplectic Quantum Architectures. Phys. Rev. A 96, 1 (2016), 012306.Google ScholarGoogle ScholarCross RefCross Ref
  4. J.C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R.W. Spekkens. 2004. Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 1 (2004), 017901.Google ScholarGoogle ScholarCross RefCross Ref
  5. X.B. Chen, X. Tang, G. Xu, Z. Dou, Y.L. Chen, and Y.X. Yang. 2018. Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17, 9 (2018), 225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Dang, C.D. Hill, and L.C.L. Hollenberg. 2017. Optimising Matrix Product State Simulations of Shor's Algorithm. (2017).Google ScholarGoogle Scholar
  7. D. Deutsch and R. Jozsa. 1992. Rapid solution of problems by quantum computation. P. Roy. Soc. A-math. Phy. 439 (1992), 553--558.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. Ekert. 1991. Quantum Cryptography Based on Bells Theorem. Phys. Rev. Lett. 67, 6 (1991), 661--663.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. El-Latif, B. Abd-El-Atty, M. S. Hossain, S. Elmougy, and A. Ghoneim. 2018. Secure Quantum Steganography Protocol for Fog Cloud Internet of Things. IEEE Access 6 (2018), 10332--10340.Google ScholarGoogle ScholarCross RefCross Ref
  10. C. Figgatt, D. Maslov, K.A. Landsman, N. M. Linke, S. Debnath, and C. Monroe. 2017. Complete 3-Qubit Grover search on a programmable quantum computer. Nature Communications 8, 1 (2017), 1918.Google ScholarGoogle ScholarCross RefCross Ref
  11. L.K. Grover. 1996. A fast quantum mechanical algorithm for database search. Phys. Rev. Lett. 79 (1996), 325.Google ScholarGoogle ScholarCross RefCross Ref
  12. W. Huang, Q. Su, B. Liu, Y.H. He, F. Fan, and B.J. Xu. 2017. Efficient multiparty quantum key agreement with collective detection. Scientific Reports 7, 1 (2017), 15264.Google ScholarGoogle ScholarCross RefCross Ref
  13. Y.X. Li, Z. Wang, C. Peng, and Z.b. Li. 2014. Signal subspace analysis for decoherent processes during interferometric fiber-optic gyroscopes using synchronous adaptive filters. Applied Optics 53, 29 (2014), 6853--60.Google ScholarGoogle ScholarCross RefCross Ref
  14. D.A. Lidar and W.K. Birgitta. 2003. Decoherence-Free Subspaces and Subsystems. Springer Berlin Heidelberg, Berlin, Heidelberg, 83--120.Google ScholarGoogle Scholar
  15. W.J. Liu, H.W. Chen, Z.Q. Li, and Z.H. Liu. 2008. Efficient Quantum Secure Direct Communication with Authentication. Chinese Physics Letters 25 (2008), 2354--2357.Google ScholarGoogle ScholarCross RefCross Ref
  16. W.J. Liu, H.W. Chen, T.H. Ma, Z.Q. Li, Z.H. Liu, and W.B. Hu. 2009. An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chinese Physics B 18, 10 (2009), 4105--4109.Google ScholarGoogle ScholarCross RefCross Ref
  17. W.J. Liu, Z.Y. Chen, S. Ji, H.B. Wang, and J. Zhang. 2017. Multiparty Semi-quantum Key Agreement with Delegating Quantum Computation. Int. J. Theor. Phys. 56, 10 (2017), 3164--3174.Google ScholarGoogle ScholarCross RefCross Ref
  18. W.J. Liu, Z.Y. Chen, J.S. Liu, Z.F. Su, and L.H. Chi. 2018. Full-Blind Delegating Private Quantum Computation. CMC-COMPUTERS MATERIALS & CONTINUA 56, 2 (2018), 211--223.Google ScholarGoogle Scholar
  19. W.J. Liu, P.P. Gao, Y.X. Wang, W.B. Yu, and M.J. Zhang. 2019. A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets. IEEE Access (2019).Google ScholarGoogle Scholar
  20. W.J. Liu, P.P. Gao, W.B. Yu, Z.G. Qu, and C.N. Yang. 2018. Quantum Relief algorithm. Quantum Inf. Process. 17, 10 (2018), 280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. W.J. Liu, Y. Xu, C.N. Yang, P.P. Gao, and W.B. Yu. 2018. An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States. Int. J. Theor. Phys. 57, 1 (2018), 195--207.Google ScholarGoogle ScholarCross RefCross Ref
  22. Z.H. Liu, H.W. Chen, J. Xu, W.J. Liu, and Z.Q. Li. 2012. High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 11, 6 (2012), 1785--1795. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. S. Lloyd, M. Mohseni, and P. Rebentrost. 2013. Quantum algorithms for supervised and unsupervised machine learning. (2013). arXiv:1307.0411v2Google ScholarGoogle Scholar
  24. O. Lychkovskiy. 2018. A Necessary Condition for Quantum A-diabaticity Applied to the Adiabatic Grover Search. Journal of Russian Laser Research (2018), 1--6.Google ScholarGoogle Scholar
  25. M.A. Nielsen and I.L. Chuang. 2002. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. W. Ping, Z.W. Sun, and X.Q. Sun. 2017. Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process. 16, 7 (2017), 170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Z.G. Qu, S.Y. Chen, S. Ji, S.Y. Ma, and X.J. Wang. 2018. AntiNoise Bidirectional Quantum Steganography Protocol with Large Payload. Int. J. Theor. Phys. 57, 6 (2018), 1903--1927.Google ScholarGoogle ScholarCross RefCross Ref
  28. E. Sahin. 2018. A novel quantum steganography algorithm based on LSBq for multi-wavelength quantum images. Quantum Inf. Process. 17, 11 (2018), 319. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P.W. Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science. 124--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Portmann V. Dunjko, J.F. Fitzsimons and R. Renner. 2014. Composable Security of Delegated Quantum Computation. In Advances in Cryptology - ASIACRYPT 2014, P. Sarkar and T. Iwata (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 406--425.Google ScholarGoogle Scholar
  31. J. Vala, Z. Amitay, B. Zhang, S.R. Leone, and R. Kosloff. 2002. Experimental Implementation of the Deutsch-Jozsa Algorithm for Three-Qubit Functions using Pure Coherent Molecular Superpositions. Physical Review A 66, 6 (2002), 317--322.Google ScholarGoogle ScholarCross RefCross Ref
  32. Z.D. Walton, A.F. Abouraddy, A.V. Sergienko, B.E.A. Saleh, and M.C. Teich. 2003. Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 8 (2003), 087901.Google ScholarGoogle ScholarCross RefCross Ref
  33. X.B. Wang. 2005. Fault tolerant quantum key distribution protocol with collective random unitary noise. Phys. Rev. A 72, 5 (2005), 050304.Google ScholarGoogle ScholarCross RefCross Ref
  34. H.R. Wei and J.Z. Liu. 2017. Deterministic implementations of single-photon multi-qubit Deutsch-Jozsa algorithms with linear optics. Annals of Physics 377, Complete (2017), 38--47.Google ScholarGoogle Scholar
  35. G. Xu, X.B. Chen, J. Li, C. Wang, Y.X. Yang, and Z.P. Li. 2015. Network coding for quantum cooperative multicast. Quantum Inf. Process. 14, 11 (2015), 4297--4322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. Xu. 2011. Quantum secret sharing with shared key dependent on receivers. In 2011 Seventh International Conference on Natural Computation, Vol. 3. 1332--1335.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A quantum key distribution scheme based on quantum error-avoiding code in decoherence-free subspace

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ACM TURC '19: Proceedings of the ACM Turing Celebration Conference - China
          May 2019
          963 pages
          ISBN:9781450371582
          DOI:10.1145/3321408

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 17 May 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader