
GraphSE2: An Encrypted Graph Database for Privacy-Preserving
Social Search

Shangqi Lai
∗

Monash University

Melbourne, Australia

shangqi.lai@monash.edu

Xingliang Yuan

Monash University

Melbourne, Australia

xingliang.yuan@monash.edu

Shi-Feng Sun
∗

Monash University

Melbourne, Australia

shifeng.sun@monash.edu

Joseph K. Liu
†

Monash University

Melbourne, Australia

joseph.liu@monash.edu

Yuhong Liu

Santa Clara University

Santa Clara, U.S.

yhliu@scu.edu

Dongxi Liu

Data61, CSIRO

Syndey, Australia

dongxi.liu@data61.csiro.au

ABSTRACT
In this paper, we propose GraphSE

2
, an encrypted graph database

for online social network services to address massive data breaches.

GraphSE
2
preserves the functionality of social search, a key enabler

for quality social network services, where social search queries are

conducted on a large-scale social graph and meanwhile perform

set and computational operations on user-generated contents. To

enable efficient privacy-preserving social search, GraphSE
2
pro-

vides an encrypted structural data model to facilitate parallel and

encrypted graph data access. It is also designed to decompose com-

plex social search queries into atomic operations and realise them

via interchangeable protocols in a fast and scalable manner. We

build GraphSE
2
with various queries supported in the Facebook

graph search engine and implement a full-fledged prototype. Ex-

tensive evaluations on Azure Cloud demonstrate that GraphSE
2
is

practical for querying a social graph with a million of users.

CCS CONCEPTS
• Security and privacy → Management and querying of en-
crypted data; Social network security and privacy; Privacy-
preserving protocols;

KEYWORDS
Social Search, Graph Database, Encrypted Query Processing

ACM Reference Format:
Shangqi Lai, Xingliang Yuan, Shi-Feng Sun, Joseph K. Liu, Yuhong Liu,

and Dongxi Liu. 2019. GraphSE
2
: An Encrypted Graph Database for Privacy-

Preserving Social Search. In ACM Asia Conference on Computer and Com-
munications Security (AsiaCCS ’19), July 9–12, 2019, Auckland, New Zealand.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3321705.3329803

∗
Also with Data61, CSIRO, Melbourne, Australia.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand
© 2019 Association for Computing Machinery.

1 INTRODUCTION
Data breaches in online social networks (OSNs) affect billions of

individuals and raise critical privacy concerns across the entire

society [28, 36]. Besides, driven by the demands on huge storage

and computation resources, OSN service providers utilise public

commercial clouds as their back-end data storage [3, 4, 26], which

further broadens the attack plane [54]. Therefore, there is an ur-

gent call to improve the control of data confidentiality for cloud

providers [35, 38, 65], in particular for current OSN services. The

prevailing consensus to prevent data leakage is encryption. How-

ever, this approach impairs the functionality of social search, a key
enabler for quality OSN services [57]. Social search allows users to

search content of interests created by their friends. Compared with

traditional web search, it produces personalised search results and

serves for a wide range of OSN services such as friend discovering

and user targeting.

The first task to enable privacy-preserving social search is how

to scalably query over very large encrypted social graphs. On the

one hand, a typical social graph can contain millions or even billions

of users. On the other hand, users may generate large volume of

contents which will be queried for social search related services [23].

The second and more challenging task is how to realise complex

social search queries in an efficient and securemanner. As developed

in plaintext systems (e.g., Facebook’s Unicorn [23]), queries of social

search contains set operations on graph-structured data, and the

retrieved contents from the graph need to further be analysed (e.g.,

aggregation and sorting) for advanced services such as friendship-

based recommendation.

In the literature, some work [10, 45] leverages generic building

blocks (e.g., garbled circuits and oblivious data structures) to devise

secure computational frameworks for graph algorithms. However,

those frameworks do not appear to be scalable for low latency

queries over large graphs. For example, a recent garbled circuits

based framework [45] takes several minutes to complete a sorting

algorithm over a graph with only tens of thousands of nodes. Other

work focuses on dedicated privacy-preserving graph algorithms,

e.g., neighbour search [21, 30], and shortest distance queries [41,

60, 62, 63]. Unfortunately, the above algorithms are limited for or

different from the functionality of social search queries.

Contributions. To bridge the gap, in this paper, we propose and im-

plement GraphSE
2
, the first encrypted graph database that supports

ar
X

iv
:1

90
5.

04
50

1v
2

 [
cs

.C
R

]
 1

5
M

ay
 2

01
9

https://doi.org/10.1145/3321705.3329803

privacy-preserving social search. Unlike prior work which either

suffers from low scalability or limited functionality, GraphSE
2
en-

ables scalable queries over very large encrypted social graphs, and

preserves the rich functionality of the plaintext social search sys-

tems. Our contributions can be summarised as follows:

• We propose an encrypted and distributed graph model built on

social graph modelling, searchable encryption, and the data par-

tition technique. It facilitates queries over encrypted graph par-

titions in parallel, and maintains the locality of graph data and

user-generated contents for low query latency.

• We devise mixed yet interchangeable protocols to enable complex

social search functions. The way of doing this is to decompose

queries into atomic operations (i.e., set, arithmetic, and sorting

operations) and then adapt suitable cryptographic primitives

for efficient realisation. All these operations are tailored to be

executed in parallel.

• We realise query operators of the Facebook’s social search system

Unicorn [23], i.e., term, and, or, difference, and apply. We

also design a query planner that can parse a query to atomic

operations and initiate the corresponding primitives.

• We formally prove the security of our proposed query proto-

cols under the real and ideal paradigm. Queries, graph data, and

results are protected throughout the query process.

• We show the practicality of GraphSE
2
by implementing a pro-

totype which is readily deployable. It leverages Spark [68] for

setup (data partition and encryption), Redis [53] as the storage

back-end, and uses Apache Thrift [56] to implement the query

planner and query processing logic.

Our comprehensive evaluation on the Youtube dataset [42] with

1 million nodes confirms that all atomic operations are of practi-

cal performance. For set queries, GraphSE
2
retrieves a content list

with 500 entities within 10 ms. For an average user (130 friends),

GraphSE
2
takes at most 20 ms if the set operation involves two

indexing terms (attributes); and it takes no more than 100 ms

for five indexing terms. Regarding the computational operations,

GraphSE
2
takes 100 ms to handle arithmetic computations over 10

4

entities, and 450 ms to sort 128 entities. As a summary, most of the

queries for an average user are processed within 1 s, and throughput

is reduced at most 49% compared to the plaintext queries.

Organisation. The rest of this paper is structured as follows. We

discuss related work in Section 2. After that, we describe the system

overview in Section 4, and present the encrypted and distributed

graph data model and the design of atomic operations in Section 5.

In Section 6, we introduce the realisation of privacy-preserving

social search queries and their security. Next, we describe our pro-

totype implementation in Section 7, and evaluate the performance

in Section 8. We give a conclusion in Section 9.

2 RELATEDWORK
Privacy-preserving graph query processing. There exist vari-
ous designs that aim to answer a certain type of queries over the en-

crypted graph. Structured encryption [21] is proposed in the frame-

work of SSE and supports adjacency and neighbouring queries.

Some recent work is proposed to support privacy-preserving sub-

graph queries [16, 20]. However, all the above designs enable limited

query functionality. Another line of work on privacy-preserving

graph processing is to perform shortest-path queries over the en-

crypted graph. Protocols for this type of queries are devised via

oblivious RAM [63], structured encryption [41], or Garbled Cir-

cuit [60, 62]. To implement more complicated algorithms, protocols

are proposed to use secret sharing and homomorphic encryption

for Breadth-first search (BFS) [10], PageRank [64], and approximate

eigen-decomposition [55]. We stress that the above work targets on

different query functionality other than social search. Note that a

recent framework named GarphSC [45] can generate data-oblivious

Garbled Circuit (GC) for graph algorithms such as PageRank and

Matrix Factorisation. Because oblivious data structures are adapted

for large graphs and all computations are realised via GC, it does

not appear to achieve low latency for social search queries.

Encrypted database system. Our system is also related to en-

crypted database systems [48–51, 67]. CryptDB [51] is the first

practical encrypted database system, which is built on property-

preserving encryption (PPE). It supports SQL queries over en-

crypted relational data records. BlindSeer [49] proposes a Bloom

Filter based index and leverages GC to evaluate arbitrary boolean

queries with keywords and ranges. Arx [50] follows the design of

CryptDB to support SQL queries, but it uses SSE and GC to reduce

the leakage from PPE. Seabed [48] uses additively symmetric ho-

momorphic encryption (ASHE) to perform efficient aggregation

over the encrypted data, and develops a schema with padding to

mitigate the inference attack [44]. EncKV [67] adapts SSE and ORE

schemes to design an encrypted and distributed key-value store.

However, all the encrypted databases mentioned above are neither

designed for graph data nor optimised for social search.

Graph processing system. In the plaintext domain, a large num-

ber of graph processing systems [22, 23, 39] (just to list a few) are

proposed to support efficient large graph processing. However, all

the above systems only support queries over the graphs in unen-

crypted form, which are unable to address privacy concerns of

sensitive data leakage. Authenticated graph query [27] is proposed

to verify the correctness of graph queries, which could be a com-

plementary work to prevent attacks from malicious adversaries.

3 BACKGROUND
3.1 Social Graph Model
The social graph consists of nodes (aka entities) and edges (aka

relationships of entities) in social networks. As the social graph is a

sparse graph [23], it is normally represented via a set of adjacency

lists. Like [23], we refer to these adjacency lists as posting lists.
Formally, the social graph is an edge-labeled and directed graph

G = (V,E), where V = {v1, v2, ...} is the entity set and E =

{e1, e2, ...} is the relationship set. Each posting list contains a list

of entities {v}, which are (sort-key, id) pairs. The sort-key is an

integer that indicates the importance of the entity in a posting list,

and the id is its unique identifier.

The posting lists are indexed by the inverted index, and modelled

by the edges in social graph: All edges inG can be represented as

a triad e = (u, v, edge-type) which consists of its egress, ingress

nodes (u, v ∈ V) plus an edge-type which is a string representing

the relationship between nodes (e.g., friend, like). The inverted
indexing term t is in the form of edge-type:idu. For example, the

user may use friend:idi to get the posting list of user i’s friends.

3.2 Oblivious Cross-Tags (OXT) Protocol
Oblivious Cross-Tags (OXT) Protocol [19] is an SSE protocol, which

proceeds between client C and server S. It provides an efficient way

to perform conjunctive queries in encrypted database
1
. Here we

provide a high-level description as needed for the basic operations

of our proposed system.

The protocol has two types of data structures. Firstly, for every

keyword w , an inverted index, referred as ‘TSet(w)’, is built to
point to the set DB(w) of all entity identifiers ids associating with
w . Each TSet(w) is identified by an indexing term called stag(w),
and all id values in TSet(w) are encrypted via a secret key Kw .
Both stag(w) and Kw are computed as a PRF applied tow with C’s
secret keys. Another data structure called ‘XSet’ is built to hold a

list of hash values h(id,w) (called ’xtag’) over all entity identities

id and keywords w contained in id, where h is a certain (public)

cryptographic hash function. The above two data structures are

stored on the server-side.

To search a conjunctive query (w1,w2, ...,wn) with n keywords,

C sends the ‘search token’ stag(w1) related tow1 (called ‘s-term’, we

assume it to bew1 in the above query) to S, which allows the server

to run TSet.Retrieve(TSet, stag(w1)) and retrieve TSet(w1) from
the TSet. In addition, C sends ‘intersection tokens’ xtoken(w1,wi)
(called ‘xtraps’) related to then−1 keyword pairs (w1,wi) consisting
of the ‘s-term’ pairedwith each of the remaining query keywordswi ,

2 ≤ i ≤ n (called ‘x-terms’). The xtraps allow the server to evaluate

the cryptographic hash function of pairs (id,wi) without knowing
either keywordwi or id. S checks the existence of h(id,wi) in XSet

and filters the TSet(w1) to n − 1 subsets of entities that contain the

pairs (w1,wi). It only returns the entities that contain all {wi }1≤i≤n
to the client. C finally uses Kw to recover the ids of entities.

As mentioned in [19], the security of OXT parameterised by a

leakage function LOXT = (N ,ϕ, s̄, SP,XP,RP, IP). It depicts what
an adversary is allowed to learn about the database and queries

via executing OXT protocol. Informally, considering a vector of

queries q = (s ∧ ϕ(x2, ..., xn)), which consists of a vector of s-terms

s, a vector of boolean formulas ϕ, and a sequence of x-term vectors

x2, ..., xn . After executing q in a chosen database DB, the adversary

only can learn:

• N : The total number of (id,w) pairs.
• ϕ: The boolean formulae that the client wishes to query.

• s̄: The repeat pattern in s.
• SP: The size of posting lists for s.
• XP: The number of x-terms for each query.

• RP: The set of result id matching each pair of (s-term, x-term)-

conjunction which is in the form (s, xi), 2 ≤ i ≤ n.
• IP: The set of result id both existing in the posting lists of s[i]
and s[j], which is only revealed when two queries q[i], q[j], i , j
have different s-terms but same x-terms.

3.3 Secure Computation
Additive Sharing and Multiplication Triplets. To additively

share (ShrA(·)) an ℓ-bit value a, the first party P0 generates a0 ∈ Z2
l

uniformly at random and sends a1 = a − a0 mod 2
l
to the sec-

ond party P1. The first party’s share is denoted by ⟨a⟩A
0
= a0 and

1
The scheme proposed in [29] supports disjunctive queries, but it consumes large

storage space.

the second party’s is ⟨a⟩A
1
= a1, the modulo operation is omitted

in the description later. To reconstruct (RecA(·, ·)) an additively

shared value ⟨a⟩A in Pi , P1−i sends ⟨a⟩Ai to Pi who computes

⟨a⟩A
0
+ ⟨a⟩A

1
. Given two shared values ⟨a⟩A and ⟨b⟩A, Addition

(AddA(·, ·)) is easily performed non-interactively. In detail, Pi lo-
cally computes ⟨c⟩Ai = ⟨a⟩

A
i + ⟨b⟩

A
i , which also can be denoted

by ⟨c⟩A = ⟨a⟩A + ⟨b⟩A. To multiply (MulA(·, ·)) two shared val-

ues ⟨a⟩A and ⟨b⟩A, we leverage Beaver’s multiplication triplets

technique [8]. Assuming that the two parties have already pre-

computed and shared ⟨x⟩A, ⟨y⟩A and ⟨z⟩A, where x ,y are uni-

formly random values in Z
2
l , and z = xy mod 2

l
. Then, Pi com-

putes ⟨e⟩Ai = ⟨a⟩
A
i − ⟨x⟩

A
i and ⟨f ⟩Ai = ⟨b⟩

A
i − ⟨y⟩

A
i . Both parties

run RecA(⟨e⟩A
0
, ⟨e⟩A

1
) and RecA(⟨f ⟩A

0
, ⟨f ⟩A

1
) to get e, f , and Pi lets

⟨c⟩Ai = i · e · f + f · ⟨x⟩Ai + e · ⟨y⟩
A
i + ⟨z⟩

A
i .

Garbled Circuit and Yao’s Sharing Yao’s Garbled Circuit (GC) is

first introduced in [66], and its security model has been formalised

in [9]. GC is a generic tool to support secure two-party computation.

The protocol is run between a “garbler” with a private input x and

an “evaluator” with its private input y. The above two parties wish

to securely evaluate a function f (x ,y). At the end of the protocol,

both parties learn the value of z = f (x ,y) but no party learns more

than what is revealed from this output value. In details, the garbler

runs a garbling algorithm GC to generate a garbled circuit F and

a decoding table dec for function f . The garbler also encodes its

input x to x̂ and sends it to the evaluator. The evaluator runs an

oblivious transfer (OT) [2] protocol with the garbler to acquire its

encoded input ŷ. Finally, the evaluator can compute ẑ from F , x̂ , ŷ,
decode it with dec , and share the result z with the garbler. The

security proof against a semi-honest adversary under two-party

setting is given in [37].

In the following parts, we assume that P0 is the garbler and

P1 is the evaluator. GC can be considered as a protocol which

takes as inputs the Yao’s shares and produces the Yao’s shares of

outputs. In particular, the Yao’s shares of 1-bit value a is denoted

as ⟨a⟩Y
0
= {K0,K1} and ⟨a⟩Y

1
= Ka , where K0,K1 are the labels

representing 0 and 1, respectively. The evaluator uses its shares to

evaluate the circuit and gets the output shares (another labels).

Additive shares can be switched to Yao’s shares efficiently. To be

more precise, two parties secretly share their additive shares a0 =

⟨a⟩A
0
, a1 = ⟨a⟩A

1
in bitwise via Yao’s sharing. The evaluator then

receives ⟨a0⟩Y and ⟨a1⟩Y and evaluates the circuit ⟨a0⟩Y + ⟨a1⟩Y
mod ⟨2l ⟩Y to get the label of a.

4 SYSTEM OVERVIEW
4.1 System Architecture
As shown in Figure 1, GraphSE

2
has two entities: the on-premise

social search service front-end (SF) and the index server cluster

(ISC) with several index servers (ISs) in an untrusted cloud. Note
that this setting is consistent with many off-the-shelf social network

service providers such as Airbnb [3] and Instagram [26], who use

cloud data storage as the back-end to manage large graphs and

massive user-generated data contents. Also, such architecture is

now natively supported by public clouds, e.g., AWS Outposts [5].

GraphSE
2
aims to improve the protection of data confidentiality at

Query Result

Query Token

Encrypted Result

Untrusted Domain

On-Premise Social
Search Front-End

Query Planner

Index Server Cluster1

Index ServerIndex ServerIndex Server

Index Server Cluster0

Index ServerIndex ServerIndex Server

Two-Party
Query Token

Encrypted Result

Figure 1: System architecture overview.

the back-end, which is usually the high-value target for adversaries

in practice.

During the setup phase, SF partitions the social graph to dis-

joint subgraphs and builds two instances of SSE indexes of each

subgraph for the queries on structured information. The generated

indexes are uploaded to two non-colludedISCs with multipleISs
respectively. The sort-keys are co-located with the corresponding

indexes in the form of additive shares on the above two ISCs for
the arithmetic operations and sorting. Specifically, each IS has

one of the two additive shares, and it pairs with a counter-party

in the other cluster, which maintains the same index but holds the

other share. Upon receiving a query from its users,SF uses a query

planner to parse the query into atomic operations (see Section 5.3)

to generate a query plan. It then sends the query tokens of atomic

operations to all ISs to execute the query plan. After that, each

IS requests the structured information via the tokens. Based on

the matched encrypted contents, it executes arithmetic operations

and scoring/ranking algorithms with its counter-party. Finally, the

encrypted result is returned to SF .
In this architecture, we consider a scenario of secure computa-

tion sourcing where the in-house SF assigns the computation to

the ISs in two untrusted but non-colluding clusters ISC0 and

ISC1. Such a model of secure multi-party computation is for-

malised in [31] and applied in many existing studies [6, 43, 47].

Built on this model, GraphSE
2
offers two advantages: (i) SF is not

required to be involved with any computation after it distributes

the data to the servers, and (ii) the computation process can benefit

from the mixture of multi-party computation protocols that enable

efficient arithmetic operation, comparison, and sorting at the same

time. Note that the communication between ISs will not be the
system bottleneck, because ISs can be deployed in cloud clusters

with dedicated datacenter networking support. This is consistent

with prior studies based on the same architecture [43].

4.2 High-level Description
Before introducing the details of our system, we elaborate on the

design overview and underlying design intuitions. To query large

social graphs, GraphSE
2
develops an encrypted and distributed

graph model. It is built on graph modelling, searchable encryption,

and the standard data partition algorithm. Each server evenly stores

an encrypted disjoint part of the whole graph. Meanwhile, this

model is designed to co-locate the encrypted contents with the

disjoint part containing the users who generate or relate to the

contents. As a result, GraphSE
2
not only maximises the system

scalability but also preserves data locality for low query latency.

To facilitate the realisation of various social search queries in

the encrypted domain, GraphSE
2
first splits these complex queries

into two stages, i.e., content search over the structured social graph

and computational operations on the retrieved contents. Within

the above stages, queries are further decomposed into atomic op-

erations, i.e., Index Access, Set Operations, Arithmetic operations,
and Sorting. Since the first stage commonly performs set operations

over the social graph, GraphSE
2
realises our proposed graph model

via a well-known searchable encryption scheme for boolean queries

(aka OXT [19]). The second stage requires a combination of differ-

ent computations to further analyse user contents. For example,

collaborative filtering [14] first obtains the scores of user contents

via several addition and multiplication operations and then sorts

the scores for an accurate recommendation.

To accelerate sophisticated computations in the second stage,

GraphSE
2
mixes different secure computation protocols. Note that

such philosophy also appears in recent privacy-preserving computa-

tion applications [25, 43]. Unlike prior work, GraphSE
2
customises

the mixed protocols for social search queries and adapts them to

our distributed graph model. In particular, GraphSE
2
represents the

importance (score) of user-generated contents as the additive shares

and deploys two distributed OXT instances at two non-colluded

server clusters to store both the graph partitions and corresponding

shares respectively. Doing so allows GraphSE
2
to support paral-

lel and batch addition and multiplication without the interaction

between servers
2
. To achieve fast sorting, GraphSE

2
first converts

additive shares to Yao’s shares inside garbled circuits (GC) and

then invokes a tailored distributed sorting protocol via GC. Each

pair of servers in two clusters can perform local sorting in parallel,

and then the intermediate results are aggregated for global sort-

ing. Within the protocol, the underlying scores are hidden against

servers from either of the two parties.

4.3 Threat Assumptions
In this work, we assume that SF is a private server dedicatedly

maintained by the OSN service provider. It is a trustworthy party in

the proposed model. Similar to the real-world OSN service provider

(e.g. Airbnb), all users should submit their queries to SF through

webpages or mobile apps. We assume that SF utilises the secure

channel and cryptographic techniques to protect users’ secrets.

On the other hand, we assume that all ISs are located in the

untrusted domain. Meanwhile, we consider that the two clusters

are semi-honest but not colluding parties. Each cluster performs

social search faithfully but intends to learn additional information

such as query terms, result ids and ranking values from the graph.

Besides, those clusters hold user data and perform query functions,

and thus they are high-value targets of adversaries. We assume

that the two clusters can be compromised by two different passive

adversaries, but the two adversaries will not collude. GraphSE
2
aims

to protect the confidentiality of the private information in the social

2
Multiplication involves a round of interaction between two servers, but they are in

the same partition of two clusters.

Table 1: Supported social search operators in GraphSE2 and its essential atom operations.

Query operator Example(from [23])

Atomic operations

Index Access Set Operations Arithmetic Sorting
term (term friend:1)

√ √

and (and friend:1 friend:2)
√ √ √

or (or friend:1 friend:2)
√ √ √

difference (difference friend:3 (and friend:1 friend:2))
√ √ √

apply (apply friend: friend:1)
√ √ √ √

graph when the data storage back-end of the social search service

is deployed at an untrusted domain.

4.4 Query Operators
GraphSE

2
follows a typical plaintext social search system [23] to

define the operators (see Table 1).

In general, all operators in GraphSE
2
aim to retrieve posting lists

from the encrypted graph index. The simplest form of these opera-

tors is term, which retrieves a single posting list via an Index Access
operation. Like the other social search system, GraphSE

2
also sup-

ports and and or operators, which yield the intersection and union

of posting lists via Set Operations respectively. In addition, it sup-

ports difference operator, which yields results from the first post-

ing list that are not present in the others. Moreover, GraphSE
2
sup-

ports the unique query operator of Unicorn system [23], i.e., apply.
The operator allows GraphSE

2
to perform multiple rounds of post-

ing list retrieval to retrieve contents that are more than one edge

away from the source node.

To enable quality search services (e.g., friendship-based recom-

mendation), the retrieved posting lists should be scored/ranked

before returning to users. As mentioned in Section 4, the additive

shares of sort-keys are stored with its indexes. As a result, most of

the query operators (e.g., term, and, difference and or) can use

these shares to perform Sorting on the retrieved contents. Further-

more, it is often useful to return results in an order different from

sorting by sort-keys. For instance, collaborative filtering [14] evalu-

ates an arithmetic formula about friendships and ratings on items to

produce the personalised scores for recommended items. The new

score is a better prediction than the sort-keys, as the later only re-

flects the overall preference in the community (e.g., the hit-count on

the item). The defined operators natively support arithmetic com-

putations via the additive shares affixed with indexes. Specifically,

apply operator has the capability to support the secure evaluation

on complicated scoring formulas with Arithmetic operations: It can
access different types of entities (e.g., user’s friends, items liked

by users, etc.) in a multiple round-trip query, which means it can

combine the scores of different entities and cache the intermediate

result for next round computations.

5 THE PROPOSED SYSTEM
We give a list of needed notations in our system construction and

security analysis in Table 2. The detailed definitions of preliminaries

we used are given in Section 3.

Table 2: Notations and Terminologies

Notation Meaning

id the unique identifier of entity

eid the encrypted entity id
t an indexing term in the form of edge-type:idu

DB an inverted indexed database {(t , {(sort-key, id)})}
DB(t) a list of {(sort-key, id)} indexed by t

{E} the encrypted posting list with (⟨sort-key⟩A, eid) pairs
Pi the i-th party in GraphSE

2
(i ∈ {0, 1})

x a numerical value

X a matrix

⟨x⟩∗i the Additive/Yao’s share of a numerical value x in Pi
⟨X⟩∗i the Additive/Yao’s share of a matrix X in Pi
GC a garbling scheme

5.1 Encrypted Graph Data Model
To support social search operations in [23] on an encrypted social

graph (see Section 3.1 for details), GraphSE
2
creates the OXT in-

dex (i.e., TSet and XSet, see Section 3.2 for details) for encrypted

graph structure access in ISCs, and the additive shares are in-

tegrated with the corresponding index to support complex com-

putations. Specifically, to support simple graph structure data ac-

cess, each posting list is encrypted and stored as a TSet tuple in

the ISC: (stag(edge-type:idu), {E}). The TSet tuple consists of

the stag of indexing term as the key and the encrypted posting

list {E} as the value. Each element in {E} is an encrypted tuple

Eid = (⟨sort-key⟩A, eid), which keeps the encryption eid of entity

id. Additionally, the sort-key of entity is shared as additive shar-

ing value. GraphSE
2
associates it with the encrypted entity id to

support complex computations. Moreover, GraphSE
2
evaluates the

cryptographic hash function of (id, edge-type:idu) pairs to gener-

ate an XSet for complex set operations.

5.2 Encrypted and Distributed Graph Index
In order to support the system to process the query in parallel,

GraphSE
2
distributes the encrypted graph across multiple index

servers for each cluster. GraphSE
2
devises a partition strategy that

shards the posting lists by hashing on result id. Figure 2 gives

an example of the proposed partition strategy in an ISC with

two ISs. We employ a modulo partition strategy, which split the

original posting list into multiple non-duplicate parts, but other

graph partition strategies (e.g., [39]) can also be applied to shard

the social graph. The design has three advantages in the context of

distributed environment. First, it maintains the availability in the

event of server failure. Furthermore, the sharding strategy enables

U5

U1

U7

U3

IS1

U2

U4

IS2

IS1

stag(friend:U5) E1, E3, E7

stag(friend:U5) E2, E4

IS2

Figure 2: Our encrypted and distributed data model, the ar-
rows indicate the friend relationships between users.

the distributed system to finish most of the set operations and the

consequent scoring, ranking and truncating in ISs. It splits the
computation loads into distributed servers to improve the efficiency

and also cuts down the communication cost between ISs and SF .
Finally, it does not affect the security of GraphSE

2
because the

adversary who compromises anISC gets the same view (the whole

encrypted database) as the adversary in a single OXT instance. If

the adversary cannot access all ISs in the ISC, only the view on

a fraction of the encrypted database is learned..

5.3 Atomic Operations
As mentioned in Section 4.4, the social search queries are imple-

mented by a set of operators. We observe that these operators can

be decomposed to a set of atomic operations. We now describe

the implementation of these atomic operations in the encrypted

domain. For each atomic operation, we explain how we adapt and

optimise it in the proposed system.

5.3.1 Index Access. We start with Index Access operation, which
is used to retrieve the neighbouring nodes of the target user with

the given edge-type (e.g., friend, likes) from the social graph.

Algorithm 1 outlines the searching procedure using TSet operations.

On receiving the search keyword, SF firstly generates a search

token τ , which is stag(t) of the indexing term t . IS can use τ to

search TSet and get the encrypted posting list TSet(t) as the return.
Index Access operation can be easily extended to run in parallel.

More specifically, SF broadcasts search token τ to all ISs. After
that, each IS uses τ to get its local partition of the whole encrypted

posting list and sends it back.

Security. The security of Index Access is guaranteed by the security
property ofTSet. Informally, Index Access isLT-semantically-secure

against adaptive attacks where LT is the leakage function of TSet.

LT is well-defined and discussed in [19]. It ensures Index Access
only leaks the number of edges in the encrypted social graph.

5.3.2 Set Operations. This operation involves the boolean ex-

pression with multiple indexing terms. GraphSE
2
uses it to query

the encrypted graph-structured data and finds the neighbouring

nodes and the corresponding user-generated content that satisfy

the given boolean expression. In GraphSE
2
, we adapt OXT proto-

col to support this atomic operation, but some of the other SSE

protocols supporting conjunctive queries (e.g. [34]) can also be

Algorithm 1 Index Access

Input: TSet, Indexing Term t
Output: Encrypted Result TSet(t)
1: function IndexAccess(TSet, t)
2: SF inputs indexing term t , and IS inputs TSet;

3: SF computes τ ← stag(t);
4: SF sends τ to IS;
5: IS computes TSet(t) ← TSet.Retrieve(TSet,τ);
6: return TSet(t);
7: end function

readily adapted as the building block of GraphSE
2
. The OXT pro-

tocol supports conjunctive queries of the form t1 ∧ t2 ∧ ... ∧ tn
natively, but it can be extended to support the boolean query of the

form t1 ∧ϕ(t2, ..., tn), where t1 is the ‘s-term’, and ϕ(t2, ..., tn) is an
arbitrary boolean expression [19]. As shown in Algorithm 2, the

extended protocol follows the basic steps to obtain search tokens

and search in TSet and XSet interactively. Nevertheless, it intro-

duces additional steps (line 3, 13, 15–17 in Algorithm 2) to solve

the boolean expression ϕ(t2, ..., tn). Specifically, SF substitutes all

indexing terms ti to boolean variablesvi (i = 2, ...,n) and generates

a boolean function
ˆϕ(v2, ...,vn). SF then sends

ˆϕ(v2, ...,vn) to IS.
IS sets the value ofvi to the truth values ofh(idc , ti) ∈ XSet. Then,

it evaluates
ˆϕ(v2, ...,vn) and returns Ec as a result if ˆϕ outputs true.

The Boolean Query algorithm can be utilised to enable set oper-

ations of social search queries as shown in Table 1, which will be

discussed in the following section.

Security. In cryptographic terms, the OXT protocol is proved to be

LOXT-semantically-secure against adaptive attacks, where LOXT

is the leakage function defined in [19]. It ensures that the untrusted

server only learns the information defined in the leakage function,

but no other information about the query and underlying dataset.

We refer the reader to Section 3.2 for more details.

5.3.3 Arithmetic. GraphSE2 uses Arithmetic operations to sup-

port complex scoring functions over the retrieved content from Set
Operations. Arithmetic operations in GraphSE

2
involve the secure

two-party computation between two ISCs. Here, we introduce the
simplest model of GraphSE

2
, where each ISC only has one IS , for

ease of presentation on how to use additive shares (see Section 3.3

for detailed definition) to compute addition and multiplication un-

der two-party setting. Note that this model can be extended to

support multiple pairs of ISs.
In GraphSE

2
, the posting list is generalised as a matrix and the

arithmetic operations are evaluated over the matrix. The reason

for that is, instead of running the scoring function with arithmetic

operations multiple times for each item of the posting list, the batch

processing can reduce the system overhead and support scoring

algorithms in parallel. We denote the matrix of sort-keys returned

from a structured information query by S, and the corresponding

shared matrix is denoted by ⟨S⟩A. Given two shared matrices ⟨A⟩A
and ⟨B⟩A, the addition operation (AddA(⟨A⟩A, ⟨B⟩A)) can be eval-

uated non-interactively by computing ⟨C⟩A = ⟨A⟩A + ⟨B⟩A in

each party. To multiply two shared matrices (MulA(⟨A⟩A, ⟨B⟩A)),
two ISs generate the multiplication triplets, which are shared

matrices: ⟨X⟩A, ⟨Y⟩A, ⟨Z⟩A. X has the same dimension as A, Y has

Algorithm 2 Boolean Query

Input: TSet,XSet, Query (t1 ∧ ϕ(t2, ..., tn)) with s-term t1
Output: Encrypted Result R
1: function BooleanQuery(TSet,XSet, t̄ ,ϕ)(t̄ is the indexing

term list (t1, ..., tn), and ϕ is an arbitrary boolean expression)

2: SF inputs indexing term t̄ ,ϕ, and IS inputs TSet,XSet;

3: SF initialise a boolean expression
ˆϕ(v2, ...,vn) from ϕ and

sends it to IS;
4: SF ,IS runs TSet(t1) ← IndexAccess(TSet, t1);
5: IS parses TSet(t1) to {E};
6: for l = 2 : n do
7: SF computes xtoken(t1, tl);
8: SF sends xtoken(t1, tl) to IS;
9: end for
10: IS initialises R ← {};
11: for c = 1 : |{E}| do
12: for l = 2 : n do
13: IS uses xtoken(t1, tl) to compute h(idc , tl);
14: IS lets vl = (h(idc , tl) ∈ XSet);
15: end for
16: if ˆϕ(v2, ...,vn) = ‘True ′ then
17: IS adds Ec in R;
18: end if
19: end for
20: return R;
21: end function

the same dimension as B, and Z = X × Y mod 2
l
. ISi computes

⟨E⟩Ai = ⟨A⟩
A
i − ⟨X⟩

A
i and ⟨F⟩Ai = ⟨B⟩

A
i − ⟨Y⟩

A
i , and sends it to

its counter-party. Both parties then recover E, F and let ⟨C⟩Ai =
i · E × F + ⟨X⟩Ai × F + E × ⟨Y⟩

A
i + ⟨Z⟩

A
i .

The multiplication operation relies on the triplets, which should

be generated before the actual computation. In addition, each party

keeps their ⟨X⟩A, ⟨Y⟩A in secret during the generation process, oth-

erwise, they can recoverA,B after two parties exchanged ⟨E⟩A, ⟨F⟩A.
Thus, GraphSE

2
introduces a secure offline protocol [43] to gener-

ate the triplets via OT, it utilises the following relationship: Z =
⟨X⟩A

0
×⟨Y⟩A

0
+⟨X⟩A

0
×⟨Y⟩A

1
+⟨X⟩A

1
×⟨Y⟩A

0
+⟨X⟩A

1
×⟨Y⟩A

1
to compute

the shares of Z. The resulting offline protocol is only required to

compute the shares of ⟨X⟩A
0
× ⟨Y⟩A

1
and ⟨X⟩A

1
× ⟨Y⟩A

0
as the other

two terms can be computed locally.

We illustrate the computing process of ⟨X⟩A
0
×⟨Y⟩A

1
in the offline

protocol. The basic step of the offline protocol is to use ⟨X⟩A
0
and a

column from ⟨Y⟩A
1
to compute the share of their product. This is re-

peated for each column in ⟨Y⟩A to generate ⟨X⟩A
0
×⟨Y⟩A

1
. Therefore,

for simplicity, we focus on the above basic step: We assume that the

size of ⟨X⟩A is s ∗ t and we denote each element in ⟨X⟩A as ⟨xi, j ⟩A
0
,

i = 1, ..., s and j = 1, ..., t. In addition, we assume each column of

⟨Y⟩A has t elements, which are denoted as ⟨yj ⟩A
1
, j = 1, ..., t. The

computation process is listed as follows:

• IS0 runs a correlated-OT protocol (COT) [2], and sets the corre-

lation function to fb (x) = ⟨xi, j ⟩A0 · 2
b +x mod 2

l
for b = 1, ..., l .

• For each bit b of ⟨yj ⟩A
1
, IS0 chooses a random value rb for each

bit and runs COT (rb , fb (rb); ⟨yj ⟩A1 [b]) with IS1.

Garbler(IS0)

Evaluator((IS1)

ADD MOD SORT XOR

	 𝑥# $
% … 	 𝑥& $

%

1 … k

	 𝑥# #
% … 	 𝑥& #

%

1 … k

Mask 𝑅

	𝑥#⨁𝑅 … 	𝑥&⨁𝑅
		𝑟# … 		𝑟&

Figure 3: Local sorting process for one pair of garbler and
evaluator. The input of the garbler is at the top, and the in-
put/output of the evaluator is on the bottom.

• If ⟨yj ⟩A
1
[b] = 0, IS1 gets rb mod 2

l
; If ⟨yj ⟩A

1
[b] = 1, IS1 gets

fb (rb) = ⟨xi, j ⟩A0 ·2
b+rb mod 2

l
. It is equivalent to get ⟨yj ⟩A

1
[b]·

⟨xi, j ⟩A
0
· 2b + rb mod 2

l
in IS1 side.

• IS1 sets ⟨⟨xi, j ⟩A
0
· ⟨yj ⟩A

1
⟩A
1
= Σlb=1

⟨yj ⟩A
1
[b] · ⟨xi, j ⟩A

0
· 2b + rb

mod 2
l
, and IS0 sets ⟨⟨xi, j ⟩A

0
· ⟨yj ⟩A

1
⟩A
0
= Σlb=1

(−rb) mod 2
l
.

After computing ⟨⟨xi, j ⟩A
0
· ⟨yj ⟩A

1
⟩A, the j-th element of the i-th row

in ⟨⟨X⟩A
0
× ⟨Y⟩A

1
⟩A is Σt

j=1
⟨⟨xi, j ⟩A

0
· ⟨yj ⟩A

1
⟩A. Analogously, IS0

and IS1 can compute the share of ⟨X⟩A
1
× ⟨Y⟩A

0
in the same way.

Security. Additive sharing scheme offers security guarantees to

Arithmetic operations in GraphSE
2
via its computational indistin-

guishable property. More specific, as discussed in [52], the scheme

can create a uniformly distributed input and output to protects

the original input/output of Arithmetic operation under the threat

model of GraphSE
2
, i.e., semi-honest but non-colluding two-party.

5.3.4 Sorting. This is a required operation in order to rank the

computed scores from Arithmetic operations. A naive solution is

to recover all scores from additive shares in SF and sort them

as plaintext. However, transmitting all rank results to SF is a

bandwidth-consuming task, the sort operation can be very ineffi-

cient as the result. Therefore, GraphSE
2
chooses to mix the additive

sharing scheme and Yao’s Garbled Circuit (see Section 3.3 for de-

tails) to support arithmetic operations and comparison at the same

time, as it avoids the communication overhead from sending the

shares back toSF . To protect the privacy of score values, the gener-
ated circuit should have a fixed sequence of comparison for a given

size of inputs (i.e., achieving the trace-oblivious), and it should not

reveal the actual scoring value after circuit evaluation.

Local Sorting. To enable sorting on ISs, GraphSE2 leverages an
efficient scheme in [25] to switch from additive sharing to Yao’s

sharing. It then adopts the sorting network [7] to generate the opti-

mised sorting circuit. Finally, the garbler concatenates the sorting

network with an XOR gate and applies a random mask R to mask

the score values. As a result, the evaluator can use decode table dec
to figure out the rank, but it does not know the score values. Thus,

the local sorting algorithm in GraphSE
2
can be divided into five

phases. Figure 3 illustrates the process of local sorting.

Garbler(IS10)

Evaluator(IS00)

XOR SORT

Mask R1, R2, … r1 … rk rk+1 … r2k …

XOR
		𝑥#,#⨁𝑅# … 		𝑥',#⨁𝑅#

0 … k

		𝑥#,(⨁𝑅(… 		𝑥',(⨁𝑅(
k+1 … 2k

… …

Figure 4: Global sorting process in the coordinators. The in-
put of the garbler is the masked score vector with a payload
that indicates the position of the score in vector, and the in-
put of the evaluator is the random masks.

Given IS0 as the garbler and IS1 as the evaluator, both parties

pre-share a scoring vector x = {⟨xi ⟩A}ki=1
, GraphSE

2
runs the

protocol LocalSort(x) to sort the vector and returns a sorted vector
in descending order of x, the protocol can be summarised as follows:

• Phase 1: IS0 runs GC to generate the circuit in Figure 3 as well

as its decode table dec . It then sends the circuit and the decode

table dec to IS1. Doing so ensures that IS1 only can see the

final result with random mask R.
• Phase 2: IS0 sends the encoded inputs of its additive shares

{⟨xi ⟩A
0
}ki=1

with a payload vector {i}ki=1
indicating the position.

This prevents IS1 from learning the additive shares of IS0.

• Phase 3: IS1 retrieves the encoded inputs of its additive shares

{⟨xi ⟩A
1
}ki=1

and payload vector from IS0 via OT protocol. This

prevents IS0 from learning the additive shares of IS1.

• Phase 4: IS0 generates the encoded input of a random mask R
to perform the last XOR gate to protect the vector.

• Phase 5: IS1 uses the given inputs to evaluate the circuit, and

uses dec to decode the outputs.

Since the circuit puts a mask R after sorting, IS1 only gets the

ranking {ri }ki=1
without knowing the actual scores.

Global Sorting. The above sorting strategy is a suitable and ef-

ficient solution for the simplest model, i.e., only one IS in each

ISC. However, it can be problematic when each ISC has several

ISs. In this case, no IS can provide a full sorted list as each IS
only has a disjoint part of the whole graph. Hence, SF still needs

to perform another inefficient plaintext sorting.

Therefore, GraphSE
2
uses a specific protocol which runs by a

chosen coordinator of each ISC. The protocol can perform an

extra round of sorting upon the results from local sort while keep-

ing the scoring value in secret. Assuming that each ISC has n
different ISs, IS00 and IS10 are chosen to be the coordinators

for ISC0 and ISC1, respectively. After local sorting, evaluator in

ISC1 sends a vector of masked scoring values {xi, j ⊕ Rj } where
i = 1, ..., k and j = 1, ..., n to IS10 and garbler in ISC0 sends the

masks {Rj }nj=1
to IS00. In the global sorting, GraphSE

2
switches

the roles of IS10 and IS00 (i.e., IS10 is the garbler, and IS00 is

the evaluator) for two reasons: It prevents IS10 from evaluating

two circuits at the same time, as IS10 also needs to evaluate an-

other local sorting circuit for its partition. Furthermore, it facilitates

pipeline data processing. The partial result of each IS can be sent

to IS10 and IS00 for global sorting separately. Once the IS10

and IS00 get the first result, they can start to run encoding and

OT. The protocol GlobalSort(x) is summarised as follows:

• Phase 1: IS10 runs GC to generate the circuit in Figure 4 and

the decode table dec . It then sends the circuit and dec to IS00.

• Phase 2: IS10 sends the encoded inputs {xi, j ⊕ Rj } where i =
1, ..., k and j = 1, ..., n with a payload vector {i}n·ki=1

.

• Phase 3: IS00 retrieves encoded masks {Rj }nj=1
via OT protocol.

• Phase 4: IS00 uses the given inputs to evaluate the circuit, and

uses dec to decode the outputs. The result is sent to SF in de-

scending order.

Security. The security properties of Garbled Circuit [9] and OT [2]

ensure the security of Sorting in GraphSE
2
in the following three

aspects: Firstly, no adversary can learn the input of its counter-party

when sorting (i.e., the other additive share in LocalSort(x) and
the masked score/mask in GlobalSort(x)). Secondly, the output of
LocalSort(x) is masked by a one-time mask, which is a uniformly

random number. It protects the original score vector because the

evaluator only learns the masked values from output. Finally, for

the output of GlobalSort(x), only the decode table of rank is sent

to the evaluator, which also ensures that the evaluator only learns

global rank without knowing the actual ranking score.

6 QUERY REALISATION
In GraphSE

2
, SF receives queries as the query strings in the form

of s-expression. It is composed of several operators to describe

the set of results the client wishes to receive (see Table 1). In the

following sections, we introduce the operators in GraphSE
2
and

their security properties.

6.1 Graph Operators
GraphSE

2
uses atomic operations in Section 5.3 to realise all opera-

tors in Table 1. In this section, we present the detailed constructions

of these operators. Note that we only consider the operators as the

outermost operators, i.e., they are not nested in any other query

strings, because the query plan generation highly depends on the

outermost operators.

term. The term operator runs an Index Access operation to retrieve

a posting list. In addition, if there is a requirement to rank the result,

the Sorting operation is able to return a sorted posting list which

puts the record with higher relevance at the beginning of the list.

and. This operator is natively supported by the BooleanQuery

algorithm. As mentioned in Section 5.3, conjunctive queries with

nested queries (e.g., t1∧ϕ(t2, ..., tn)) are processed by evaluating the
boolean expression ϕ in XSet. It is obvious that the and operator is

executed in a sub-linear time, as its complexity is proportional to

the size of TSet(t1).
difference. The difference operator is extended from Boolean-

Query algorithm. Considering the query (difference friend:3
(and friend:1 friend:2)) from Table 1, it aims to find the friends

of user3, who are neither user1’s friends nor user2’s friends. The

boolean expression, in this case, is friend:1 ∧ friend:2, but the
results that satisfy the expression are removed from the results

of the query (term friend:3). In summary, difference operator

excludes the results that satisfy the boolean expression ϕ. There-
fore, the s-expression with difference operator is represented as

t1 ∧ ¬ϕ(t2, ..., tn). Comparing with the and operator, it returns the

results only if the boolean expression ϕ returns false instead of true.

or. The complexity of the original approach for processing dis-

junctive queries is linear to the size of database [19]. To achieve

a sub-linear time complexity, we leverage the above difference
and term operators to build a new disjunctive query operator. In

particular, the s-expression starts with or operator can be processed
via a list of difference expressions and an additional term expres-

sion. For instance, if a disjunctive query has three indexing terms:

t1, t2, t3, the corresponding s-expression is (or t1 t2 t3), and it is

parsed as: (difference t1 (or t2 t3)), (difference t2 t3), (term t3).
The above three s-expressions return three different sets of results,

and the composite of them is the final result of or operator. The
correctness of the above approach can be easily proved by the set

operation: t1 ∨ t2 ∨ t3 = (t1\(t2 ∨ t3)) ∨ (t2\t3) ∨ t3.
In general, a disjunctive s-expression with n indexing terms can

be rewritten as n − 1 s-expressions with difference operator and 1

s-expressions with term operator. The complexity is proportional

to |t | ·M , where |t | is the number of disjunctive indexing terms and

M is the result size of the most frequent term max({|TSet(ti)|}ni=1
).

6.2 Apply Operator
The apply is a unique operator in Unicorn [23], which enables

graph-traversal. The basic idea is to retrieve the results of nested

queries and use these results to construct and execute a new query.

For example, given an s-expression (apply friend: friend:id1),

SF issues a query (term friend:id1) and collects N users, it then

generates the second query (or friend:id1,1 ... friend:id1,N) to
get the entities that are more than one edge away from the user id1

in the encrypted graph-structured data.

GraphSE
2
defines a query structure to construct apply operator.

In details, the query structure is a tuple of (prefix, s, filter), where
the prefix (e.g., friend:) is prepended to the given id to form the

indexing terms, s is an s-expression with N indexing terms (e.g.,

(term ?)), and filter indicates the ranking algorithm for its results.

To execute an apply operator,SF pre-processes the input idwith a
given prefix in the query structure and uses processed id to execute

the s-expression s from the query structure. ISC handles the query

from the s-expression and applies the designated filter in the query

structure to refine the result. Consequently, SF can retrieve a list

of id as the result of the nested query structure. GraphSE2 leverages
as input the retrieved id and outer query structure to repeat the

above procedure until it reaches the outermost query structure.

Algorithm 3 gives the detailed implementation of the apply.
The apply operator processes necessary steps on behalf of its

users to improve the efficiency of GraphSE
2
. For example, it would

be possible for users to ask recommendation from friends: both SF
and client can execute a two-step query to retrieve friend list in

advance and issue an additional query to get the recommendation.

Compared to the latter strategy, the apply operator runs inSF can

highly reduce the workload on the client side: it saves the network

latency of transmitting intermediate result between SF and client,

addition to the computational cost of aggregation and regeneration.

Algorithm 3 Apply

Input: Outer Query Structure QSO , Nested Query Structure QSN ,

Array of id
Output: Encrypted Result O
1: function Apply(QSO ,QSN , id)(in SF)
2: for i = 1 : QSN .s.size do
3: term ← QSN .prefix| |id[i];
4: QSN .s[i] ← term;

5: end for
6: o ← Search(QSN .s,QSN .filter);
7: for i = 1 : o.size do
8: term ← QSO .prefix| |o[i].id ;
9: QSO .s[i] ← term;

10: end for
11: O ← Search(QSO .s,QSO .filter);
12: return O ;
13: end function
Input: Query q, Result Filter f
Output: Encrypted Result r
1: function Search(q, f)(in IS)
2: r ← f (Execute(q));
3: return r
4: end function

Furthermore, SF can further optimise the query and adopt the

different scoring strategy by giving its semantic context (as shown

in the following example).

Example: Friend Recommendation. The friend recommenda-

tion is a good example for the use of the apply operator. According

to the Homophily theory [40], people with higher similarity have

a higher probability to become friend. In this context, the system

aims to recommend the friends-of-friends to its user according to

the order of similarities. Hence, we apply a simple ranking function

which returns the sorted similarity value directly for both outer

and nested query for this application.

It is also possible to implement the friends-of-friends query with-

out the apply operator. Intuitively, friends-of-friends also can be

treated as an edge type, GraphSE
2
may explicitly store the friends-

of-friends list and use the indexing term friends-of-friends:id to

index it. Therefore, the friend recommendation problem is easily

processed by the term operator. However, such a naive solution

blows up the memory consumption on IS: as shown in Table 3, the

estimated size of friends-of-friends posting list is almost 370x larger

than the original friend list of a typical user [23]. In GraphSE
2
, each

encrypted tuple occupies 56 bytes memory space (See Section 8.2

for the detailed discussion), it indicates that the friends-of-friends

posting lists for 1 million users consumes 2.4TB RAM.

The apply operator also reduces the query latency: it is expen-

sive to sort the posting lists of friends-of-friends:id with 48k

entities inline in Garbled Circuit (it needs 200 s to evaluate the

corresponding circuit). In comparison, introducing an extra round

to query enables IS to truncate the result, and makes the sorting

process more efficient. For example, if GraphSE
2
applies a filter

to return the top 10 results to SF for the nested query, the result

size can be reduced to around 1000 users with a higher similarity.

Table 3: Performance estimation of Friend Recommenda-
tion implementations with 1 million users.

friends-of-friends apply
Est. # of users/posting list 130 48k

Est. Storage overhead 7.28GB 2.4TB

Query delay 200 s 1-2 s

Also, the reduced result size is moderate to evaluate sort circuit on

it. Under our settings in Section 8, the system replies either a full

result list after 5-6 s or a truncated result list after 1-2 s.

6.3 Security Analysis
In Section 5.3, we discuss the security of each atomic operation.

Here, we analyse the security of the overall system. Specifically,

we formulate the security of GraphSE
2
based on the prior work

of SSE [19, 24] and further combine the security of additive shar-

ing and Garbled Circuit to depict the security of query operators.

Throughout the analysis, we consider a query in GraphSE
2
contain-

ing a boolean formula ϕ and a tuple of indexing terms (t1, t2, ..., tn).
Overview. The main idea of analysing the security of GraphSE

2
is

similar to that in SSE scheme [19, 24]. Specifically, the analysis

constructs a simulator of GraphSE
2
to show that the adversary in

GraphSE
2
only learns the controlled leakage parameterised by a

leakage function L, after querying a vector of queries q. Note that
the simulator of GraphSE

2
is slightly different from the original

SSE simulator, we outline these different points as the sketch of

our security analysis. Firstly, we update the leakage function of

SSE (OXT in GraphSE
2
) to additionally capture the ranks leaked

in query results. Secondly, we slightly modify the capability of

adversaries to fit our two-party model: an adversary in our system

is able to see the view on the corrupted cluster as well as the output

of the counter-party. Under the new adversary model, the joint

distribution of the outputs of both the adversary and the counter-

party can be properly simulated by an efficient algorithm with the

updated leakage function. Finally, as GraphSE
2
has the submodules

implemented by SSE, additive share scheme, and Yao’s Garbled

Circuit, the simulator of GraphSE
2
can be constructed by combining

the simulators of these submodules. For instance, our simulator

uses the output of SSE simulator as the input of garbled circuit

simulator in order to simulate the query operators with structured

data access and sorting.

Due to the page limit, the updated leakage function is given in

Appendix A.1 and the detailed proof is in Appendix A.2.

Discussion. Note that there exist some emerging threats against

the building blocks of GraphSE
2
. Regarding SSE, leakage-abuse

attacks [18, 69] can help an attacker to explore the information

learned during queries. To mitigate them, recent studies on padding

countermeasures [13, 18] and forward/backward privacy [12, 58]

are proposed and shown to be effective. We leave the integration

of these advanced security features to our system as future work.

Regarding sorting, GraphSE
2
reveals the rank of the query result.

Recent work [32, 33] demonstrates that the underling data values

are likely to be reconstructed if an adversary knows ranks and

some auxiliary information of queries and datasets. Currently, we

do not consider such a strong adversary, and how to fully address

the above threat remains as an interesting problem.

7 IMPLEMENTATION
We implement a prototype system for evaluating the performance

of GraphSE
2
. To build this prototype, we first realise the crypto-

graphic primitives in Section 3. Specifically, we use the symmetric

primitives, i.e., AES-CMAC and AES-CBC, from Bouncy Castle

Crypto APIs [59]. In addition, we use a built-in curve from Java

Pairing-based Cryptography (JPBC) [17] library (Type A curve)

to support the group operations in OXT. The security parameter

of symmetric key encryption schemes is 128-bit, and the security

parameter of the elliptical curve cryptographic scheme is 160-bit.

Regarding the secure two-party computation, we set the field size to

2
31
. Therefore, we can use regular arithmetics on Java integer type

to implement the modulo operations, as it is significantly faster

than the native modulo operation in Java BigInteger type (i.e., we

observed that it is 50x faster). We involve this optimisation into the

implementation of additive sharing scheme in the finite field Z
2

31 ,

the addition (multiplication) operations is calculated by several

regular addition and multiplication operations with the modulo

operation. Oblivious Transfer and Garbled Circuit are implemented

by using FlexSC [61]. It implements the extended OTs in [2] and sev-

eral optimisations for the garbled circuit, which make it a practical

primitive under Java environment.

The prototype system consists of three main components: the

encrypted database generator, the query planner inSF and the index
server daemon in ISC. The encrypted database generator is running
on a cluster with Hadoop [1]. It partitions the plaintext data, runs

the adapted OXT to convert the data into encrypted tuples with the

additive share of sort-keys and stores these tuples on each IS. We

leverage Spark [68] to execute these tasks in-memory and enable

the pipelining data processing to further accelerate this process.

The generated tuples are stored in the in-memory key-value store

Redis [53] in the form of TSet on each IS for querying purpose

later. In addition, the generated XSet is kept in the external storage

of each IS to support the set operations. All queries are handled

by the query planner and index server daemons by following the

query processing flow in Section 4.1. Thrift thread pool proxy [56]

is deployed to handle the queries in index server daemons.
To improve the runtime performance of our prototype, each post-

ing list is segmented into fixed-size blocks indexed by its stag(t)
and a block counter c for the stag. As the final result of the block
counter indicates the total number of blocks for each stag, it is also
stored in Redis after the whole posting list is converted to encrypted

tuples. Those counters enable IS to retrieve multiple tuples in par-

allel. We also introduce a startup process for OXT protocol and

secure two-party computation in index server daemons. In terms

of the OXT matching, the index server daemon creates a Bloom

Filter [11] to load the XSet into memory during the startup process.

In our prototype, we deploy the Bloom filter from Alexandr Nikitin

as it is the fastest Bloom filter implementation for JVM [46]. We set

the false positive rate to 10
−6
, and the generated Bloom Filter only

occupies a small fraction of IS memory. Besides generating the

Table 4: Statistics of Youtube social network dataset.

Node type # of nodes Edge type # of edges

User 1157827 friend 4945382

Group 30087 follow 293360

Bloom Filter, each index server also pre-computes several multipli-

cation triplets and sorting circuits and periodically refreshes it to

avoid extra computational cost on-the-fly.

Our prototype system implementation consists of four main

modules with roughly 3000 lines of Java code, we also implement a

test module with another 1000 lines of Java code.

8 EXPERIMENTAL EVALUATIONS
8.1 Setup
Platform. We deploy the index server daemons in a cluster (ISC)
with 6 virtual machine instances in the Microsoft Azure platform.

All VMs are E4-2s v3 instances, configured with 2 Intel Xeon E5-

2673 v4 cores, 32GB RAM, 64GB SSD external storage and 40Gbps

virtualised NIC. Another D16s v3 instance is created in Azure to run

SF with the query planner and client; it is equipped with 16 Intel

Xeon E5-2673 v3/v4 cores, 64GB RAM, 128GB SSD external storage

and 40Gbps virtualised NIC. We also have the other three E4-2s

v3 instances controlled by SF ; we use them to run the encrypted
database generator for generating the encrypted index. All VMs are

installed with Ubuntu Server 16.04LTS.

Dataset.We use a Youtube dataset from [42], which is an anony-

mised Youtube user-to-user links and user group memberships

network dataset. The detailed statistical summary is given in Ta-

ble 4. We recognise the user-to-user links as friend edge and user

group memberships as follow edge from this dataset. The gener-

ated posting lists are indexed by above two edge types and user ids.
As the social network in our Youtube dataset is an unweighted net-

work, we randomly generate a weight between 1 and 100 for each

edge to evaluate the arithmetic and sort operations of GraphSE
2
.

Baseline. To evaluate the performance of GraphSE
2
, we create a

graph search system by removing/replacing cryptographic opera-

tions in this baseline system. Specifically, we leverage hash function

to generate xtag instead of using expensive group operations. The

index and sort-key are stored in plaintext, which means that the

IS can compute and sort without any network communication for

OT and multiplication triplets. Finally, the query planner provides

the indexing term in plaintext instead of stag to the IS as query

token. Nonetheless, we still use the PRF value of indexing term

and the block counter as tuple index, because we want to keep the

table structure of TSet unaltered to make our system comparable to

the baseline. We use this baseline system to evaluate the overhead

from cryptographic operations as GraphSE
2
implements the same

operators as Facebook Unicorn [23].

8.2 Evaluation Results
EDB Generation. Firstly, we demonstrate the runtime perfor-

mance of the encrypted database generator. The generator needs to
partition and create additive shares from the original plaintext data,

and to generate the adapted OXT index for eachIS. GraphSE2 uses
SF to locally generate the partitions and additive shares for our

TSet Tuple

Plaintext Tuple

16 bytes
Indexing term

36 bytes
Encrypted index

4 bytes
Additive share

16 bytes
Indexing term

8 bytes
Plaintext index

4 bytes
sort-key

XSet (xtag)

In ciphertext 128 bytes
In plaintext 16 bytes

Block Counter (same in Tset and Plaintext)

16 bytes
Indexing term

4 bytes
of blocks

Figure 5: A tuple-wise storage overhead comparison be-
tween the encrypted database and plaintext database.

dataset and then uses the dedicated cluster to generate the en-

crypted graph index in parallel. The result on our 5 million records

dataset shows that it only takes 54 s to pre-process data on SF and

7.4 mins to generate the encrypted index via Spark.

Storage. Recall that GraphSE2 uses adapted OXT index to support

boolean queries over the encrypted graph, which needs to gener-

ate two dedicated data structure (i.e., TSet and XSet). As a result,

GraphSE
2
consumesmore storage capacity than the baseline system

(see Figure 5), because it is required to keep more information (i.e.,

xtag in ciphertext), and because it stores encrypted index which is

larger than the corresponding plaintext. By using the TSet, we ob-

serve that our system increases the memory consumption of Redis

by 85% (557MB in TSet and 300MB in plaintext), which is slightly

smaller than the theoretical memory consumption overhead (100%

according to Figure 5). The reason is that GraphSE
2
also keeps the

number of blocks of each posting list (see Section 7) to acceler-

ate the tuple retrieving process
3
. As shown in Figure 5, the block

counter requires an additional 20 bytes of memory consumption

for each indexing term both in TSet and in plaintext. It introduces

the same extra cost on GraphSE
2
as well as in the baseline system,

and makes the memory consumption overhead smaller than the

theoretical expectation.

For XSet storage overhead, GraphSE
2
increases it by 17x (1.5GB

versus 90MB), mostly due to the fact that the size group element

is much larger than a PRF value. But the Bloom Filter successfully

saves the memory consumption in runtime, because the size of

Bloom Filter only depends on the false positive rate and the number

of total elements inside (the number of edges in our system) [11],

and it is much smaller than XSet itself. By fixing the false positive

rate to 10
−6
, the runtime overhead of XSet in our system is identical

to the baseline system (only 18MB in RAM).

Query Delay. To understand the query delay introduced by cryp-

tographic primitives, we measure the cryptographic overhead from

these cryptographic primitives independently. To evaluate the query

delay introduced by the set operations, we choose an indexing term

a from friend edges with fixed selectivity (130, as the average user

has 130 friends according to Unicorn paper [23]), and we further

choose several variable indexing terms v from friend edges with

selectivity from 1 to 502. Figure 6 illustrates query delay on Index

Access v and two variants of two-term Boolean Query. In Index

3
If the size of posting list is unknown, the system needs to sequentially retrieve the

tuple from blocks, as the key is derived from stag and block counter. Otherwise, the

tuples can be retrieved in parallel.

Table 5: Benchmark of sorting circuit size and evaluation time, the garbled sorting algorithm is bitonic merging/sorting, we
use it to sort 2

l vector.

Vector length 2 4 8 16 32 64 128

of AND Gates 4382 9148 19448 41968 91616 201664 446336

GC evaluation time (ms) 17.3 20.3 31.5 48.2 101.0 206.5 440.0

GC comm. overhead (MB) 0.12 0.41 0.46 0.97 2.10 4.49 9.80

1 10 100 1000

Selectivity of Variable Term (v)

0.1

1

10

100

1000

T
im

e
 (

m
s
)

Selectivity of a:130

Index Access v

Boolean Query v AND a

Boolean Query a AND v

Figure 6: Query delay for two-keyword set queries.

Access v query, the query only consists of s-term v, and the figure

shows that its execution time is linear to the size of corresponding

posting lists. The other two-term queries combine the previous

queries with the fixed term a. In the first of these two queries, we

use a as x-term, each tuple from TSet(v) should be checked wtih

the cost of an exponentiation, which requires 2 to 79 ms to process.

In the last one, a is used as s-term, where we observe that the exe-

cution time is kept invariable (20 ms), irrespective of the variable

selectivity of the xterm v. It demonstrates that GraphSE
2
can re-

spond a query related to the moderate users with a tiny latency,

and it is also able to reply query about popular users with a slightly

bigger but still modest delay.

The secure addition and multiplication is supported by additive

sharing scheme with a relatively small overhead, because in most

cases, the two servers non-interactively do the computation tasks

by using regular arithmetic operations, and because the expensive

tasks, such as multiplication triplets generation, are pre-computed

in the startup process. Figure 8a and 8b demonstrate the execution

delay of addition andmultiplication over the different size of vectors.

We can see that the addition operation with two vectors containing

10
4
entities can be done within 2 ms. For the multiplication opera-

tion, it needs 80 ms to compute the product of 10
4
entities because it

requires several efficient but non-negligible communications with

the counter-party.

As the sorting algorithm is implemented by Garbled Circuit, we

provide a benchmark about the size of the circuit and the corre-

sponding evaluation time. The results are listed in Table 5. Note

that we do not report the circuit generation time as it is generated

in the startup process. The reported result demonstrates the practi-

cality of our sorting strategy: the local sorting generally involves

fewer entities after partition (30 if the system sorts a result list with

130 users), which takes 100 ms to sort. Additionally, the local sort

can help to truncate the result before sending it for global sorting,

which makes the sorting algorithm in Garbled Circuit more efficient

0 1 2 3 4 5 6

of variable term (n)

1

10

100

T
im

e
 (

m
s
)

Selectivity of a:130

Boolean Query a AND v
1
 AND ... AND v

n

Figure 7: Query delay for multiple-keyword set queries.

0 1 2 3 4 5

Time (ms)

0

0.5

1

C
D

F

10
2
 Entities

10
3
 Entities

10
4
 Entities

(a) Addition

0 50 100 150 200 250

Time (ms)

0

0.5

1

C
D

F

10
2
 Entities

10
3
 Entities

10
4
 Entities

(b) Multiplication

Figure 8: The execution time for addition andmultiplication
operations on two vectors with 10

2, 10
3, 10

4 entities.

(less than 440 ms for a vector with 128 entities). We further exam-

ine the query delay from set operations under multiple-keyword

setting by using the same a as s-term, but we add more variable

terms {vn},n ∈ [1, 5] as x-term. Figure 7 shows that each additional

x-term increases the query delay by 20 ms, which means a query

with 5 x-terms can still be processed within 100 ms.

Communication. We measure the inter-cluster communication

overhead, because it includes the main communication overhead

in GraphSE
2
, which is to send the garbled sorting circuit as well

as the labels of inputs to the counter-party. Note that this is much

larger than sending the multiplication triplets (12 bytes for each)

and the encrypted id (16 bytes for each). We demonstrate the com-

munication overhead for different size of the circuit in Table 5. It

shows that for an average user with approximately 130 friends, the

two-party only requires to transmits 9.80MB data to sort them. This

overhead is negligible both in our evaluation platform (40Gbps NIC

in Azure intranet) and the other public clouds such as AWS.

Throughput. To evaluate the impact of our system on throughput,

we measure the server throughput for different types of operators.

For each operator, we compare the throughput results between

GraphSE
2
and the baseline. Figure 9 and Table 6 show the through-

put test results for GraphSE
2
and baseline. In all the cases, we group

our 6 VM instances into 2 clusters with 3 VMs to fulfil the two-party

settings. All VMs are running with only one core involved in the

Table 6: Throughput (Queries/sec) comparison of global sort-
ing for query with different operators.

Operators term and/diff. or
Baseline 350 321 301

Our system 80 80 80

-4%

-13%
-16%

-38%
-41%

-49%

term
and/diff.

or term
.(ls.)

and/diff.(ls.)

or(ls.)

0

100

200

300

400

500

Q
u

e
ri
e

s
/s

e
c

Baseline

Our System

Figure 9: Throughput of different types of Query Operators
with 10000 concurrent clients running under GraphSE2 and
baseline, all operators except term have two keywords. Diff.
stands for difference operator; ls. stands for locally sorted in
IS after applying the operators.

computation, and we simulate 10000 parallel client processes to

send the query to the server, which ensures 100% workload on the

server side. The results show that the throughput penalty is mainly

from the sorting: the local sorting decreases the throughput by 38%

to 49%. We also observe that the global sorting is the bottleneck of

the whole system (see Table 6), it gives a constant query throughput

for all operators, which means it runs longer to obtain the final

result. However, for the operators without sorting, the throughput

loss is modest (only 4% to 16%).

9 CONCLUSION
This paper presents an encrypted graph database, named GraphSE

2
.

It enables privacy-preserving rich queries in the context of social

network services. Our system leverages the advanced cryptographic

primitives (i.e., OXT, and mixing protocol with additive sharing

and Garbled Circuit) with strong security guarantees for queries

on structured social graph data, and queries with computation,

respectively. To lead to a practical performance, GraphSE
2
generates

an encrypted index on a distributed graphmodel to facilitate parallel

processing of the proposed graph queries. GraphSE
2
is implemented

as a prototype system, and our evaluation on YouTube dataset

illustrates its efficiency on social search.

REFERENCES
[1] Apache. 2015. Hadoop. https://hadoop.apache.org[online]. (2015).

[2] G. Asharov, Y. Lindell, T. Schneider, andM. Zohner. 2013. More Efficient Oblivious

Transfer and Extensions for Faster Secure Computation. In ACM CCS’13.
[3] AWS. 2018. AWS Case Study: Airbnb. https://aws.amazon.com/solutions/

case-studies/airbnb/[online]. (2018).

[4] AWS. 2018. AWS Case Study: PIXNET. https://aws.amazon.com/cn/solutions/

case-studies/pixnet/[online]. (2018).

[5] AWS. 2018. AWSOutposts: Run AWS Infrastructure On-Premises for A Truly Con-

sistent Hybrid Experience. https://aws.amazon.com/outposts/[online]. (2018).

[6] F. Baldimtsi and O. Ohrimenko. 2015. Sorting and Searching Behind the Curtain.

In FC’15.
[7] K.E. Batcher. 1968. Sorting Networks and their Applications. In ACM SJCC’68.
[8] D. Beaver. 1991. Efficient Multiparty Protocols using Circuit Randomization. In

CRYPTO’91.
[9] M. Bellare, V.T. Hoang, and P. Rogaway. 2012. Foundations of Garbled Circuits.

In ACM CCS’12.
[10] M. Blanton, A. Steele, and M. Alisagari. 2013. Data-Oblivious Graph Algorithms

for Secure Computation and Outsourcing. In ACM AISACCS’13.
[11] B.H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors.

Commun. ACM 13, 7 (1970), 422–426.

[12] R. Bost, B. Minaud, and O. Ohrimenko. 2017. Forward and Backward Private

Searchable Encryption from Constrained Cryptographic Primitives. In ACM
CCS’17.

[13] R. Bost and Fouque P-A. 2017. Thwarting Leakage Abuse Attacks against Search-

able Encryption–A Formal Approach and Applications to Database Padding.

Cryptology ePrint Archive, Report 2011/1060. (2017).

[14] J.S. Breese, D. Heckerman, and C. Kadie. 1998. Empirical Analysis of Predictive

Algorithms for Collaborative Filtering. In UAI’98.
[15] R. Canetti. 2000. Security andComposition ofMultiparty Cryptographic Protocols.

Journal of Cryptology 13, 1 (2000), 143–202.

[16] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou. 2011. Privacy-Preserving Query

over Encrypted Graph-Structured Data in Cloud Computing. In IEEE ICDCS’11.
[17] A. De Caro and V. Iovino. 2011. JPBC: Java Pairing Based Cryptography. In IEEE

SCC’11. 850–855.
[18] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. 2015. Leakage-Abuse Attacks

Against Searchable Encryption. In ACM CCS’15.
[19] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M-C. Rosu, and M. Steiner. 2013.

Highly-Scalable Searchable Symmetric Encryption with Support for Boolean

Queries. In CRYPTO’13.
[20] Z. Chang, L. Zou, and F. Li. 2016. Privacy Preserving Subgraph Matching on

Large Graphs in Cloud. In ACM SIGMOD’16.
[21] M. Chase and S. Kamara. 2010. Structured Encryption and Controlled Disclosure.

In AISACRYPT’10.
[22] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang. 2016. Nxgraph: An Efficient

Graph Processing System on A Single Machine. In IEEE ICDE’16.
[23] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson, et al.

2013. Unicorn: A System for Searching the Social Graph. Proceedings of the VLDB
Endowment 6, 11 (2013), 1150–1161.

[24] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. 2011. Searchable Symmet-

ric Encryption: Improved Definitions and Efficient Constructions. Journal of
Computer Security 19, 5 (2011), 895–934.

[25] D. Demmler, T. Schneider, and M. Zohner. 2015. ABY-A Framework for Efficient

Mixed-Protocol Secure Two-Party Computation. In NDSS’15.
[26] Instagram Engineering. 2018. What Powers Instagram: Hundreds of

Instances, Dozens of Technologies. https://instagram-engineering.com/

what-powers-instagram-hundreds-of-instances-dozens-of-technologies

-adf2e22da2ad[online]. (2018).

[27] M.T. Goodrich, R. Tamassia, and N. Triandopoulos. 2011. Efficient Authenti-

cated Data Structures for Graph Connectivity and Geometric Search Problems.

Algorithmica 60, 3 (2011), 505–552.
[28] Information is Beautiful. 2018. World’s Biggest Data Breaches. http://www.

informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

[online]. (2018).

[29] S. Kamara and T. Moataz. 2017. Boolean Searchable Symmetric Encryption with

Worst-Case Sub-Linear Complexity. In EUROCRYPT’17.
[30] S. Kamara, T. Moataz, and O. Ohrimenko. 2018. Structured Encryption and

Leakage Suppression. In CRYPTO’18.
[31] S. Kamara, P. Mohassel, and M. Raykova. 2011. Outsourcing Multi-Party Compu-

tation. Cryptology ePrint Archive, Report 2011/272. (2011).

[32] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. 2016. Generic Attacks on Secure

Outsourced Databases. In ACM CCS’16.
[33] E.M. Kornaropoulos, C. Papamanthou, and R. Tamassia. 2019. Data Recovery on

Encrypted Databases with K-Nearest Neighbor Query Leakage. In IEEE S&P’19.
[34] S. Lai, S. Patranabis, A. Sakzad, J.K. Liu, D. Mukhopadhyay, R. Steinfeld, et al.

2018. Result Pattern Hiding Searchable Encryption for Conjunctive Queries. In

ACM CCS’18.
[35] J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong. 2016. Privacy-Preserving Public

Auditing Protocol for Low-Performance End Devices in Cloud. IEEE Transactions
on Information Forensics and Security 11, 11 (2016), 2572–2583.

[36] K. Liang, J.K. Liu, R. Lu, and D. S. Wong. 2015. Privacy Concerns for Photo

Sharing in Online Social Networks. IEEE Internet Computing 19, 2 (2015), 58–63.

[37] Y. Lindell and B. Pinkas. 2009. A Proof of Security of Yao’s Protocol for Two-party

Computation. Journal of Cryptology 22, 2 (2009), 161–188.

[38] J. K. Liu, K. Liang, W. Susilo, J. Liu, and Y. Xiang. 2016. Two-Factor Data Security

Protection Mechanism for Cloud Storage System. IEEE Transactions on Computers
65, 6 (2016), 1992–2004.

https://hadoop.apache.org
https://aws.amazon.com/solutions/case-studies/airbnb/
https://aws.amazon.com/solutions/case-studies/airbnb/
https://aws.amazon.com/cn/solutions/case-studies/pixnet/
https://aws.amazon.com/cn/solutions/case-studies/pixnet/
https://aws.amazon.com/outposts/
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies
https://instagram-engineering.com/what-powers-instagram-hundreds-of-instances-dozens-of-technologies
-adf2e22da2ad
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

[39] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J.M. Hellerstein. 2012.

Distributed GraphLab: A Framework for Machine Learning and Data Mining in

the Cloud. Proceedings of the VLDB Endowment 5, 8 (2012).
[40] M.McPherson, L. Smith-Lovin, and J.M. Cook. 2001. Birds of a Feather: Homophily

in Social Networks. Annual Review of Sociology 27, 1 (2001), 415–444.

[41] X. Meng, S. Kamara, K. Nissim, and G. Kollios. 2015. GRECS: Graph Encryption

for Approximate Shortest Distance Queries. In ACM CCS’15.
[42] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B. Bhattacharjee. 2007.

Measurement and Analysis of Online Social Networks. In IMC’07.
[43] P. Mohassel and Y. Zhang. 2017. SecureML: A System for Scalable Privacy-

Preserving Machine Learning. In IEEE S&P’17.
[44] M. Naveed, S. Kamara, and C.V. Wright. 2015. Inference Attacks on Property-

Preserving Encrypted Databases. In ACM CCS’15.
[45] K. Nayak, X. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi. 2015. GraphSC:

Parallel Secure Computation Made Easy. In IEEE S&P’15.
[46] A. Nikitin. 2017. Bloom Filter Scala. https://alexandrnikitin.github.io/blog/

bloom-filter-for-scala/[online]. (2017).

[47] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye, N. Taft, and D. Boneh. 2013.

Privacy-Preserving Matrix Factorization. In ACM CCS’13.
[48] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen, H. Singh,

et al. 2016. Big Data Analytics over Encrypted Datasets with Seabed. In USENIX
OSDI’16.

[49] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S.G. Choi, et al. 2014. Blind

seer: A Scalable Private DBMS. In IEEE S&P’14.
[50] R. Poddar, T. Boelter, and R.A. Popa. 2016. Arx: A Strongly Encrypted Database

System. Cryptology ePrint Archive, Report 2016/591. (2016).

[51] R.A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. 2011. CryptDB:

Protecting Confidentiality with Encrypted Query Processing. In ACM SOSP’11.
[52] P. Pullonen, D. Bogdanov, and T. Schneider. 2012. The Design and Implementation

of A Two-Party Protocol Suite for Sharemind 3. http://tubiblio.ulb.tu-darmstadt.

de/61259/[online]. (2012).

[53] Redis Labs. 2017. Redis. https://redis.io[online]. (2017).

[54] K. Ren, C. Wang, and Q. Wang. 2012. Security Challenges for the Public Cloud.

IEEE Internet Computing 16, 1 (2012), 69–73.

[55] S. Sharma, J. Powers, and K. Chen. 2018. PrivateGraph: Privacy-Preserving Spec-

tral Analysis of Encrypted Graphs in the Cloud. IEEE Transactions on Knowledge
and Data Engineering (2018).

[56] M. Slee, A. Agarwal, and M. Kwiatkowski. 2007. Thrift: Scalable Cross-Language

Services Implementation. Facebook White Paper 5, 8 (2007).
[57] D. Sullivan. 2012. Google’s Results Get More Personal With “Search Plus Your

World”. https://searchengineland.com/googles-results-get-more-

personal-with-search-plus-your-world-107285[online]. (2012).

[58] S-F. Sun, X. Yuan, J.K. Liu, R. Steinfeld, A. Sakzad, V. Vo, et al. 2018. Practical

Backward-Secure Searchable Encryption from Symmetric Puncturable Encryp-

tion. In ACM CCS’18.
[59] The Legion of the Bouncy Castle. 2007. Bouncy Castle Crypto APIs. https:

//www.bouncycastle.org[online]. (2007).

[60] Q. Wang, K. Ren, M. Du, Q. Li, and A. Mohaisen. 2017. SecGDB: Graph Encryption

for Exact Shortest Distance Queries with Efficient Updates. In FC’17.
[61] X.Wang. 2018. FlexSC. https://github.com/wangxiao1254/FlexSC[online]. (2018).

[62] D.J. Wu, J. Zimmerman, J. Planul, and J.C. Mitchell. 2016. Privacy-Preserving

Shortest Path Computation. ArXiv e-prints, arXiv:1601.02281. (2016).

[63] D. Xie, G. Li, B. Yao, X. Wei, X. Xiao, Y. Gao, et al. 2016. Practical Private Shortest

Path Computation Based on Oblivious Storage. In IEEE ICDE’16.
[64] P. Xie and E. Xing. 2014. CryptGraph: Privacy Preserving Graph Analytics on

Encrypted Graph. ArXiv e-prints, arXiv:1409.5021. (2014).

[65] X. Yang, X. Huang, and J. K. Liu. 2016. Efficient Handover Authentication with

User Anonymity and Untraceability for Mobile Cloud Computing. Future Gener-
ation Computer Systems 62 (2016), 190–195.

[66] A.C. Yao. 1982. Protocols for Secure Computations. In IEEE SFCS’82.
[67] X. Yuan, Y. Guo, X. Wang, C. Wang, B. Li, and X. Jia. 2017. EncKV: An Encrypted

Key-Value Store with Rich Queries. In ACM AISACCS’17.
[68] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. 2010. Spark:

Cluster Computing with Working Sets. In USENIX Workshop HotCloud’10.
[69] Y. Zhang, J. Katz, and C. Papamanthou. 2016. All Your Queries Are Belong to

Us: The Power of File-Injection Attacks on Searchable Encryption. In USENIX
Security’16.

A SECURITY DEFINITION AND PROOF
A.1 Leakage Function
Recall the security definition from [19, 24]: The security of SSE is

parameterised by a leakage function LSSE, which depicts the scope

of information about data and queries that the adversary is allowed

to learn through the interaction with server.

Therefore, we start by giving the leakage function of query

operators in GraphSE
2
. As shown in Section 5.3, all operators in

GraphSE
2
inherit the leakage of OXT [19] (i.e., TSet leakage LT

and OXT leakage LOXT).

Furthermore, all operators produce a sorted list as the return, it

additionally introduces a new leakage about the rank of retrieved

entities. We define a new leakage function LR to capture this new

leakage. In particular, LR consists of two sub-functions { f0, f1}
which are defined as follows:

• f0: it takes as input the transcript of OXT and outputs a sorting

circuit Fsort and its input labels.

• f1: it takes as input the transcript of OXT and outputs the rank

rid for every eid, where rid ∈ N is the rank of eid.

Note that the adversary can only corrupt one of the two parties in

our system which means the adversary only can access one of the

above two sub-functions during the simulation.

The overall leakage function L consists of the leakage from OXT

as well as LR.

A.2 Security Proofs
Based on the above leakage function, we give a security analysis

for GraphSE
2
following the real/ideal paradigm.

To start with, we define the real/ideal models for the query

operators (e.g., term, and, etc.) that only involve structured data

access and Garbled Circuit sorting, we denote the execution of the

above query operators as query protocol Π1.

The query protocol Π1 is executed between a client C (SF) and
two parties Pi , i ∈ {0, 1} (ISCs). In real model, an adversaryA can

choose a social dataset DB and let C generate the corresponding

encrypted database EDB and give it toA. Then,A chooses a query

list q to run in the two-party servers. To respond, each party firstly

accesses EDB to retrieve contents and gives the transcript to A.

Later, they perform two-party sorting via Garbled Circuit scheme.

During the sorting,A is able to see all inbound/outbound messages

in the corrupted party.

We letVIEW
i
Π1

(1λ ,DB, q) be the entire view of Pi in an execution

of Π1. Let OUT
i
Π1

(1λ ,DB, q) be the outputs of party Pi in the end of

a Π1 execution. Considering the security assumption of untrusted

but non-colluded adversaries on the two-party setting, an adversary

A can corrupt one party at most. The assumption restricts that

A only can get the entire view of the corrupted party and the

outputs from the counter-party. Hence, VIEW
i
Π1

(1λ ,DB, q) and
OUT

(1−i)
Π1

(1λ ,DB, q) are exactly the real model of A who corrupts

Pi . In this case, we denote the adversary as Ai and set

REALΠ1,Ai (1λ ,DB, q) def=
(VIEW

i
Π1

(1λ ,DB, q),OUT
(1−i)
Π1

(1λ ,DB, q)).
In the ideal model, the EDB of the chosen DB is generated by the

simulator of OXT SimOXT. In the query phase, each party processes

the chosen query list q and returns the transcript toA via SimOXT.

Then, they hand their inputs to a trusted party TP to perform sorting.

We denote the above protocol executed in the ideal model as Π
′
1
.

The view of Ai in the ideal model consists of the view on Pi and
the output of counter-party P(1−i). We set

https://alexandrnikitin.github.io/blog/bloom-filter-for-scala/
https://alexandrnikitin.github.io/blog/bloom-filter-for-scala/
http://tubiblio.ulb.tu-darmstadt.de/61259/
http://tubiblio.ulb.tu-darmstadt.de/61259/
https://redis.io
https://searchengineland.com/googles-results-get-more-
personal-with-search-plus-your-world-107285
https://www.bouncycastle.org
https://www.bouncycastle.org
https://github.com/wangxiao1254/FlexSC

IDEALΠ
′
1
,Ai
(1λ ,DB, q) def=

(VIEW
i
Π
′
1

(1λ ,DB, q),OUT
(1−i)
Π
′
1

(1λ ,DB, q)).
Before we formalise the security of Π1, we give the definition of

computationally indistinguishable:

Definition 1 (Computationally Indistinguishable). Assum-
ing a distribution ensemble X = {Xi }i ∈I is a sequence of random
variables indexed by I. Two distribution ensembles X = {Xi }i ∈I
and Y = {Yi }i ∈I are computationally indistinguishable, denoted as
X c≡ Y, if for every probabilistic polynomial-time distinguisher D,
there exists a negligible function negl(·), such that for every i ∈ I

|Pr[D(Xi) = 1] − Pr[D(Yi) = 1]| ≤ negl(λ)
. The security of Π1 is defined as follows:

Definition 2. Let Π1, Π
′
1
be as above. protocol Π1 is said to be

L-semantically secure where L is the leakage function defined as
before if for every non-adaptive adversaryAi in the real model, there
exists a simulator Si in the ideal model such that
{REALΠ1,Ai (1λ ,DB, q)}i ∈{0,1}

c≡ {IDEALΠ
′
1
,Si (1

λ ,DB, q)}i ∈{0,1}

We further define our adaptive model as in [19]. In such a model,

the query list q is not given to the challenger in the above two

games. Instead, A adaptively chooses each query after receiving

EDB.

We assume that Π1 runs in a hybrid model where parties are

given access to the trusted party computing the ideal function of

OT. We show that Π1 is secure with the given leakage function

in this hybrid model. It follows from the standard composition

theorems [15] that Π1 is secure with the given leakage function if

the trusted party is replaced by secure protocol (i.e., real OT).

Theorem 1. In the OT-hybrid model execution, protocol Π1 is L-
semantically secure against non-adaptive adversaries, assuming that
OXT protocol is LOXT-semantically secure against non-adaptive ad-
versaries, that the Garbled Circuit (GC) construction is secure against
semi-honest but non-colluding adversaries.

Proof. Let Ai denote an adversary corrupts Pi attacking the

protocol in a hybrid model where the parties run OT via trusted

entities (OT-hybrid model). As the view of garbler and evaluator

are different in Π1, we consider separately the cases i = 0 and i = 1.

We further denote the ensemble of C, the counter-party of Pi and
the trusted party TP as the challenger C in our simulation. In both

cases, we show that we can construct a simulator Si running in our

ideal model where the parties involve a trusted entity computing

Π
′
1
, which returns the same view as Ai ’s in the hybrid model.

Si is constructed as follows:

(1) Si chooses the DB and q and simulates A. It firstly gives DB

to C. C runs SimOXT(LOXT(DB)) and return EDB to Si .
(2) For the given query list q, Si processes SimOXT(LOXT(DB,q))

and receives the output tri from SimOXT. The output tri is
identical to the transcript of OXT except that the query result

of OXT only includes the encrypted id eid, but in Π
′
1
, the query

result is a list of encrypted tuples {E} = {(⟨x⟩A, eid)}.
This completes the the simulation of the structured data access

part of Π1.

(3) Next, Si hands tri to C and simulates the sorting procedure.

As each party runs the same query on the same partition of the

OXT index, the size of transcript is equal. C runs f0(tr0, tr1)
to generate an array of sorting circuits F with |tr| circuits and
f1(tr0, tr1) to generate an array of ranks R[eid] indexing by the

eid from tr.
(4) For each tri [j], 1 ≤ j ≤ |tr|, if i = 0 (garbler):

(a) S0 sends tr0[j] to the C and receives F[j] and its input labels
⟨X⟩Y

0
from C. In addition, S0 is able to get the labels ⟨X0⟩Y

1

of its additive shares ⟨X⟩A
0
. There is no message from the

counter-party.

(b) The counter-party (P1) uses its tr1[j] to retrieve a LR-

simulated ranked list {Ē} = {(rid, eid)} from R[eid].
(c) After execution,S0 outputs {EDB, tr0[j], F[j], ⟨X⟩Y

0
, ⟨X0⟩Y

1
}

as VIEW
0

Π
′
1

(1λ ,DB, q) and {{Ē}} as OUT
1

Π
′
1

(1λ ,DB, q).
(5) If i = 1 (evaluator):

(a) S1 simulates OT protocol by generating the labels ⟨X1⟩Y
1

for each evaluator’s input ⟨x⟩A
1
.

(b) S1 retrieves ranks from R[eid] and constructs {Ē}.
(c) Then, in the usual way (e.g. [9, 37]), S1 simulates a sorting

circuit Fsort in such a way that given the input labels chosen
by S1, the output of the circuit is precisely {Ē}.

(d) Finally, S1 outputs {EDB, tr1[j], Fsor t , ⟨X0⟩Y
1
, ⟨X1⟩Y

1
, {Ē}}

as VIEW
1

Π
′
1

(1λ ,DB, q) and {∅} as OUT
0

Π
′
1

(1λ ,DB, q).

To complete the proof, we use the above simulator to show that

{REALΠ1,Ai (1λ ,DB, q)}i ∈{0,1}
c≡ {IDEALΠ

′
1
,Si (1

λ ,DB, q)}i ∈{0,1} :

(1) EDB and tr in the real model are generated by running OXT

protocol, while in the ideal model, they are simulated by given

the output of leakage function.

(2) For i = 0 (garbler):

(a) In the real model, the garbler constructs the sorting circuit

correctly based on garbler’s inputs, while in the ideal model

the garbled circuit is a dummy circuit in F with the given

input labels from C.
(b) In the real model, the evaluator gets the output {Ē} after

evaluating the circuit. In the ideal model, the output is

obtained from the trusted entity via the output of leakage

function LR.

(3) For i = 1 (evaluator):

(a) In the real model, Fsort and the input label sent by the

garbler is correctly generated based on garbler’s inputs,

while in the ideal model the garbled circuit is simulated

based on the random generated input labels and the output

of leakage function LR from C. It ensures that the circuit
returns the same output in two models.

(b) Both in the real and ideal model, the garbler does not output

a result in the end of the protocol execution.

The security properties of OXT ensures the indistinguishability

of structured data access part. For the sorting part, The privacy

property of Garbled Circuit [9] ensures that the adversary only

can learn the inputs from the circuit and output with a negligible

probability. It concludes that for every non-adaptive adversary Ai ,

it has negligible probability to learn more information than the

defined leakage function L. □

We now show that our theorem is also valid for adaptive models.

Theorem 2. In the OT-hybrid model execution, protocol Π1 is L-
semantically secure against adaptive adversaries, assuming that OXT

protocol is LOXT-semantically secure against adaptive adversaries,
that the Garbled Circuit (GC) construction is secure against semi-
honest but non-colluding adversaries.

Proof. First of all, OXT protocol has been proved to be LOXT-

semantically secure against adaptive adversaries [19]. The only

concern here is how to handle the adaptivity towards sorting.

To simulate the response for adaptive queries, the simulator

should adaptively generate the ranks R[eid] for eid list, This is in

contrast to the non-adaptive simulator, where it can generates

R[eid] as determine by the leakage. Instead, the simulator uses the

STag and eid list from the transcript to maintain a bidimensional

array R[STaд, eid]. It adaptively updates R[STaд, eid] for each new

eid which does not exist in R[STaд, eid]. □

Finally, we show that the defined operator (i.e., apply) is also
secure after involving arithmetic computations. We slightly modify

our hybridmodel by adding an ideal function fA, which evaluates ar-
bitrary addition/multiplications using the ideal function of additive

sharing scheme. The new hybrid model is defined as (fA,OT)-hybrid
model.

Theorem 3. In the (fA,OT)-hybrid model execution, protocol Π1

is L-semantically secure against adaptive adversaries, assuming that
OXT protocol is LOXT-semantically secure against adaptive adver-
saries, that the Garbled Circuit (GC) construction is secure against
semi-honest but non-colluding adversaries.

Proof. We have shown that the output ranks can be simulated

without using the actual additive shares in Theorem 1, 2. Informally,

it also indicates that Π1 can also securely perform structured data

access and sorting under the (fA,OT)-hybrid model. In addition,

previous work shows that the additive sharing scheme can securely

compute the given arithmetic formulas [52]. The standard sequen-

tial modular composition [15] implies that Π1 with sub-protocols

evaluating fA and OT remains secure with the same leakage L in

the real model. □

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Social Graph Model
	3.2 Oblivious Cross-Tags (OXT) Protocol
	3.3 Secure Computation

	4 System Overview
	4.1 System Architecture
	4.2 High-level Description
	4.3 Threat Assumptions
	4.4 Query Operators

	5 The Proposed System
	5.1 Encrypted Graph Data Model
	5.2 Encrypted and Distributed Graph Index
	5.3 Atomic Operations

	6 Query Realisation
	6.1 Graph Operators
	6.2 Apply Operator
	6.3 Security Analysis

	7 Implementation
	8 Experimental Evaluations
	8.1 Setup
	8.2 Evaluation Results

	9 Conclusion
	References
	A Security Definition and Proof
	A.1 Leakage Function
	A.2 Security Proofs

