
EPISODE: Efficient Privacy-PreservIng Similar Sequence
Queries on Outsourced Genomic DatabasEs∗

Thomas Schneider
TU Darmstadt

schneider@encrypto.cs.tu-darmstadt.de

Oleksandr Tkachenko
TU Darmstadt

tkachenko@encrypto.cs.tu-darmstadt.de

ABSTRACT
Nowadays, genomic sequencing has become much more affordable
for many people and, thus, many people own their genomic data in
a digital format. Having paid for genomic sequencing, they want to
make use of their data for different tasks that are possible only using
genomics, and they share their data with third parties to achieve
these tasks, e.g., to find their relatives in a genomic database. As
a consequence, more genomic data get collected worldwide. The
upside of the data collection is that unique analyses on these data
become possible. However, this raises privacy concerns because the
genomic data uniquely identify their owner, contain sensitive data
about his/her risk for getting particular diseases, and even sensitive
information about his/her family members.

In this paper, we introduce EPISODE — a highly efficient privacy-
preserving protocol for Similar Sequence Queries (SSQs), which can
be used for finding genetically similar individuals in an outsourced
genomic database, i.e., securely aggregated from data of multiple
institutions. Our SSQ protocol is based on the edit distance approx-
imation by Asharov et al. (PETS’18), which we further optimize
and extend to the outsourcing scenario. We improve their protocol
by using more efficient building blocks and achieve a 5–6× run-
time improvement compared to their work in the same two-party
scenario.

Recently, Cheng et al. (ASIACCS’18) introduced protocols for
outsourced SSQs that rely on homomorphic encryption. Our new
protocol outperforms theirs by more than factor 24 000× in terms
of run-time in the same setting and guarantees the same level
of security. In addition, we show that our algorithm scales for
practical database sizes by querying a database that contains up
to a million short sequences within a few minutes, and a database
with hundreds of whole-genome sequences containing 75 million
alleles each within a few hours.

CCS CONCEPTS
• Security and privacy→Privacy-preserving protocols;Man-
agement andquerying of encrypted data;Privacy protections;

∗A summary of preliminary results of this paper has been published as short paper
at WPES’18 [38]. This is the full version.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6752-3/19/07. . . $15.00
https://doi.org/10.1145/3321705.3329800

KEYWORDS
medical privacy, privacy-enhancing technologies, genomic research,
edit distance, secure computation, outsourcing

ACM Reference Format:
Thomas Schneider and Oleksandr Tkachenko. 2019. EPISODE: Efficient
Privacy-PreservIng Similar Sequence Queries on Outsourced Genomic
DatabasEs. In ACM Asia Conference on Computer and Communications Se-
curity (AsiaCCS ’19), July 9–12, 2019, Auckland, New Zealand. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3321705.3329800

1 INTRODUCTION
Numerous efforts by the research community, industries, and gov-
ernments of different countries substantially reduced the costs of
genome sequencing: the costs for sequencing a whole genome have
fallen from 10 million USD to less than 1 000 USD in the last ten
years [45]. This leads to more genome data being collected, and
services that use genome data are becoming increasingly popular,
e.g., 23andMe1, MyHeritage2, and ancestry3. Common use cases for
genome data are: (i) Similar Sequence Queries (SSQs) for finding
genome sequences that are similar to the sequence of the analyzed
person, (ii) Genome-Wide Association Studies (GWAS) for finding
associations between diseases and genetic variants, and (iii) ge-
nealogical tests for determining ancestral ethnicity of the person.

In this work, we focus on SSQs. They can be used for finding (up
to that time unknown) relatives, and for making better diagnoses
and prescribing the most promising treatments using the medical
history of people that are genetically similar to the patient [21].
However, a data provider (e.g., a medical institution) commonly
has a limited number of collected genome sequences which pre-
vents a high-quality similar patient analysis, since the diversity and
completeness of the database is crucial in genome analyses [37].

A further use case for SSQs is crime solving where only the
DNA of the suspect is known. It has been shown in the past that
some very complex criminal investigations can be solved using
solely the DNA information [27], also even if only the suspect’s
second-degree relatives are contained in the database, e.g., by recon-
structing the family tree [16]. However, no global DNA databases
exist at the moment that would facilitate such investigations, since
this would raise concerns about the privacy of the DNA donors. As
a solution, we consider privacy-preserving aggregation of the DNA
databases of multiple parties and privacy-preserving queries on the
aggregated database for ensuring privacy of the DNA donors.

1https://www.23andme.com
2https://myheritage.com
3https://www.ancestry.com

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

315

https://doi.org/10.1145/3321705.3329800
https://doi.org/10.1145/3321705.3329800
https://www.23andme.com
https://myheritage.com
https://www.ancestry.com

Despite the good uses of genomic data, their leakage causes se-
vere privacy violations for the genomic data donors. This is due to
the fact that genome data are unique for each individual and contain
sensitive information about him/her and his/her relatives [7, 23],
e.g., ethnicity information and predispositions to particular diseases.
The possession of this information by third parties can give rise to
genetic discrimination, e.g., if a health insurance company would
increase the client’s fee based on his/her predispositions to diseases,
or if an employer would reject the candidate’s application based
on the aforementioned reasons. To address this, we employ Se-
cure Multi-Party Computation (SMPC) techniques for constructing
highly efficient privacy-preserving protocols for distributed SSQs.
Although there already exist solutions for privacy-preserving SSQs,
the solutions are either inefficient or custom-tailored, i.e., it is far
from trivial to extend these protocols to privacy-preserving aggre-
gation of databases or thresholding distances to similar sequences.

1.1 Our Contributions
We design EPISODE, an efficient SSQ protocol that is by orders of
magnitude more efficient than previous related works. EPISODE
is designed for outsourcing but can be used for the two-party
client/server model as well, e.g., for the same setting as in [3]
where one party has a database and the other party has a query, or
when each party possesses one or more databases (e.g., for crowd-
sourced SSQs). We also show how multiple databases can be ag-
gregated in the outsourcing scenario and describe related costs for
each scenario. In addition, we describe a thresholding protocol for
finding relatives using EPISODE.

Large-Scale Experiments. We conduct large-scale experiments on
an outsourced database with up to one million genome sequences
of small and medium lengths, and we show that our implementa-
tion has practical run-times on commodity hardware, e.g., secure
evaluation of an SSQ protocol on one million sequences of length
one thousand took only 8.3 minutes.

Whole-Genome Experiments. To the best of our knowledge, we
are the first to conduct experiments on whole-genome sequences
(sequence length n=75 million alleles) using the Edit Distance (ED)
approximation of [3] that, unlike [44], can handle high-divergence
data and show practical run-times of just a few hours.

1.2 Outline
Section 2 describes related work in the field of privacy-preserving
SSQs. In Section 3, we explain the necessary basics of genetics,
SMPC, and the SMPC framework used in this work. Afterwards,
Section 4 gives the system model and details the designed algo-
rithms. Finally, we show the benchmarking results of our algorithms
in different scenarios in Section 5 and conclude in Section 6.

2 RELATEDWORK
In this section, we compare our Edit Distance (ED) and Similar
Sequence Query (SSQ) algorithmwith that in previous related work.
Our SSQ protocol is benchmarked in the same system model of the
papers we compare to unless stated otherwise.

Asharov et al. [3] introduced an approximation technique for ED
that can handle high divergence data. Their contribution is twofold:
(i) they construct an efficient and precise approximation for ED, and

(ii) they use Look-Up Tables (LUTs) instead of direct computation
of the ED, thus precomputing the most expensive parts of the
computation in the clear.

The first contribution works as follows: the genome sequences in
the database and query are split into blocks of small size (e.g., b=5)
and padded to a somewhat greater size (e.g., b ′=16). Because of
the much smaller size of the blocks compared to a full sequence,
the overhead for computing ED is also much smaller (ED requires
O
(
n2

)
computation in the sequence length n).

For their second contribution, they utilize the fact that genes
in the blocks are naturally distributed highly non-uniformly. For
all sequences available in the clear, this allows to compute cross-
sequence LUTs block-wise for all observed block values. Using this
approach, the value of the block is compared with each element
of the corresponding LUT instead of computing the ED directly. If
the value is equal to one of the values in the LUT, the correspond-
ing distance is selected. Asharov et al. empirically show that the
probability of an element not being in the LUT is small, and the
absence of a single element influences the overall distance only
slightly. Moreover, the authors design a custom protocol for com-
puting the k nearest edit distances between a client’s query and a
server’s database containing parts of genome sequences. However,
their protocol has the drawback that it is custom which makes it
non-trivial to extend to other functionalities such as aggregation of
databases. Their protocol works in a setting with two semi-honest
parties, where the client inputs the query and the server inputs a
database into a Secure Two-Party Computation (STPC) protocol.
EPISODE runs by factor 5–6× faster than their protocol in the same
two-party setting (see Section 5.2 for details).

Atallah et al. [5] developed protocols for secure sequence com-
parison, and Atallah and Li [6] moved these protocols to the out-
sourcing scenario. In both works, the authors compute the ED,
i.e., the number of additions, deletions, and substitutions needed
to transform one string into another, with quadratic computation
and communication overhead in the sequence length n, i.e., O

(
n2

)
,

which is a much larger overhead than ours of O
(
nω

)
, where ω is

the LUT width, usually 20 or 30.
Jha et al. [26] designed algorithms for privacy-preserving ED

using Garbled Circuits (GCs). Their construction scales much worse
than the recent solutions including ours, e.g., their algorithm runs
in 658 s and requires 364MB communication, whereas ours requires
only 5.7ms run-time (more than 100 000× faster) and 397 kB com-
munication (more than 900× less) for the same sequence length
n=200, and we set the width of the Look-Up Table (LUT) to ω=20.

Wang et al. [44] propose an extremely efficient approach for
approximating the ED using a set size difference metric. Their ap-
proach can process a genome-wide query over one million patients
in about 3 hours, but, unfortunately, it works only for data with very
small divergence (less than 0.5 % variability between individuals),
which is not always true for genome data.

The authors of [1] designed two approximations for ED: a set
intersection method based on [36] and a banded alignment-based
algorithm that relies on GCs. The drawbacks of these methods are:
(i) neither algorithm achieves good accuracy on long genome se-
quences, and (ii) the authors do not showwhich security parameters

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

316

are used and do not detail communication requirements of their
algorithms.

Zhu and Huang [48] design efficient algorithms for ED, which
are, however, much slower than the approximations of ED. Their
benchmarks of ED on two sequences of 4 000 nucleotides with a
security parameter of 127 bits took 7.08 s run-time and 2.04GB
communication. In contrast, our algorithm requires only 65ms run-
time (108× faster) and 8MB communication (261× less) for the same
setting and the width of the LUT ω=20.

Mahdi et al. [31] securely computed the Hamming distance for
SSQ, which is an error-prone metric for measuring the distance
between genome sequences, because the sequences are compared
bit-wise and, thus, any deletions and additions, which cause shifts
in the genome sequence, result in severe errors.

The authors of [13] design a protocol for privacy-preserving
SSQs based on [3] using homomorphic encryption in an outsourc-
ing scenario with two non-colluding, semi-honest parties, which
provides the same security guarantees as our model. As we show
in Section 5.1, our protocol outperforms theirs by more than factor
24 000× in terms of run-time and by at least factor 16× in terms of
communication in the same setting.

The privacy of other applications of genomics were also ad-
dressed in the literature, e.g., outsourcing of genome data stor-
ing [41], pattern matching [43], genome sequence queries [17], and
Genome-Wide Association Studies (GWAS) [10, 11, 15, 42], see [33]
for a good survey on genomic privacy.

3 PRELIMINARIES
In this section, we explain the basics underlying our constructions.
Our notation is summarized in Table 1.

3.1 Genomic Primer
Deoxyribonucleic Acid (DNA) is contained in the cells of each living
individual and encodes genome information. Based on DNA, indi-
viduals develop different phenotype traits — observable differences
between individuals, e.g., hair or eye color. The basic components
that form DNA are called nucleotides. There exist four of them:
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T), which can
be encoded in log2 4 = 2 bits. In our model, however, we require
a dummy character for padding blocks of alleles to the predefined
global block size, which yields ⌈log2 5⌉ = 3 bits. DNA consists of
multiple long sequences called chromosomes, which are built as
sequences of pairs of nucleotides (e.g., "AT CG AA ...").

The human DNA consists of 3.5 billion base pairs from which
only 0.1 % vary among individuals [20]. The variations of single
nucleotides in specific regions (called loci, singular locus) of a chro-
mosome are called alleles. The genes, each allele of which is repre-
sented to some minimal degree in the population (e.g., more than
1 %), are called Single-Nucleotide Polymorphisms (SNPs).

3.2 Similar Sequence Queries (SSQs)
The approach of SSQs is used for finding the sequences that are
most similar to the analyzed query. This approach can be used, for
example, for finding individuals that are genetically very similar
to a patient in order to better analyze the health conditions of the

Table 1: Notation used in our paper.

Parameters
ω Look-up table width
N Number of sequences
n Sequence length
b Block size
b ′ Padded block size
t Number of blocks
ℓ Block bit-length
ψ Number of data providers
β Bit-length for the distance values s.t. no overflow occurs

A, C, G, T Nucleotides: Adenine, Cytosine, Guanine, Thymine
K, M, G, T Powers of 10: kilo (103), mega (106), giga (109), tera (1012)

Notation from [18]
l[i] Operator for referencing element #i in list l
l .e Operator for accessing element e in list l

x ∧ y and x ⊕ y Bit-wise AND and XOR operation
A,B,Y Sharing types: Arithmetic, Boolean, Yao
⟨x⟩ti Share of value x in sharing type t held by party i

Shrti (x) Sharing function for value x by party i in sharing type t
Rec(⟨x⟩t0, ⟨x⟩

t
1) Reconstruction function for value x from both shares

⟨z⟩t = ⟨x⟩t ⊙ ⟨y⟩t Operations on shares, ⊙ : ⟨x⟩t × ⟨y⟩t 7→ ⟨z⟩t

⟨x⟩t = s2t(⟨x⟩s) Conversion from sharing type s to sharing type t
⟨0⟩t , ⟨1⟩t , ⟨n⟩t Secret-shared constant 0, 1, and n, respectively

⟨F(·)⟩t Secret-shared constant of locally computed function F

System Model
T0,T1 Semi-trusted third parties that perform SMPC

P1, . . . , Pψ Data providers that contribute genomic data
C Client

patient. This leads to more precise medical diagnoses based on the
additional information provided by genetically similar individuals.

A precise SSQ algorithm requires the computation of the Edit
Distance (ED) [30], which measures how different two sequences
are by finding the minimum number of deletions, additions, and
substitutions that are required to transform one string into another.
ED has O

(
n2

)
computation complexity, where n = max(ns ,nq), ns

is the length of the sequence, and nq is the length of the query.
There exist other distance metrics for measuring the similarity of
the sequences, but they are generally suboptimal, e.g., Hamming
distance is not a good choice because it compares sequences bit by
bit and thus any additions and deletions in the genome lead to large
errors. To avoid heavy computations of ED, a few approximations
have been developed, e.g., [3, 44]. For more details see Section 2.

This work focuses on the ED approximation of Asharov et al. [3],
since, in contrast to [44], it can handle high-divergence data (the au-
thors of [3] empirically show this for up to 10 % variability between
individual genomes). An example of computing this ED approxi-
mation is given in Figure 1. It works as follows: first, the sequences
in the database are aligned to a public reference genome and split
into blocks of predefined size. Then, the statistical distribution of
the sequences in the database is used to construct a Look-Up Ta-
ble (LUT) containing the most frequently observed block values and
their distances to each other. Afterwards, the value of the block i
in the query is compared to each entry of the i-th row of the LUT
(the comparison is performed only once for one database), and
based on the comparison result pre-computed distances are either
selected as output or set to 0. Here, the sum of all outputs yields
either the correct distance or 0 in the case of an error (this outcome

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

317

AA

CG

AT

S1

TA

GC

AA

S2

TT

CG

AT

S3

t

N

AT
0

AA
1

-

0
CG
0

GC
2

-

0
AA
0

TA
1

TT
2

LUT with distances to S1

ω

TT

GC

AT

Q

AA

CG

AT

S1

2

2

0

d = 0+2+2 = 4

Figure 1: Example for computation of the Edit Distance approximation of [3]. Here, a Look-Up Table (LUT) for Sequence S1
is precomputed in the clear based on the distribution of values in all sequences S1, S2, and S3 each containing t blocks of size
b=b ′=2 alleles (top). In more detail, a LUT contains precomputed distances to all observed block values, e.g., in the third row
block AA in S1 has distances 0 to itself, 1 to TA in S2, and 2 to TT in S3. After the LUT construction, the LUT and the pre-computed
distances for S1 are used for computing the Edit Distance d between queryQ and S1 (bottom).

is rare and influences the overall result only very slightly [3]). The
last step is to sum up the distances of all blocks which results in
the approximated distance between the query and the sequence.
After computing the ED to all sequences in the database, they are
used to find the indices of the k most similar sequences.

Formanaging LUTs in the outsourcing scenario, we store the LUTs
of all data providers and use them in the ED computation of the cor-
responding genome sequences in the respective databases, which is
a very promising approach in terms of efficiency. The efficiency of
this approach grows with N /ψ (the number of sequences N divided
by the number of institutionsψ), and in a real-world scenario we
expect a small to medium number of data providers ψ that con-
tribute a large number of sequences N . We discuss further LUT
management options in Section 4.5.

Family Search from the Similar Sequence Query Protocol. Our SSQ
protocol can also be extended for finding one’s family. Consider a
scenario where a large number of individuals possess their digital
genome sequences. They are willing to contribute their data to
a common database that can be used to perform family search.
For this, they secret-share their genome sequences and compute
distances to a public LUT (this can be prepared by a public authority
and is the same as the reference genome), which are then used
in the SSQ protocol. However, instead of computing k-Nearest
Neighbors (k-NN), we can blind the indices that correspond to a
big distance to the query (greater than some threshold T , e.g., at
most 5 % difference). The result of this protocol is the set of indices
of all similar sequences in the database.

3.3 Secure Multi-Party Computation (SMPC)
SMPC allows parties P1, . . . , Pn to securely compute a function
f (x1, . . . , xn) on their respective inputs without revealing the in-
puts to each other, i.e., one or more parties learn the result of f , but
no intermediate values.

The first approaches to SMPC were proposed in the late 1980s
(see, e.g., [22, 46]). Although SMPCwas first believed to be impracti-
cal, with the further progress on SMPC optimization and computer
hardware improvements it is nowadays possible to solve complex
problems using SMPC within seconds or minutes. SMPC can be
conducted considering different adversary models. The two most
common adversary models are passive (honest-but-curious) and
active (malicious) adversaries. Whereas passive adversaries follow
the protocol specification but try to learn as much information
as possible from the information they obtain, active adversaries
can arbitrarily deviate from the protocol. In this work, as in most
previous works in this area [1, 3, 13, 31, 44, 48] — to name just a
few — we concentrate on protocols with security against passive
adversaries that are much more efficient than actively secure pro-
tocols and provide sufficient security for settings where curious
insiders want to learn additional information from the protocol
runs without actively interfering with it. The major difficulty in the
use of SMPC is the need of extensive knowledge of cryptography,
circuit design, and algorithm complexity for constructing efficient
privacy-preserving protocols.

3.3.1 Oblivious Transfer. Oblivious Transfer (OT) is an important
building block of many SMPC protocols. In 1-out-of-2 OT, the
sender has two messages m0 and m1 as input, and the receiver
inputs a choice bit c . As output, the receiver receives the message

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

318

of its choicemc without learningm1−c , and the sender does not
learn c .

Public key-based OT protocols, e.g., [34], achieve thousands of
OTs per second and OT extension allows using mainly symmetric
key primitives resulting in millions of OTs per second [4, 24]. There
also exist other variants of OT, such as Random Oblivious Transfer
(R-OT) [4, 35] and Correlated Oblivious Transfer (C-OT) [4]. In
C-OT, the sender hasm as input, and the receiver has b as input.
The outputs of the parties are as follows: the sender receives a
randomm0 as output, and the receiver receivesm0 + bm as output,
where m = m1 −m0 in Z2ℓ and ℓ is the bit-length of the values.
This variant of OT improves the communication of the protocol
(especially for large ℓ), where instead of κ + 2ℓ bits only κ + ℓ bits
are sent in the C-OT extension, where κ is the symmetric security
parameter, see [4].

3.3.2 ABY Framework. We use the ABY framework [18], which im-
plements state-of-the-art optimizations for Secure Two-Party Com-
putation (STPC), i.e., SMPC with n=2 parties, and is secure against
passive adversaries. It enables privacy-preserving algorithms using
three different STPC protocols called sharings: Arithmetic sharing
(a generalization of the GMW protocol [22] to unsigned integers),
Boolean sharing (the Boolean GMW protocol [22]), and Yao sharing
(Yao’s Garbled Circuits (GCs) [46]). It also enables mixing these
protocols to use particular STPC protocols for the parts of the com-
puted function where they perform best. For notation used in this
paper, please refer to Table 1.

Arithmetic Sharing. Arithmetic (also called Additive) sharing is
performed on integer numbers in a ring Z2ℓ . Values are shared
locally by subtracting random numbers as one-time-pads from
the initial values, and afterwards one of the shares is sent to the
other party. The reconstruction of the shares for the outputs is
also straightforward: the parties exchange the shares and compute
the sums of the single shares in the corresponding ring which
yields the corresponding cleartext values. The main advantage of
Arithmetic sharing over other sharings is that it allows local compu-
tation of addition mod 2ℓ and cheap computation of multiplication
mod 2ℓ using Multiplication Triples (MTs) [8] that can efficiently
be precomputed using OT extension [18]. The drawback of this
sharing is that it does not allow to trivially perform other more
complicated operations. For example, secure comparisons are very
expensive in Arithmetic sharing.

Boolean Sharing. In ABY, Boolean sharing stands for the GMW
protocol [22]. This sharing is represented as a Boolean circuit where
shares represent wires in the circuit. Similarly to Arithmetic shar-
ing, the values are shared by performing the XOR operation with a
random value. Reconstruction can be performed by applying XOR
on both shares (the parties, again, exchange the shares), which
will eliminate the random value and yield the cleartext value. The
Boolean circuit is constructed by using XOR and AND gates (any
computable function can be converted to a Boolean circuit using
XORs and ANDs only). There is, however, a large difference in
efficiency of evaluating these gates. Whereas XOR gates can be
evaluated locally (due to the associative property of XOR), AND
gates require communication during the evaluation. For secure eval-
uation of AND gates in ABY, Beaver’s MTs [8] that are precomputed

using OT extension [4] are utilized. The communication require-
ments of GMW can be further reduced at the cost of slightly higher
computation [19]. Moreover, each AND-layer in the circuit adds an
additional communication round to the protocol. Consequently, we
are interested in shallow circuits for Boolean sharing.

Yao Sharing. Yao’s Garbled Circuits (GCs) [46] are denoted as
Yao sharing in ABY. Yao sharing includes all state-of-the-art en-
hancements, such as point-and-permute [32], free-XOR [29], fixed-
key AES garbling [9], and half-gates [47]. Yao sharing, similar to
Boolean sharing, can be used to securely evaluate a Boolean circuit.
It is split into two phases: an input-independent setup phase and an
input dependent online phase. In the setup phase, the party called
garbler garbles the circuit and sends it to the other party called
evaluator. The parties then proceed to the online phase, where only
the evaluator’s inputs have to be obliviously transferred via pre-
computed OTs [8] and the evaluator can compute the garbled result
locally. For reconstructing the results on the evaluator’s side, the
garbler sends the output keys for the corresponding shares to the
evaluator, and for the garbler’s side, the evaluator sends the output
keys to the garbler. Yao sharing has a constant number of rounds,
i.e., it does not depend on the circuit depth, and therefore generally
is better suited for high-latency networks than Boolean sharing.
On the other hand, Yao sharing requires more computation and
communication than Boolean sharing.

SMPC Protocol Conversion. It is clear from the description of the
aforementioned sharings that the choice of particular sharing is not
trivial even for relatively simple tasks. To solve this problem, ABY
allows to mix the protocols by implementing efficient algorithms
for converting between the three different sharing types. Although
conversions imply some costs, they may result in better overall
performance as shown in [18]. The partitioning can even be done
automatically [12].

OT-Based Multiplication. We extend the OT-based multiplication
algorithm of [3] for multiplying an additively secret-shared value
⟨v⟩A in Arithmetic sharing by a secret-shared bit ⟨b⟩B in Boolean
sharing. Observe that we want to compute ⟨b⟩B · ⟨v⟩A = (⟨b⟩B0 +
⟨b⟩B1)(⟨v⟩

A
0 + ⟨v⟩

A
1) = ⟨b⟩B0 ⟨v⟩

A
0 + ⟨b⟩

B
0 ⟨v⟩

A
1 + ⟨b⟩

B
1 ⟨v⟩

A
0 + ⟨b⟩

B
1 ⟨v⟩

A
1 .

Whereas ⟨b⟩B0 ⟨v⟩
A
0 and ⟨b⟩B1 ⟨v⟩

A
1 can be computed locally by the

respective parties, for the computation of ⟨b⟩B0 ⟨v⟩
A
1 and ⟨b⟩B1 ⟨v⟩

A
0

interaction is required between P0 and P1. For these two multipli-
cations, we utilize two C-OTs [4], where Pi inputs ⟨b⟩Bi and P1−i
inputs (r , ⟨v⟩A1−i + r), where r is a random value, and vice versa.
P1−i then sets its share to −r . As a result, the parties compute a
valid Arithmetic share ⟨b · v⟩A of value b · v .

Single InstructionMultiple Data (SIMD) gates. Wrapping of secret-
shared data in container classes is very memory-consuming. More-
over, this adds additional overhead for managing and initialization
of memory to the protocol. As a solution to this problem, SIMD
gates have emerged [39] and are also implemented in ABY. These
gates are constructed as gates for evaluating arrays of secret-shared
values rather than single values. This approach significantly reduces
the RAM requirements and the online run-times of the protocols.

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

319

T1

T0

C

P3

P2

P1

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(3,7)

(4)

(4)

(5)

(6)

(6)

one-time expense

per-query expense

Figure 2: Privacy-preserving Similar Sequence Query systemmodel with threemedical institutions I1, I2, and I3 that contribute
their secret-shared genomic data to two Semi-Trusted Third Parties T0 and T1, and a client C who queries the secret-shared
database. The communication between all parties is protected with a secure channel, e.g., TLS. See Section 4.1 for more details.

k-Nearest Neighbors. For finding the k most similar sequences in
the Similar Sequence Query (SSQ) protocol, we utilize ABY’s func-
tionality for computing k-Nearest Neighbors (k-NN) [25], which
improves over the work of Songhori et al. [40] in terms of the circuit
size. This k-NN implementation is by about a factor of 5× more
efficient than the one used in [3], e.g., for a database of size 500 [3]
required 505 825 AND gates for computing the k-NNs, whereas we
require only 92 500 AND gates.

4 OUR PRIVACY-PRESERVING SSQ
PROTOCOL

Here, we describe the system model of our privacy-preserving
protocol for Similar Sequence Queries (SSQs), the protocol itself,
and we analyze its security.

4.1 System Model
The main idea of our protocol is to secret-share the database ag-
gregated from data of multiple data providers between two non-
colluding Semi-Trusted Third Parties (STTPs). We depict our system
model in Figure 2. The communication between all parties is per-
formed over a secure channel (e.g., TLS). Note that our protocol
alternatively can be run directly between a server and a client
with approximately the same efficiency (the outsourcing scenario
is beneficial for data aggregation, but has the same efficiency in the
querying phase). In our protocol, we have the following parties:

• Data providers (e.g., medical institutions) P1, . . . , Pψ that se-
curely contribute their genome sequences to the outsourced
database in a secret-shared form.

• A clientC who privately queries the database with a genome
sequence for finding the most similar sequences in the out-
sourced database.

• Two non-colluding Semi-Trusted Third Parties (STTPs) T0
andT1 who obliviously compute the Similar Sequence Query
(SSQ) protocol on the client’s query and outsourced database.

We choose two STTPs because it is the most practical and af-
fordable model in a real-world setting, since each STTP has to be
operated and maintained by different teams, and the servers must
have completely different software stacks, which in total implies
high costs. For running the two STTPs, one must choose two dis-
tinct organizations that have a high motivation to not collude, e.g.,
if they significantly loose in value/reputation if caught cheating. We
can think of the following organizations: (i) health ministry, (ii) re-
search institutes, or (iii) cloud service providers. This outsourcing
model has been widely used in the literature, e.g., in [2, 14, 42].

Our protocol consists of the following steps (see Figure 2):

A Initialization
(1) Each data provider Pi locally secret-shares its genomic

data and Look-Up Table.
(2) Ii sends the shares to the Semi-Trusted Third Parties T0

and T1, respectively.
B Querying
(3) Client C locally secret-shares its query Q .
(4) C sends its secret-shared query to T0 and T1.
(5) T0 and T1 obliviously compute the SSQ protocol on the

secret-shared database and the client’s secret-shared query
using STPC.

(6) T0 and T1 send the resulting output shares containing
secret-shared indices of the most similar sequences in the
database to C .

(7) C locally reconstructs the result from the output shares.

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

320

〈distance〉A ← ED(seq, query)

1 : row_dist← ∅
2 : for i = 1 to seq.length do

3 : 〈row_sum〉A ← 〈0〉A

4 : for j = 1 to seq.LUT.width do

5 : //For multiple ED computations, eq values are computed only once
6 : //Next 2 lines are equal to eiω+j == qi ? diω+j : 0

7 : 〈eq〉B ← 〈seq[i].LUT[j].value〉B == 〈query[i]〉B

8 : 〈dist〉A ← OTM(〈eq〉B , 〈seq[i].LUT[j].dist〉A)
9 : 〈row_sum〉A ← 〈row_sum〉A + 〈dist〉A

10 : row_dist.insert(〈row_sum〉A)
11 : for i = 2 to seq.length do

12 : 〈row_dist[1]〉A ← 〈row_dist[1]〉A + 〈row_dist[j]〉A

13 : return 〈row_dist[1]〉A

Algorithm 1: Privacy-preserving Edit Distance (ED) algo-
rithm between a sequence seq containing a Look-Up Table
with genomic variants and the corresponding distances, and
a client’s query containing genomic variants. OTM denotes
Oblivious Transfer-Based Multiplication.

In contrast to querying the database (querying phase), aggre-
gating the database from different sources (initialization phase)
is a one-time expense. Data providers contribute their data only
once, and any changes in the outsourced database are required for
updates only. Since data providers can send their secret-shared se-
quences in any order and from different preprocessing sets (though
using the same global parameters), the database can be updated
without any further preprocessing steps on the STTPs’ and data
providers’ side. Additional data providers in the protocol do not
add any significant overhead because of the following: (i) the ini-
tialization phase is a one-time expense, (ii) the initialization phase
is computed in parallel for all data providers, (iii) the STTPs do not
apply any further preprocessing steps but only store the received
shares, which has a very small overhead.

Client’s Communication and Computation. Our model signifi-
cantly reduces the amount of communication and computation per-
formed by the client compared to the direct application of SMPC.
More detailed, the client sends only 2× the amount of information
compared to the non-private cleartext protocol. Moreover, the client
does not require cryptographic operations in the protocol but only
very efficient XOR and additionmod 2ℓ operations. This makes our
protocol even applicable for weak clients using mobile devices.

4.2 Privacy-Preserving Approximated Edit
Distance

Our protocol for securely computing the Edit Distance (ED) be-
tween a genome sequence stored in the outsourced database and a
client’s query utilizes the idea of Asharov et al. [3] for improving
the efficiency of computation by approximating ED using Look-Up
Tables (LUTs) (see Section 3.2).

ids← SSQ(sequences, query, k)

1 : dists← ∅
2 : ids← 〈1〉Y , . . . , 〈sequences.size〉Y

3 : for i = 1 to sequences.size do

4 : 〈dist〉A ← ED(sequences[i], query))

5 : dists.append(A2Y(〈dist〉A))
6 : ids← k-NN(dists, ids, k)
7 : return ids

Algorithm 2: Privacy-preserving Similar Sequence Query
(SSQ) algorithm between a query and sequences of genomic
data in the outsourced database.k-NN denotes thek-Nearest
Neighbors algorithm.

We extend the two-party protocol of [3] to the outsourcing sce-
nario and carefully optimize the implementation using a mix of dif-
ferent sharings and minimize costly operations, such as conversions
between sharings and the operations that require interaction/heavy
computations. Our detailed algorithm is given in Algorithm 1 and
its data representation is given in Figure 3. The Similar Sequence
Query (SSQ) algorithm is given in Algorithm 2.

More detailed, we improve the protocol of [3] by using more
lightweight GMW [22] instead of GCs [46] for comparisons, Corre-
lated Oblivious Transfers (C-OTs) [4] instead of general OTs, and
a more efficient k-NN algorithm in Yao sharing. Although we use
a more efficient C-OTs, we require two C-OTs instead of one OT,
which is due to the fact that the Semi-Trusted Third Parties (STTPs)
do not possess the LUTs in cleartext. However, the cost for OTs
remain approximately the same as in the protocol of [3] for large
databases (less than 1% overhead for a database with 10 000 se-
quences). In contrast to [13], we compute most of the functionalities
using generic protocols which enables arbitrary extensions of our
protocol. A possible and cheap extension of our protocol would be a
thresholding protocol that reveals only those sequence indices that
have distances smaller than some threshold T . This protocol has
the advantage that it dispenses with the need of finding the k most
similar sequences, which improves the complexity from O

(
kN

)
to

O
(
N
)
.

We optimize the SSQ algorithm by mixing different SMPC pro-
tocols. First, the blocks of the query and LUT are secret-shared in
Boolean sharing. Boolean shares are then used to compare the block
values of the query with the block values of the LUT, namely, the
block value i of the query with each of theω block values of the LUT
in the row i . Afterwards in Arithmetic sharing, shared distances
or zeros are chosen depending on the comparison results between
the query and LUT. For this, we use two C-OTs for multiplying
the comparison result r ∈ {0, 1} with the distances in Arithmetic
sharing. Since all distances are valid for the sequence (each block
yields either a valid block distance or zero) and only need to be
summed up for resulting in the total distance between the query
and sequence, we perform — free in Arithmetic sharing — addition
operations for all distances in the sequence.

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

321

q1

q2

q3

Query

e1

d1

e2

d2

e3

d3
e4

d4

e5

d5

e6

d6
e7

d7

e8

d8

e9

d9

LUT with distances
to Sequence 1

e
1 ?
=

q
1

d
1

e
2 ?
=

q
1

d
2

e
3 ?
=

q
1

d
3

e
4 ?
=

q
2

d
4

e
5 ?
=

q
2

d
5

e
6 ?
=

q
2

d
6

e
7 ?
=

q
3

d
7

e
8 ?
=

q
3

d
8

e
9 ?
=

q
3

d
9

e3

?
=

q1

d3

e3

?
=

q1

d12

e3

?
=

q1

d21

e6

?
=

q2

d6

e6

?
=

q2

d15

e6

?
=

q2

d24

e9

?
=

q3

d9

e9

?
=

q3

d18

e9

?
=

q3

d27

e 1
?=

q 1

d 1

e 2
?=

q 1

d 2

e 3
?=

q 1

d 3

e 1
?=

q 1

d 10

e 2
?=

q 1

d 11

e 3
?=

q 1

d 12

e 1
?=

q 1

d 19

e 2
?=

q 1

d 20

e 3
?=

q 1

d 21

se
q
u
en

ce
le
n
g
th

n

nu
mber

of
seq

uen
ces

N
LUT width ω

Figure 3: Data representation of the Similar Sequence Query algorithm. For computing the Edit Distance to three sequences,
the values of the blocks in the client’s query {q1, q2, q3} are compared with the precomputed values in the secret-shared
Look-Up Tables (LUTs) {e1, . . . , e9}. Based on the comparison, we process the precomputed distances {d1, . . . ,d9}, {d10, . . . ,d18},
{d19, . . . ,d27} to the Sequences 1, 2, and 3, respectively. For example, for Sequence 1 in the first block e1 is compared with q1;
if they are equal, the precomputed distance d1 is returned, and 0 otherwise. The computation of the LUT is parallelized using
Single Instruction Multiple Data gates.

4.3 Privacy-Preserving Similar Sequence
Queries

In this work, we consider a system model where the client wants to
find k genome sequences that are most similar to its query among
the sequences stored in the outsourced database. Here, we proceed
as follows: the distances to single sequences are first calculated
using the Similar Sequence Query (SSQ) algorithm, and afterwards,
the distances are used along with the corresponding IDs for finding
the k closest distances using the k-NN algorithm (see Algorithm 2).

Choice of the Algorithm for Finding k Most Similar Sequences.
Generally, we can think of two possible methods for efficiently find-
ing the k most similar sequences: the k-Nearest Neighbors (k-NN)
algorithm and sorting networks. The first has a small AND-size
for small k , but a large AND-depth of O

(
n
)
, because the algorithm

is difficult to parallelize, whereas the second have a logarithmic
AND-depth and AND-size of O

(
n log2 n

)
, which is independent

of k . Since the resulting circuit size of a sorting network is by an
order of magnitude larger for small k , it is practically less efficient
even in Boolean sharing than k-NN in Yao sharing, so we use the
efficient algorithm for finding indices of the closest distances (k-NN
with precomputed distances) in Yao sharing that is already imple-
mented in ABY [25]. In EPISODE, we utilize the highly efficient
k-NN implementation in ABY with Nk(2ℓ + ⌈log2 N ⌉) AND gates,
where N is the number of sequences, k is the number of most sim-
ilar sequences, and ℓ is the bit-length of the distances. Since the
distances are shared in Arithmetic sharing, we first convert them
to Yao sharing.

Communication. Our SSQ algorithm consists of three parts: com-
parison, OTs, and k-NN. The first part requires 6tψωκb ′ bits to be
transferred (see Table 1 on p. 3 for the explanation of all parame-
ters). For our C-OT-based protocol, 2tω(N ·NPoT(⌈log2(tb ′)⌉ +κ))
bits of communication are required. NPoT(x) (Next Power of Two)
denotes a function that takes a rational number as input and out-
puts the smallest number that is a power of two and is equal or
greater than x . For the last part (the k-NN algorithm), we require
2Nkκ(2⌈log2(tb ′)⌉ + ⌈log2 N ⌉) bits of communication. The total
communication is approximately 2tω(3ψκb ′+N ·NPoT(⌈log2(tb ′)⌉))+
2Nkκ(2⌈log2(tb ′)⌉ + ⌈log2 N ⌉) bits.

4.4 Security Analysis
Our protocol is based on the outsourcing protocol described in [28],
which gives a generic construction and a security proof for turning
an N -party SMPC protocol into a secure outsourcing scheme where
data is oursourced to N non-colluding Semi-Trusted Third Parties
(STTPs).

We instantiate SMPC with the N = 2-party ABY framework [18].
Our protocols implement the algorithm for SSQs of [3]. Our proto-
cols are even secure against malicious data providers and clients
(who all send a single message in the protocol), and secure against
semi-honest STTPs. Since data providers do not receive any out-
puts, their malicious input cannot affect the privacy of the protocol.
Moreover, any changes to the client’s single input message corre-
spond to a different input to the ideal functionality, which yields
security against malicious clients.

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

322

Table 2: Run-time and communication comparison of our algorithm with that of Asharov et al. [3] with sequence length
n=3 470, number of nearest sequences k=5, block length b=4, padded block length b ′=16, and number of data providersψ=1
for different parameters N (number of sequences) and ω (Look-Up Table width). The preprocessing stage is not included in
the total run-time. A plot is given in Figure 4 in Appendix A.

N ω
Run-time (localhost / LAN) in s Communication in MB
[3] Ours Improvement [3] Ours Improvement

1 000 25 6.03 / - 1.07 / 1.89 5.6× / - 180 130 1.3×
2 000 30 14.11 / - 2.20 / 4.07 6.4× / - 340 268 1.2×
4 000 35 31.60 / - 4.83 / 9.02 6.5× / - 660 571 1.1×

Table 3: Run-time comparison of our Edit Distance algo-
rithm with that of Cheng et al. [13] with sequence length n,
Look-Up Table widthω=20, and block size b=2.

n
Run-time (LAN)

[13] Ours Improvement
10 1.2 s 2.1ms 571×
20 2.2 s 3.0ms 733×
30 3.4 s 3.1ms 1 096×
40 4.7 s 3.1ms 1 516×
50 6.0 s 3.2ms 1 875×

Theorem 4.1. Assume that the protocols implemented in ABY [18]
are secure against semi-honest adversaries and the two STTPs are
semi-honest and non-colluding. Then our protocols securely implement
the algorithm of Asharov et al. [3].

Proof (sketch). The proof follows immediately from the proof
in [28] and the fact that the protocols run between the two STTPs
are secure against semi-honest adversaries and operate on secret-
shared data. More detailed, consider shares ⟨x⟩ti and ⟨x⟩t1−i of an
input value x shared by Party Pi in sharing type t ∈ {A,B,Y } cor-
responding to Arithmetic, Boolean, and Yao sharing, respectively.
Party P1−i gets ⟨x⟩t1−i from Pi . Party P1−i cannot derive any infor-
mation from ⟨x⟩t1−i without knowing ⟨x⟩ti . Similarly, the security
of the STPC protocols and STPC protocol conversions that ABY is
based on guarantees that no information can be derived from the
intermediate shares (i.e., secret-shared result of any operation on
shares). The C-OT-based multiplication (which is a straightforward
extension of [3]) is performed on secret-shared values and thus does
not reveal any information about the cleartext values. The STTPs do
not learn any new information from the secret-shared outputs. By
aggregating the joint database, the data providers have no outputs
and thus cannot infer any information from the protocol. In view of
the above arguments: (i) no semi-honest STTP can obtain any new
information on the genome data from the shares, (ii) no actively
corrupted server can obtain any information on the genome data
contained in the client’s query or other server’s database, and (iii)
no actively corrupted client can obtain new information on the
genome data contained in the database of any of the servers.

4.5 Data Aggregation from Multiple Data
Providers

We see three possible approaches of aggregating data in the out-
sourced database:

(1) The most intuitive approach is to attach a Look-Up Table
(LUT) to each genome sequence, which was used in [13].
This approach dispenses with the need of LUT management
for the Similar Sequence Query (SSQ) protocol and when
updates occur. Since each genome sequence has its own LUT
and is thus independent of other sequences, the data provider
only has to upload the secret-shared new sequence and the
corresponding secret-shared LUT to the Semi-Trusted Third
Parties (STTPs). This approach is in particular effective if
there is a very large number of participating data providers
in the protocol. The best-case scenario for this setting is
whenψ=N , i.e., each institution uploads a single genome.

(2) A more realistic approach is to keep one LUT for each data-
base. This approach has the advantage that the number of
data providers is commonly not very large, e.g., ten big in-
stitutions is a realistic scenario. Since the STTPs know how
many and which sequences came from which data provider,
this approach does not violate privacy of the protocol by us-
ing predefined LUTs for particular genome sequences. Using
this approach, only ψ comparisons with LUTs have to be
performed, which is a small overhead if the number of se-
quences N is large. Due to the performance advantages over
other options, we choose this approach in our SSQ protocol.

(3) The least realistic approach is to aggregate LUTs of multiple
data providers. For this, the institutions count the frequencies
of all possible alleles for a block in their database (the most
commonly used block size in [3] is 16). For example, a fre-
quency table for a 16-allele block would yield 416=4.3 billion
values. These values first have to be aggregated from multi-
ple databases. Afterwards, thew (width of the LUT) maxima
have to be found from the dataset, e.g., using the k-Nearest
Neighbors (k-NN) algorithm. This approach is performed for
each block (there are 15million blocks in a whole-genome
sequence). Therefore, this approach is impractical and we
do not discuss it further.

5 EVALUATION
We implemented all our protocols using the ABY framework [18].
We run our two Semi-Trusted Third Parties (STTPs) each on a stan-
dard PC equipped with an Intel Core i7-4770K 3.5 GHz processor

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

323

Table 4: Run-time and communication comparison of our Similar Sequence Query algorithm with that of Cheng et al. [13]
with sequence length n=500, Look-Up Table width ω=20, block size b=5, number of blocks t=20, number of most similar
sequences k=10, and number of sequences N . A plot is given in Figure 4 in Appendix A

N
Run-time (LAN) Communication

[13] Ours Improvement [13] Ours Improvement
100 25min 62ms 24 193× 50MB 3MB 16×
200 50min 96ms 31 250× 100MB 4MB 25×
300 80min 132ms 36 363× 150MB 5MB 30×
400 105min 171ms 36 842× 200MB 6MB 33×
500 135min 207ms 39 130× 250MB 7MB 35×

and 32GB RAM. They are connected via a 1Gbit/s network with an
average latency of 0.1ms. All protocols are instantiated with a sym-
metric security parameter of 128 bit. We intentionally exclude the
evaluation part for the preprocessing (extensively discussed in [3])
and aggregation of the databases (extensively discussed in [42]).
Furthermore, the initialization phase (aggregation of the databases)
is a negligible one-time expense and securing the communication
channels using TLS does not add any significant overhead. Cor-
rectness and accuracy of the algorithms of Asharov et al. on real
genomic data was shown in [3, Sect. 5]. Therefore, we use artificial
data in our benchmarks because the performance of SMPC depends
only on the size of the data, but not on concrete values.

5.1 Comparison with Cheng et al. [13]
The most recent related work that covers privacy-preserving Edit
Distance (ED) computations in the outsourcing scenario is [13].
Unfortunately, the authors give the exact run-times only for the
ED computation between two sequences in Table 3 of this paper.
We compare our ED run-times in the system setting of [13], i.e.,
the outsourcing scenario, with the run-times of their most efficient
protocol. We achieve a significant run-time improvement over [13]
of 500× to 1 800× (see Table 3).

We can increase this even further whenmany sequences are com-
puted in parallel. For this, we (optimistically for [13]) approximate
the benchmarking results of [13, Figure 4 (a)] in Table 4 and in Fig-
ure 4 in Appendix A. As a result of the comparison, our algorithm
outperforms that of Cheng et al. [13] by more than factor 24 000×
in run-time and by more than factor 16× in communication.

5.2 Comparison with Asharov et al. [3]
Here, we compare our privacy-preserving algorithm for ED and
Similar Sequence Query (SSQ) with [3].

In Table 2 and in Figure 4 in Appendix A, we compare our algo-
rithms in the benchmark setting of [3, Table 3], where both parties,
client and server, are run on one machine (our protocol can triv-
ially be applied for direct STPC between the client and server). In
addition, we benchmark our algorithm in the LAN setting.

The authors of [3] do not detail their hardware setting, whereas
we benchmark our algorithm on commodity hardware. Our al-
gorithm outperforms that of Asharov et al. [3] by factor 5-6× in
run-time which is due to more light-weight building blocks. Fur-
thermore, our algorithm is still by factor 3× faster even on a LAN,
compared to the localhost benchmarks of [3]. The communication

Table 5: Large-scale benchmarks of our Similar Sequence
Query algorithm for N sequences of length n, LUT width
ω=30, number of data providersψ=10, number of most sim-
ilar sequences k=10, block size b=5, and padded block size
b ′=16. A plot is given in Figure 5 in Appendix A.

N n Run-time Communication
1 K 100 0.5 s 21.1MB
10K 100 3.6 s 138.9MB
100K 100 24.2 s 1.4 GB
1M 100 4.0min 14.9 GB
1K 1K 1.2 s 129.5MB
10K 1K 5.9 s 457.8MB
100K 1K 1.1min 3.9 GB
1M 1K 8.3min 38.8 GB
1K 10K 8.5 s 1.2 GB
10K 10K 22.4 s 3.5 GB
100K 10K 4.1min 26.6 GB
1M 10K 39.6min 257.2 GB

Table 6: Run-times and communication for Similar Se-
quence Query on whole-genome genome sequences based
on the computation of sub-sequences of smaller lengths
with the following parameters: number of sequences N ,
Look-Up Table widths ω, sequence length n=75M, block
size b=5, padded block size b ′=16, number of most simi-
lar sequences k=10, number of data providers ψ=10, num-
ber of blocks t=15M, and bit-length of the distances
β=⌈log2(tb ′)⌉=28. A plot is given in Figure 6 in Appendix A.

N ω Run-time Communication
10 10 2.9 h 2.3 TB
100 10 3.2 h 2.4 TB

1 000 10 6.8 h 3.5 TB
10 000 10 1.2 d 14.3 TB

10 20 5.7 h 4.6 TB
100 20 6.3 h 4.8 TB

1 000 20 12.5 h 7.0 TB
10 000 20 2.4 d 28.6 TB

of our algorithm is slightly lower. This is due to the more efficient

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

324

C-OTs instead of general OTs (see Section 4.2) and a more efficient
algorithm for finding k most similar sequences (see Section 3.3.2).

5.3 Batching the Execution for Large-Scale
Benchmarks

For some of our large-scale benchmarks, we split the execution into
multiple steps (i.e., we evaluate subcircuits instead of the entire
circuit) because our STTPs ran out of RAM. We split our algorithms
in a black-box way, i.e., without modifying the primitive protocols
such as distance computation and k-Nearest Neighbors (k-NN). For
the distance computation, this only increases the number of com-
munication rounds because the computation is independent for
each SNP, whereas for the k-NN algorithm we have to perform
additional computation because the result depends on all input
elements, which, however, turns out to be very cheap in terms of
computation and does not add any significant overhead to the over-
all protocol. For example, for one million input genome sequences
in total in the k-NN protocol with k=10 and 100 000 batch size, we
have to perform 10 iterations with 100 000 input size and one itera-
tion of k-NN on the joint output of size 10 · k = 100. Since k-NN
has linear complexity in the number of inputs, the total overhead in
the circuit size is ∼ 100/1 000 000 = 0.000 1 %, which is negligible.
This also does not violate privacy, because the data and interme-
diate results all remain in secret-shared form and, hence, leak no
information.

5.4 Large-Scale Benchmarks
For our large-scale benchmarks on thousands tomillions of genomes,
we define global parameters of the block size b=5, padded block
size b ′=16, number of data providers ψ=10, and the width of the
LUT ω=30 (for better accuracy). The results of the benchmarks are
given in Table 5 and in Figure 5 in Appendix A. As can be seen in the
table, practical large-scale privacy-preserving SSQs on sequences of
medium lengths are possible. For the sequence lengths n=1 K–10K
and any number of sequences, and n=100 with the number of se-
quences N=100 K, the run-times are always in the order of seconds.
For all other parameters, the run-times are in the order of min-
utes (even for databases with N=1M sequences). A few minutes
is a reasonable delay in practice for SSQ which shows real-world
applicability of our protocol to large-scale SSQ.

5.5 Whole-Genome Benchmarks
For our whole-genome benchmarks, we set the genome sequence
length to n=75M (the same as in [44]) and the LUT width to
ω ∈ {10, 20}. As shown in [13], a LUT width reduction slightly
reduces accuracy, but significantly reduces the communication and
computation of the protocol. The results of our benchmarks are
given in Table 6 and in Figure 6 in Appendix A.

As can be seen in the table, running our protocol on a few hun-
dred whole-genome sequences is practical. For example, a protocol
run on up to N=1 000 sequences takes just a few hours. However,
if we extrapolate the results to the dataset of [44] with N=1M se-
quences, we would require months to execute the protocol. Thus,
we propose either to use our protocol for whole-genome runs with
relatively small databases (a few hundred sequences) or to use
high-performance hardware.

6 CONCLUSION
In this work, we designed, implemented, and evaluated EPISODE,
a scalable protocol for distributed privacy-preserving Similar Se-
quence Queries (SSQs), which outperforms the state of the art by or-
ders of magnitude. Our protocol for SSQ is based on the approxima-
tion of Edit Distance (ED) computation of [3]. SSQ is performed on
two Semi-Trusted Third Parties (STTPs) that obliviously compute in-
dices of thek most similar sequences to the client’s query. Our proto-
col is not only scalable, but it also substantially reduces the amount
of communication and computation of the client. We implement
our protocol using a mix of generic SMPC protocols and Correlated
Oblivious Transfer (C-OT), which (i) improves the efficiency of our
SSQ protocol by computing its parts using techniques that are most
efficient for the particular tasks, which gives a greater than 20 000×
speed-up compared to the most recent work of Cheng et al. [13],
and (ii) extend the protocol of Asharov et al. [3] for outsourcing
while reducing its communication and computation overhead.

Acknowledgements. This work has been co-funded by the DFG
as part of project E4 within the CRC 1119 CROSSING, and by the
German Federal Ministry of Education and Research (BMBF) and
the Hessen State Ministry for Higher Education, Research and the
Arts (HMWK) within CRISP.

REFERENCES
[1] Md Momin Al Aziz, Dima Alhadidi, and Noman Mohammed. 2017. Secure

approximation of edit distance on genomic data. In BMC Medical Genomics.
[2] Gilad Asharov, Daniel Demmler, Michael Schapira, Thomas Schneider, Gil Segev,

Scott Shenker, andMichael Zohner. 2017. Privacy-preserving interdomain routing
at Internet scale. In Privacy Enhancing Technologies Symposium (PETS).

[3] Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. 2018. Privacy-
preserving search of similar patients in genomic data. In Privacy Enhancing
Technologies Symposium (PETS).

[4] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.
More efficient oblivious transfer and extensions for faster secure computation.
In ACM SIGSAG Conference on Computer and Communications Security (CCS).

[5] Mikhail J. Atallah, Florian Kerschbaum, and Wenliang Du. 2003. Secure and
private sequence comparisons. In ACM Workshop on Privacy in the Electronic
Society (WPES).

[6] Mikhail J. Atallah and Jiangtao Li. 2005. Secure outsourcing of sequence compar-
isons. In International Journal of Information Security.

[7] Erman Ayday. 2016. Cryptographic solutions for genomic privacy. In Financial
Cryptography and Data Security (FC).

[8] Donald Beaver. 1996. Correlated pseudorandomness and the complexity of private
computations. In ACM Symposium on Theory of Computing (STOC).

[9] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Philip Rogaway. 2013.
Efficient garbling from a fixed-key blockcipher. In IEEE Symposium on Security
and Privacy (S&P).

[10] Dan Bogdanov, Liina Kamm, Sven Laur, and Ville Sokk. 2018. Implementation and
evaluation of an algorithm for cryptographically private principal component
analysis on genomic data. Computational Biology and Bioinformatics (2018).

[11] Charlotte Bonte, EleftheriaMakri, AminArdeshirdavani, Jaak Simm, YvesMoreau,
and Frederik Vercauteren. 2018. Towards practical privacy-preserving genome-
wide association study. BMC Bioinformatics (2018).

[12] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and
Thomas Schneider. 2018. HyCC: Compilation of Hybrid Protocols for Practical
Secure Computation. In CCS.

[13] Ke Cheng, Yantian Hou, and Liangmin Wang. 2018. Secure similar sequence
query on outsourced genomic data. In ACM Asia Conference on Computer and
Communications Security (ASIACCS).

[14] Marco Chiesa, Daniel Demmler, Marco Canini, Michael Schapira, and Thomas
Schneider. 2017. SIXPACK: Securing internet exchange points against curious
onlookers. In International Conference on emerging Networking EXperiments and
Technologies (CoNEXT).

[15] Hyunghoon Cho, David J Wu, and Bonnie Berger. 2018. Secure genome-wide
association analysis using multiparty computation. Nature biotechnology (2018).

[16] Zoë Corbyn. 2018. How taking a home genetics test could help catch a mur-
derer. https://www.theguardian.com/science/2018/dec/01/how-home-dna-tests

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

325

https://www.theguardian.com/science/2018/dec/01/how-home-dna-tests-are-solving-cold-cases-golden-state-killer
https://www.theguardian.com/science/2018/dec/01/how-home-dna-tests-are-solving-cold-cases-golden-state-killer

-are-solving-cold-cases-golden-state-killer
[17] Daniel Demmler, Kay Hamacher, Thomas Schneider, and Sebastian Stammler.

2017. Privacy-preserving whole-genome variant queries. In Cryptology and
Network Security (CANS).

[18] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - a frame-
work for efficient mixed-protocol secure two-party computation. In Network and
Distributed System Security Symposium (NDSS).

[19] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider,
Shaza Zeitouni, and Michael Zohner. 2017. Pushing the communication barrier
in secure computation using lookup tables. In Network and Distributed System
Security Symposium (NDSS).

[20] European Bioinformatics Institute. 2017. Genome Reference Consortium Human
Build 38, Ensembl release 91. http://dec2017.archive.ensembl.org/Homo_sapiens
/Info/Annotation.

[21] Roger Allan Ford and W. Nicholson Price II. 2016. Privacy and accountability in
black-box medicine. Michigan Telecommunications and Technology Law Review
(2016).

[22] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental
game. In ACM Symposium on Theory of Computing (STOC).

[23] Mathias Humbert, Erman Ayday, Jean-Pierre Hubaux, and Amalio Telenti. 2015.
On non-cooperative genomic privacy. In Financial Cryptography and Data Secu-
rity (FC).

[24] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending oblivious
transfers efficiently. In Annual International Cryptology Conference (CRYPTO).

[25] Kimmo Järvinen, Helena Leppäkoski, Elena Simona Lohan, Philipp Richter,
Thomas Schneider, Oleksandr Tkachenko, and Zheng Yang. 2019. PILOT: Practi-
cal privacy-preserving Indoor Localization using OuTsourcing. In IEEE European
Symposium on Security and Privacy (EuroS&P).

[26] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. 2008. Towards practical privacy
for genomic computation. In IEEE Symposium on Security and Privacy (S&P).

[27] Thomas Jones. 2010. The rise of DNA analysis in crime solving. https://www.th
eguardian.com/politics/2010/apr/10/dna-analysis-crime-solving

[28] Seny Kamara and Marina Raykova. 2011. Secure outsourced computation in a
multi-tenant cloud. In IBM Workshop on Cryptography and Security in Clouds.

[29] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved garbled circuit: Free
XOR gates and applications. In International Colloquium on Automata, Languages,
and Programming (ICALP).

[30] Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady.

[31] Md Safiur Rahman Mahdi, Mohammad Zahidul Hasan, and Noman Mohammed.
2017. Secure sequence similarity search on encrypted genomic data. In IEEE/ACM
Conference on Connected Health: Applications, Systems and Engineering Technolo-
gies.

[32] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004. Fairplay-secure
two-party computation system. In USENIX Security Symposium.

[33] Alexandros Mittos, Bradley Malin, and Emiliano De Cristofaro. 2019. System-
atizing genome privacy research: A privacy-enhancing technologies perspective.
Proceedings on Privacy Enhancing Technologies (PETS).

[34] Moni Naor and Benny Pinkas. 2001. Efficient oblivious transfer protocols. In
Symposium on Discrete Algorithms (SODA).

[35] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. 2012. A new approach to
practical active-secure two-party computation. In Annual International Cryptol-
ogy Conference (CRYPTO).

[36] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:
Private set intersection using permutation-based hashing. In USENIX Security
Symposium.

[37] Alice B. Popejoy and Stephanie M. Fullerton. 2016. Genomics is failing on
diversity. Nature News (2016).

[38] Thomas Schneider and Oleksandr Tkachenko. 2018. EPISODE: Efficient PrIvacy-
preserving Similar sequence queries on Outsourced genomic DatabasEs. InWork-
shop on Privacy in the Electronic Society (WPES).

[39] Thomas Schneider and Michael Zohner. 2013. GMW vs. Yao? Efficient secure
two-party computation with low depth circuits. In Financial Cryptography and
Data Security (FC).

[40] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, and Farinaz
Koushanfar. 2015. Compacting privacy-preserving k-nearest neighbor search
using logic synthesis. In ACM/EDAC/IEEE Design Automation Conference (DAC).

[41] João Sá Sousa, Cédric Lefebvre, Zhicong Huang, Jean Louis Raisaro, Carlos
Aguilar-Melchor, Marc-Olivier Killijian, and Jean-Pierre Hubaux. 2017. Efficient
and secure outsourcing of genomic data storage. BMC Medical Genomics (2017).

[42] Oleksandr Tkachenko, Christian Weinert, Thomas Schneider, and Kay Hamacher.
2018. Large-scale privacy-preserving statistical computations for distributed
genome-wide association studies. In ACM Asia Conference on Computer and
Communications Security (ASIACCS).

[43] BingWang,Wei Song,Wenjing Lou, and Y. ThomasHou. 2017. Privacy-preserving
pattern matching over encrypted genetic data in cloud computing. In IEEE Con-
ference on Computer Communications (INFOCOM).

[44] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and
Diyue Bu. 2015. Efficient genome-wide, privacy-preserving similar patient query
based on private edit distance. In ACM SIGSAG Conference on Computer and
Communications Security (CCS).

[45] Kris A.Wetterstrand. 2017. DNA sequencing costs: Data from the NHGRI Genome
Sequencing Program (GSP). http://www.genome.gov/sequencingcostsdata.

[46] Andrew Yao. 1986. How to generate and exchange secrets. In Foundations of
Computer Science (FOCS).

[47] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two halves make a whole. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT).

[48] Ruiyu Zhu and Yan Huang. 2017. Efficient privacy-preserving general edit
distance and beyond. Cryptology ePrint Archive, Report 2017/683. https:
//ia.cr/2017/683.

A VISUALIZED BENCHMARKS

1 000 2 000 4 000
0

10

20

30

Ru
n-
tim

e
in

s

Asharov et al. [3]
This work

100 200 300 400 500
50ms

1 s

1min

1 h

Ru
n-
tim

e
Cheng et al. [13]

This work

100 200 300 400 500

0

50

100

150

200

250

Number of sequences N

Co
m
m
un

ic
at
io
n
in

M
B

Cheng et al. [13]
This work

(a)

(b)

(c)

Figure 4: (a) A run-time comparison of our Similar Sequence
Query algorithm with that of Asharov et al. [3] with se-
quence length n=3 470, number of nearest sequences k=5,
block lengthb=4, padded block lengthb ′=16, and number of
data providersψ=1 performed locally for different numbers
of sequencesN and LUTwidthsω. (b,c) A run-time and com-
munication comparison of our SSQ algorithm with that of
Cheng et al. [13] with n=500, b=5, k=10, ω=20, and number
of blocks t=20. Numbers are given in Tables 2 (a) and 4 (b,c).

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

326

https://www.theguardian.com/science/2018/dec/01/how-home-dna-tests-are-solving-cold-cases-golden-state-killer
http://dec2017.archive.ensembl.org/Homo_sapiens/Info/Annotation
http://dec2017.archive.ensembl.org/Homo_sapiens/Info/Annotation
https://www.theguardian.com/politics/2010/apr/10/dna-analysis-crime-solving
https://www.theguardian.com/politics/2010/apr/10/dna-analysis-crime-solving
http://www.genome.gov/sequencingcostsdata
https://ia.cr/2017/683
https://ia.cr/2017/683

103 104 105 106

100

101

102

103

Number of sequences N

Ru
n-
tim

e
in

s

n=10 K
n=1 K
n=100

103 104 105 106
101

102

103

104

105

Number of sequences N

Co
m
m
un

ic
at
io
n
in

M
B

n=10 K
n=1 K
n=100

Figure 5: Large-scale benchmarks of our Similar Sequence Query algorithm for N sequences of length n, LUT width w=30,
number of data providersψ=10, number of most similar sequence queries k=10, block size b=5, and padded block size b ′=16.
Numbers are given in Table 5.

10 100 1 000 10 000

3

10

30

Number of sequences N

Ru
n-
tim

e
in

h

ω=20
ω=10

10 100 1 000 10 000

3

10

30

Number of sequences N

Co
m
m
un

ic
at
io
n
in

TB

ω=20
ω=10

Figure 6: Run-times and communication for Similar SequenceQuery onwhole-genome genome sequences based on the compu-
tation of sub-sequences of smaller lengths with the following parameters: number of sequences N , Look-Up Table widths ω,
sequence length n=75M, block size b=5, padded block size b ′=16, number of most similar sequences k=10, number of data
providersψ=10, number of blocks t=15M, and bit-length of the distances β=⌈log2(tb ′)⌉=28. Numbers are given in Table 6.

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

327

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Related Work
	3 Preliminaries
	3.1 Genomic Primer
	3.2 Similar Sequence Queries (SSQs)
	3.3 Secure Multi-Party Computation (SMPC)

	4 Our Privacy-Preserving SSQ protocol
	4.1 System Model
	4.2 Privacy-Preserving Approximated Edit Distance
	4.3 Privacy-Preserving Similar Sequence Queries
	4.4 Security Analysis
	4.5 Data Aggregation from Multiple Data Providers

	5 Evaluation
	5.1 Comparison with Cheng et al. asiaccs18
	5.2 Comparison with Asharov et al. asharov2017privacy
	5.3 Batching the Execution for Large-Scale Benchmarks
	5.4 Large-Scale Benchmarks
	5.5 Whole-Genome Benchmarks

	6 Conclusion
	References
	A Visualized Benchmarks

