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ABSTRACT
Personalized community detection aims to generate communities
associated with user need on graphs, which benefits many down-
stream tasks such as node recommendation and link prediction for
users, etc. It is of great importance but lack of enough attention
in previous studies which are on topics of user-independent, semi-
supervised, or top-K user-centric community detection. Meanwhile,
most of their models are time consuming due to the complex graph
structure. Different from these topics, personalized community de-
tection requires to provide higher-resolution partition on nodes
that are more relevant to user need while coarser manner partition
on the remaining less relevant nodes. In this paper, to solve this
task in an efficient way, we propose a genetic model including an
offline and an online step. In the offline step, the user-independent
community structure is encoded as a binary tree. And subsequently
an online genetic pruning step is applied to partition the tree into
communities. To accelerate the speed, we also deploy a distributed
version of our model to run under parallel environment. Extensive
experiments on multiple datasets show that our model outperforms
the state-of-arts with significantly reduced running time.

CCS CONCEPTS
• Information systems → Community detection; • Computing
methodologies→ Genetic programming.
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1 INTRODUCTION
Community detection is an important topic in graph mining. By
learning node community labels on the graph, we are able to detect
node hidden attributes as well as explore the closeness between
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Figure 1: An example of personalized community detection
on a scholarly graph

nodes [13, 40]. Conventional methods are mostly user-independent
to detect communities solely relying on graph topological structure
[37], generate semi-supervised communities with node constraints,
or select top-K sub graphs as user-centric communities. These
approaches are no longer enough to satisfy users with a pursuit of
personalization, which makes involving user need into community
detection to become an inevitable task. Specifically, from a user-
centric viewpoint, the ideal communities should provide a high-
resolution partition in areas of the graph relevant to the user need
and a coarse manner partition on the remaining areas so as to best
depict user need (we also call it “query” in the rest of this paper) in
concentrated areas while fuzz irrelevant areas.

For instance, in Figure 1, two different scholars in education and
data mining domains may consume the same scholarly graph differ-
ently because they may need more detailed community exploration
in their own domains while generalized community information
in other irrelevant domains (e.g., the data mining scholar needs
more detailed communities such as Deep Learning, Graph Mining,
and Bayesian Analysis. While an education scholar may need to
generalize those communities as Computer Science or just Science).

As aforementioned, current investigations are still with limited
scope. First, user-independent approaches solely consider graph
topological structure without user need. For instance, [39] proposes
a novel nonlinear reconstruction method by adopting deep neural
networks to generate communities with the maximum modular-
ity. [6] calculates the Jacaard similarity of neighborhood graphs
to decide whether two nodes belong to the same community. Sec-
ond, semi-supervised approaches detect communities restricted by
pre-selected seed nodes. As different user needs refer to different
seeds, each individual user requires a separate process to run the
whole model completely to get personalized communities, which
is inapplicable in real cases. [28] introduces a joint approach to
decompose the matrices associated with multi-layer networks and
prior information into a community matrix and multiple coeffi-
cient matrices. [20] defines a non-negativity and a latent sparsity
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constraint to guide community detection. Third, sub-graph selec-
tion approaches only generate communities from the partial graph
instead of the whole one. [21] designs two index infrastructures
including a topology index and a metapath weight index to exploit
top ranked subgraphs. Similarly, [43] indexes the graph and uses
cluster coefficient as the criteria for sub-graph selection.

To detect personalized communities on the whole graph, in this
paper, we propose a genetic Personalized Community Detection
(gPCD) model with an offline and an online step. Specifically, in
the offline step, we convert the user-independent graph commu-
nity to a binary community tree which is encoded with binary
code. Subsequently, a deep learning method is utilized to learn
low-dimensional embedding representations for both user need
and nodes on the binary community tree. In the online step, we
propose a genetic tree-pruning approach on the tree to detect per-
sonalized communities by maximizing user need and minimizing
user searching cost simultaneously. The whole genetic approach
runs in an iterative manner to simulate an evolutionary process
and generate a number of partition candidates which are regarded
as “chromosomes” in each genetic generation. Through the selec-
tion, cross-over and mutation process, successive chromosomes are
bred as better personalized community partitions to meet with user
need.

The contribution of this study is threefold.

• We address a novel personalized community problem and
propose a model to generate different-resolution communi-
ties associated with user need.

• Our model contains an offline and an online step. The offline
step takes charge of most calculation to enable an efficient
online step: The construction of binary community tree has
a time complexity of O(∥V ∥2) in the worst case where ∥V ∥
denotes the number of vertices in the graph; Representa-
tion learning on both binary community tree and user need
has the same time complexity as Node2vec [19]. The online
genetic pruning step running under the parallel environ-
ment achieves O( 2dKPM ) time complexity where d denotes
the depth of the tree, K denotes the community number,
P denotes the initialized population size in the genetic ap-
proach andM denotes the number of Mappers/ Reducers in
Hadoop Distributed File System (HDFS).

• We evaluate our model on a scholarly graph and a music
graph. In our model, the offline step is separately calculated
and keeps unchanged once constructed, while the online
step guides the personalized community detection. Hence we
only compare the online step results with baselines’ perfor-
mance. Extensive experiments shows our model outperforms
in terms of both accuracy and efficiency.

2 LITERATURE REVIEW
The problem of exploring community structure in graphs has long
been a central research topic in network science [5, 14, 27]. From
user-centric viewpoint, existing community detection methods can
be divided into three categories: user-independent models, semi-
supervised models and top-K community selection models.

User-independent Community Detection: Models belong-
ing to this category aims to generate communities solely relying on

graph structure without considering any auxiliary information. As
“modularity” is a classic metric to evaluate community quality [18],
there are a bunch of works which try to generate community parti-
tions by maximizing graph modularity [4, 8, 31]. Dynamic models
can handle higher order structures with hierarchical communities
[3]. Random walk dynamics are by far the most exploited track
in community detection. For example, Infomap [34] detects com-
munities by minimizing the description length for random walk
paths. An extended Multilevel Infomap models reveals hierarchi-
cal community structure in a complex graph [35]. Recent works
start to leverage deep learning methods for community detection
. DeepWalk [32] learns node embeddings based on random walks
and Kmeans is subsequently applied on node embeddings to detect
communities. Node2vec [19] and edge2vec [16] are both extended
models of DeepWalk which design a biased random walk to learn
node embeddings better representing graph structure. [39] aims to
maximize the graph modularity with a deep learning framework.
[2] also uses neural networks to generate content-based communi-
ties for online social networks. Some other methods derived from
statistical models are also able to detect communities. However,
they are usually too time consuming to apply on large scale graphs
[1, 22, 25].

Semi-supervised Community Detection: In this track, com-
munity detection models are restricted by a pre-defined constraint
[17]. [20] using multi-aspect information of heterogeneous graph
and a small ratio of node constraints to detect both non-overlapping
and overlapping communities. [26] detects communities by actively
selecting a small amount of links as side information to sharpen
the boundaries between communities and compact the connections
within communities. [30] proposes a new community measurement
metric and a spectral model to detect communities. [15] introduces a
new constrained community detection model based on Lagrangian
multipliers to incorporate and fully satisfy the node labels and
pairwise constraints. [36] designs a unified non-negative matrix
factorization framework simultaneously for community detection
and semantic matching by integrating both semi-supervised in-
formation and node content. [29] discusses the equivalence of the
objective functions of the symmetric non-negative matrix factoriza-
tion (SNMF) and the maximum optimization of modularity density
first, and derives the community detection model from the equiva-
lence.

Top-K Community Selection: Some prior works also exploit
on social graphs to find top-K groups of nodes that are relevant
to a user query. [23] addresses the problem of forming a team of
skilled individuals based on a given task, while minimizing the
communication cost among the members of the team. In order to
find the top K most relevant subgraphs given a user query, [21]
introduces an offline approach generating two index structures for
the network: a topology index, and a graph maximum metapath
weight index. An online novel top-K approach is subsequently
applied to exploit these indexes for answering queries. To solve
the same problem, [43] designs a balanced tree (G-Tree) to index
the large graph first and then proposes the rank matching (RM)
algorithm to locate the top-k matches of query Q by pruning on the
balanced tree. [42] develops a new graph distance measure using
the maximum common subgraph (MCS), which is more accurate
than the feature based measures, to find top-K similar graphs for
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Figure 2: The framework of gPCD model. (a) refers to the of-
fline construction step on the original graph and (b) refers to the
online genetic pruning step to generate personalized communities.

a user query and offers an optimization approach to accelerate
running speed.

3 GENETIC PERSONALIZED COMMUNITY
DETECTION

Our proposed gPCD model contains an offline and an online step.
Figure 2 shows the pipeline of the whole framework. The offline
step first encodes the user-independent binary community tree
(Section 3.1), and subsequently learns embedding representations
for both user need and nodes on the binary community tree (Section
3.2). The online step introduces the genetic personalized commu-
nity detection approach (Section 3.3). To accelerate the running
speed, a distributed version of gPCD model is also deployed on
HDFS (Section 3.4). To disambiguate the notations mentioned in
this section to better explain our gPCD model, some commonly
used notations can be found in Table 1.

3.1 Offline Community Tree Index
One challenge of solving personalized community detection prob-
lem is the computational cost due to the complexity of personaliza-
tion and graph structure. In order to reduce the online workload,
most of computation cost is put into the one-time offline step whose
time cost can be excluded from the online personalized commu-
nity detection step. Thus, we first convert the graph into a binary
community tree offline to retain user-independent community in-
formation.

We employed the Infomap algorithm [35] to generate the user-
independent communities solely based on the graph G(V, E). In-
fomap algorithm simulates a random walker wandering on the
graph and indexes the description length of his random walk path
via multilevel codebooks. By minimizing the description length
based on the map equation below, community structures are formed

Notations Descriptions

G(V , E) Original graph G with vertex set V and edge set E

Tc (N c , Lc ) The hierarchical community tree generated from
graphG(V , E)with node setN c and link set Lc . Each
node N c

k ∈ N c denotes a group of vertices belonging
to V .

Tb (N b, Lb ) The binary community tree reconstructed from
Tc (N c , Lc ). Each node N b

k ∈ N b denotes a group of
vertices belonging to V .

B The binary codebook for Tb (N b, Lb ). Particularly,
Bk ∈ B denotes the binary code of both N b

k ∈ N b

and Lbk ∈ Lb where Lbk is the link points to node N b
k .

Table 1: Commonly used notations in gPCD model

for the graph.

L(M ) = q↷H (Q) +
m∑
i=1

pi⟳H (Pi ) (1)

where L(M) is the description length for a random walker in the
current communityM . q↷ and pi

⟳
are the jumping rates between

communities and within the ith community.H (Q) is the frequency-
weighted average length of codewords in the global index codebook
and H (Pi ) is frequency-weighted average length of codewords in
the ith community codebook. Followed by this equation to partition
communities into sub-communities , a hierarchical community tree
Tc (N c ,Lc ) is constructed from the original graph G(V ,E).

In Tc (N c ,Lc ), each parent node can have multiple child nodes
which can be regarded as a community partition on the parent
node. For instance, a node N c

k ∈ N c from Tc (N c ,Lc ) represents a
community of vertices. Itsm child nodes {N c

k1
,N c

k2
, ...,N c

km
} rep-

resentm sub-communities of vertices from G(V ,E) where we have⋂m
i=1 N

c
ki
= � and

⋃m
i=1 N

c
ki
= N c

k .
In order to achieve an efficient personalized community detection

in the following online step, we convert the hierarchical community
tree Tc (N c ,Lc ) to a binary community tree Tb (Nb ,Lb ) for index.
Specifically, form child nodes of a parent node N c

k , a bottom-up
approach is proposed to merge a selected pair of sibling nodes as
a new node in an iterative manner. The approach runs until all
m child nodes merged together to form the parent node N c

k . To
avoid an unbalanced tree where small communities are always left
to merge with huge communities in the end, we first select the
node with the smallest community size among all sibling nodes
in each merging step. It is merged with its sibling node with the
largest normalized linked weight (Please refer to Figure 2(a)). The
normalized linked weight functionw(·) between two nodes N c

i and
N c
j is defined as:

w(N c
i ,N

c
j ) =

N c
i ⊙ N c

j −
D(N c

i )·D(N c
j )

2∥E ∥
∥N c

i ∥∥N
c
j ∥

(2)

whereN c
i ⊙N

c
j denotes the number of edges linked between vertices

in nodeN c
i andN c

j , which can be interpreted as the linkage strength
between them; ∥N c

i ∥ is the number of vertices inside node N c
i ;

D(N c
i ) is the out-degree of node N c

i (the total number of edges
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linked to other nodes) and ∥E∥ is the total number of edges in the

original graph G(V ,E) .
D(N c

i )·D(N c
j )

2∥E ∥ denotes the random linkage
strength between node N c

i and N c
j . The w(·) function calculates

how much that two nodes are better connected beyond random
connection and is normalized by node size. Given the node N c

i
with the smallest community size and all its sibling node set S , The
merging step can be formulated as:

N c
j ⇐ argmax

N c
j ∈S

w(N c
i ,N

c
j )

N c
∗ = N c

i

⋃
N c
j

(3)

The bottom-up process will stop until all child nodes are merged
together to form the parent node. In the end, the hierarchical com-
munity tree Tc (N c ,Lc ) is fully converted to a binary community
tree Tb (Nb ,Lb ) with user-independent community information.
The node size ∥Nb ∥ as well as the link size ∥Lb ∥ inTb (Nb ,Lb ) is at
most 2∥V ∥ which is smaller than the size of original graphG(V ,E).
If we consider to form the binary community tree with only k levels,
the size of Tb (Nb ,Lb ) can be even smaller.

For running time analysis, calculating normalized linked weight
takes constant time. In each merging step, node pair selection takes
linear time. Therefore, in the worst case, the time complexity of
binary community tree construction is O(∥V ∥2) where the depth
of the hierarchical community tree Tc (N c ,Lc ) is 1 and each vertex
in G(V ,E) forms a single-vertex community.

To encode the nodes and links onTb (Nb ,Lb ) as binary code, the
root node is encoded as ‘null’ first. For a parent node Nb

k with its
left child node Nb

kl
and right child node Nb

kr
, the binary code of a

child node and the related link defined in the Notation Table 1 is
calculated as:

Bki =

{
Bk + “0”, i = “l”
Bk + “1”, i = “r”

(4)

For instance, if the node Nb
k is with binary code “00," its left child

node’s binary code is “000" while the right child node’s binary code
is “001." The link Lbk that points to Nb

k also has the binary code “00".

3.2 Community and User Need Representation
Node2vec [19] helps to learn fixed-length embeddings for both user
need and communities. It simulates random walks on the graph
G(V ,E) and learns the vertex embedding by optimizing the sequen-
tial relationships from random walk paths. In the end, each vertex
Vk in graph G(V ,E) has a vector representation as ®Vk . Each node
Nb
k on the binary community treeTb (Nb ,Lb ) refers to a vertex com-

munity Ck in the graph G(V ,E). Its representation ®Ck is calculated
as the averaged embedding of all vertices inside the community.
In the end, the binary community tree Tb (Nb ,Lb ) represents the
hierarchical community partition of GraphG(V ,E). Each node Nb

k
on the tree is indexed with three attributes: a group of vertices from
graphG(V ,E), a binary code Bk , and an embedding representation
®Ck .
On the other hand, User need (query) I can also be represented

by a combination of t different vertices {V1,V2...Vt } in the graph

G(V ,E). In this study, two different scenarios for user need repre-
sentation are offered:

Vertex-based Query. User need can be directly represented by
the vertices based on the generation probability P(Vk |I ) between
them. Hence the user need representation ®I is calculated as:

®I =
t∑

k=1
P(Vk |I ) · ®Vk (5)

For instance, in a music sharing network, each vertex Vk denotes a
music and a user listing history can be used to reflect the user need
I . P(Vk |I ) therefore can be regarded as the probability that a music
being listened by the user.

Text-based Query. Under this scenario, user need I is repre-
sented as a text query, and each vertexVk in the graphG(V ,E) also
contains textual content. From language model viewpoint, each
vertex importance weight is the query likelihood P(I |Vk ), and the
user need can is the weighted average of vertex embedding:

®I =
∑t
k=1 P(I |Vk ) · ®Vk∑t
k=1 P(I |Vk )

(6)

In either case, user need is conceptualized as an embedding with
the same dimension as the node embeddings on the binary commu-
nity tree. It enables very efficient online personalized community
detection in later steps. And running Node2vec takes most of the
time in this step.

3.3 Online Genetic Pruning
The whole process, as the Figure 2 shows, is to generate communi-
ties by pruning the constructed binary community tree. After each
cut on a link, the original tree will be separated into two sub-trees.
After a specific number of cuts to the links on the tree, a fixed
number of communities with different resolutions are detected. By
applying genetic selection, crossover, andmutation steps, our model
converges to the optimized solution efficiently with a clear-defined
fitness function. The details are shown in the following paragraphs.

3.3.1 Genetic Representation.
A chromosome is formed by a set of genes {д1,д2, ...,дK−1}, and

each gene дi holds a cut link Lbi in the binary community tree
Tb (Nb ,Lb ). Since communities can be created by cutting links on
the offline tree, a chromosome can be represented as a generated
community partition of the original graph G(V ,E) in this way. To
constrain a chromosome so that it can be decoded to a fixed number
of communities, four Cutting Rules are necessarily to be applied:

• Rule 1: If a link Lbi is picked to cut on the binary community
tree Tb (Nb ,Lb ), its pointing node Nb

i will be retrieved and
all the vertices within it form a community.

• Rule 2: If a link Lbi and its ancestor link Lbj are stored in the
same chromosome, all vertices in Lbi ’s related node N

b
i are a

subset of vertices in Lbj ’s related node Nb
j . In this case, the

two cut links generate two communities where community
Ci is all vertices in Nb

i and community Cj is the remaining
vertices in Nb

j but not in Nb
i . It can be formulated as Ci =
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⋃
k {Vk |(Vk ∈ Nb

i )} and community Cj =
⋃
k {Vk |(Vk ∈

Nb
j ) ∩ (Vk < Nb

i )}.
• Rule 3: Sibling links can’t be stored in the same chromo-
some, and it is not allowed to store duplicated links in a
chromosome.

• Rule 4: The depth’s upper bound is set to bed , which means
all eligible cut links should be located in the first d depth
on the binary community tree. It avoids to generate super
tiny communities and hugely reduces the genetic searching
scope on cut links.

By applying the cutting rules to the online pruning process, we
ensure a K community partition can be retrieved from a chromo-
some with K − 1 cut links.

3.3.2 Initialization.
Initially, the model generates a given number P chromosomes

as the seed “chromosome population". And each iteration in the
genetic approach breeds a new “generation” of chromosome pop-
ulation. In order to ensure a chromosome is an encoder of a K
community partition, K − 1 links will be randomly picked (on the
binary community tree) following the cutting rules and stored in
the related genes of a chromosome.

3.3.3 Fitness Function.
As each chromosome can be decoded as a community partition, it

is important to measure the quality of each generated chromosome
(how well the generated communities can satisfy user need). The
measurement is hosted in a fitness function.

In our model, the fitness function simulates the user searching
behavior on the graph given the community partition. For instance,
a user can be more likely to pick the most relevant communities
while avoiding the redundant information already selected. With
the help of the offline step, the relevance score of node Nb

i (com-
munity Ci ) towards user need I can be calculated with the co-
sine similarity cos(®I , ®Ci ), and the information redundancy can be∑
Cj ∈Sc cos( ®Cj , ®Ci ) where Sc is the set of communities that the user

have already picked from the communities decoded from the target
chromosome. Following this, we use a greedy selection approach to
iteratively rank and pick communities given a chromosome (com-
munity partition) until all communities are picked:

argmax
Ci

λ · cos(®I , ®Ci ) − (1 − λ) ·
∑
Cj ∈Sc cos( ®Cj , ®Ci )

∥Sc ∥
(7)

where Ci is the candidate community to be picked and ∥Sc ∥ is
the number of communities already been picked. λ is a parameter
controls whether user prefers to obtain new useful information or
to avoid redundant information.

For chromosome quality evaluation, a query-generated vertex
ranking list lq is first created by retrieving top n vertices relevant
to the query (user need) with the largest cosine similarities on
embeddings of graph G(V ,E). We store the top n vertex ranking
label R(lq ) = {1, 2, ...,n} as the pseudo ground truth. On the other
hand, given the kth chromosome chk in the current chromosome
generation, we can also retrieve the community-generated ranking
of each vertex Vk ∈ lq from the sequentially selected communities
decoded by the chromosome. We assign the ranking label on each

vertex Vk based on the following formula:∑
Vj ∈lq

Φ(δ (Vj ) < δ (Vk )) + 1 (8)

Vj refers to all vertices in lq . δ (Vj ) shows the ranking (selection
sequence) of the community which Vj belongs to. Φ is a binary
operator to determine whether Vj satisfy the condition δ (Vj ) <
δ (Vq ). This formula helps to construct the community-generated
ranking label R(lc ). For instance, when n = 3, we have a query-
generated ranking list lq = {V1,V2,V3} and its related ranking label
R(lq ) = {1, 2, 3}. Given a chromosome where the community of
V1 and V2 is the same and selected before V3, we can generate the
related community ranking label R(lc ) = {1, 1, 3} with the same
vertex sequence of lq .

Then, we define the fitness function f (·) to evaluate the chro-
mosome chk . As we have the query-generated ranking label R(lq )
(ground truth) and community-generated ranking label R(lc ) from
chk , we calculate their Kendall’s τ correlation coefficient as the
fitness score f (chk ) of chromosome chk where higher score means
the chromosome chk can generate better personalized communities
to meet with user need.

f (chk ) = 1 −
∑n
i=1 R(lci ) · R(lqi )∑n

i=1 R(lci )2 ·
∑n
i=1 R(lqi )2

(9)

where R(lci ) is the ith vertex ranking in community-generated
ranking label R(lc ) and R(lqi ) is the ith vertex ranking in query-
generated ranking label R(lq ). Kendall’s τ is a widely used metric
to evaluate the correlation between two lists where higher score
means stronger correlation. Thus, higher fitness score reflects that
the generated community ranking (R(lc )) can better meet with user
need (R(lq )).

Moreover, it is clear that the fitness function aims to separate all
top n vertices in different communities to get the optimal case. It
matches our research goal to generate high resolution communities
on vertices which are more relevant to user need. As the number of
community is a given number K , it also leads to a coarser manner
partition on the remaining less relevant vertices. On the other
hand, the binary community tree Tb (Nb ,Lb ) and the Cutting Rule
4 naturally preserve the community structure and unite the most
relevant vertices in the same community. Hence the whole genetic
approach is a gambling process. The final chromosome result is
the equilibrium case to detect communities both contain graph
topological structure and meet with user need.

3.3.4 Selection.
We select the superior chromosomes from current chromosome

population based on their fitness scores. The probability that the
kth chromosome chk is picked can be calculated via the Softmax
normalization function p(chi ) = exp(f (chk ))∑P

i=1 exp(f (chi ))
. Then, the Fitness

Proportionate Selection method [12] is applied to randomly select P
chromosomes into chromosome pairs based on probability distribu-
tion. In order to enhance optimization efficiency, we also use elitism
selection to ensure the best chromosome in the current generation
will always be selected to the next generation.

3.3.5 Crossover.
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To reach global optimum community partition efficiently, given
a pair of chromosomes, the crossover operation can randomly ex-
change part of the genes in both chromosomes to produce a new
pair of chromosomes with a certain crossover rate.

In order to make sure that the newly generated chromosomes
meet the cutting rules, an Exchange Rule is defined to restrict
gene exchange: If gene д contains link Lbд , д can’t do crossover
process with genes that contain either link Lbд or its sibling link Lb

′
д .

This rule can help avoid having duplicated links or sibling links
stored together in the newly generated chromosome (To satisfy
Cutting rule 3).

After m random numbers are selected from {1, 2, ...,K − 1} as
exchanged gene position indexes, genes located in the chosen posi-
tions of two chromosomes will exchange the stored link restricted
by the Exchange Rule.

3.3.6 Mutation.
Mutation operation is applied to avoid local optimization. If a

chromosome is chosen to mutate, a gene within the chromosome
will be randomly picked, and its stored link will be changed to
another link restricted by the Exchange Rules. An example is illus-
trated in Figure 2(b) where the link stored in the second gene is
changed from “001” to “01”.

3.3.7 Termination.
After T iterations, the whole process stops and the current best

chromosome is retrieved as the final result. Choosing the number of
T is dependent on the task. In order to decode the final chromosome
to the related community partition, all genes in the chromosome
are sorted in an ascending order based on the binary code of their
stored cut link. Vertices whose binary codes start with the same cut
link’s binary code will be assigned to the same community label.
And its later assigned community label can overwrite the previous
assigned community label. For instance, if there are a vertex with
binary code “0011” and two cut links with binary code “00” and
“001”, the vertex will be assigned to a community label “00” first,
and its community label is overwritten by “001” afterwards. The
Termination step in Figure 2(b) also illustrates a vivid example. In
this way, the binary code of the binary community tree can help to
decode the final chromosome into communities in an efficient way.

3.4 Distributed gPCD
To enhance the online step efficiency, a MapReduce framework
[11] is utilized to enable the distributed genetic evolution. Figure
3 depicts the personalized community detection under a MapRe-
duce framework. The chromosome collection is either originally
initialized from binary community tree or obtained from the last
generation. It contains the whole chromosome population in the
central depository. In its first “Splitter” process, all chromosomes
are split intoM groups based on their hash values and sent out to
related M Mappers to calculate the “Fitness” scores. In the same
Mapper, after all chromosomes are assigned fitness scores, based
on their scores, a Combiner groups all chromosomes together and
random select equal number of chromosomes with duplicated as
the “Selection” step. All the selected chromosomes are sent to R
reducers (we set R = M arbitrarily in order to better represent time
complexity) to form pairs for the “Crossover” and “Mutation” step,

Figure 3: Online parallel computing process on Hadoop Dis-
tributed File System (HDFS)

calculate new chromosome offsprings for the next generation and
store them back to the central repository.

The complexity of the proposed algorithm is O(2dKP) without
parallel computing and O( 2dKPM ) with parallel computing, where d
denotes the upper bound where the cut links are restricted in the
topd depth of the binary community treeTb (Nb ,Lb );K denotes the
community number; P denotes the initialized population size of the
genetic algorithm andM denotes the number of Mappers/Reducers
in parallel environment. As all the parameters are considerably
small (compared with the node/edge size in the original graph),
the whole process runs very fast to retrieve the final community
partition.

4 EXPERIMENTS
4.1 Datasets
4.1.1 Datasets Description.

Table 2 shows the statistics of the two datasets. The scholarly
graph is unweighted and directed, while the music graph is a
weighted and undirected.

Dataset Node description Edge description

Type Size Type Size

Scholarly paper 166,170 citation 750,181

Music song 145,203 co-listening 1,172,525
Table 2: Dataset Description

Scholarly Graph: It contains academic publications with meta-
data extracted from ACM Digital Library. From the dataset, we
build the experimental graph via paper citation relationship. Each
vertex in the graph represents a paper, and if a paper cites another
paper, there will be an edge linking the two. Our model aims to
detect personalized communities on the scholarly graph for authors.
For each author in the dataset, we represent his/her need in two
ways: their previous publications (text-based query) and cited paper
history (vertex-based query).

MusicGraph: It contains user listening histories and user-generated
playlists from an online music streaming service, Xiami. We create
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(a) Depth d in Citation model (b) Depth d in Keyword model (c) Depth d in Listening model (d) Iteration T in all models (e) User searching preference λ
in all models

Figure 4: Parameter effects on model performance

a music graph with songs as the vertices and co-listening relation-
ship as the edges. If two songs appear in the same user’s listening
history, there will be an edge linking them two. For users in the
music dataset, we represent their music tastes (user need) from the
songs in their listening history.

4.1.2 Ground Truth Construction.
The ground truth for the two datasets are generated based on

each user’s publishing/ citing/ listening history:
For the scholarly dataset, the references of 112 random sam-

pled papers are manually annotated from their literature reviews
where authors summarize previous works. Different paragraphs
(or sub-sections) in the literature review typically focus on sepa-
rate but coherent topics while the same paragraph talks about the
same topic [41]. Based on this assumption, the papers cited in the
same paragraph/sub-section naturally form a community with high
resolution. To ensure each paper’s cited papers form enough com-
munities and each community contains enough papers, only papers
with no fewer than three topics and all of whose communities have
at least five papers are kept. After applying all these filters, 101
papers are left for evaluation.

For themusic dataset, each user has several self-generated playlists.
The songs in each playlist should contain a coherent theme. To avoid
the playlists sharing mutually exclusive themes with other playlists,
a Jaccard similarity check is applied on any pair of playlists cre-
ated by the same user. If a user has at least two highly correlated
playlists (Jaccard coefficient between them is above 0.5), we remove
one of the playlists. Each playlist forms a separate community. Fur-
thermore, to ensure the number of playlist and playlist size are
both large enough, only users with at least three playlists and each
playlist contains at least five songs are kept. In the end, there are
117 users who meet the above criteria.

In this paper, as all communities constructed in the ground truth
are relevant communities with high resolution for users, our task
is generating personalized communities to reconstruct the ground
truth on two different datasets with vertex- and text-based user
need. We share our code in Github1.

4.2 Settings
4.2.1 Metrics & Parameter Settings.

F1-score (F1), Rand index (Rand), Jaccard index (Jaccard) and
running time are reported as the evaluation metrics in this paper.
Based on empirical studies, population size P is 100. Crossover
rate is 95%. Mutation rate is 1%. The maximum depth of binary

1https://github.com/RoyZhengGao/gPCD

community tree d is 10. The number of iteration T is 30. User
searching preference λ is 0.6. Community size K is 50. The number
of Mappers/ Reducers for parallelization M is 50. The number of
top vertices to construct pseudo ground truth n is 10. Parameters in
Infomap and Node2vec are both the default settings in their original
papers.

4.2.2 Baselines.
Considering both efficacy and efficiency, we select eight widely

used user-independent community detection models. Ideally, to
achieve personalized community detection, user-independent mod-
els should run on each user separately by assigning higher weights
on user related edges. Thus, their time complexity should be only
compared with our online step time complexity as our offline step
is independent with user numbers. In this paper, to run baselines
within acceptable time, we report their user-independent commu-
nity results as the average performance.

• Spinglass: Spinglass [10] constructs communities by mini-
mizing the Hamiltonian score on signed graphs.

• Fast Greedy (FG): Fast Greedy [7] is a greedy searchmethod
to get the maximized modularity for community detection.

• Louvain: Louvain [4] is an agglomerative method to con-
struct communities in a bottom-up manner guided by mod-
ularity.

• Walktrap: Walktrap [33] detects communities based on the
fact that a random walker tends to be trapped in dense part
of a network.

• Infomap: Infomap [35] generates communities by simulat-
ing a random walker wandering on the graph and indexing
the description length of his randomwalk path via multilevel
codebooks.

• Bigclam: Bigclam [38] generates overlapping communities
via a non-negative matrix factorization approach.

• DeepWalk: DeepWalk [32] generates node embeddings via
random walks and utilizes K-means on node embeddings to
detect communitis.

• Node2vec: Node2vec [19] is an extended version of Deep-
Walk with a refined random walk strategy.

4.3 Results
4.3.1 Evaluation Results.

There are two scenarios to construct user need. For the schol-
arly graph, including a citation (vertex-based query) model and a
keyword (text-based query) model. In the citation model, for each
user, we first extract all the papers he/she cited before, then use
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their centroid embedding as user need vector ®I . In the keyword
model, for each user (author), we first extract all keywords he/she
used in all previous papers to form a text query. Then we retrieve
the top 100 relevant papers given the query based on probability
language model with Dirichlet smoothing [24]. Finally, we average
those retrieved papers’ vectors as the user need vector ®I .

Model
Scholarly Graph Music Graph

F1 Rand Jaccard F1 Rand Jaccard
Spinglass 0.4294 0.4149 0.3593 0.4282 0.5317 0.2823
FG 0.4290 0.3852 0.3735 0.4645 0.4100 0.3070
Louvain 0.4417 0.4546 0.3627 0.1832 0.4201 0.1174
Walktrap 0.4304 0.3777 0.3777 0.3999 0.3507 0.3490
Infomap 0.4436 0.4165 0.3606 0.2147 0.6074 0.1344
Bigclam 0.2314 0.2572 0.1348 0.1499 0.2078 0.1227
DeepWalk 0.3904 0.3237 0.3234 0.3535 0.3253 0.3001
Node2vec 0.4001 0.3472 0.3433 0.4122 0.4101 0.3087
gPCD-Citation 0.5351∗ 0.4551∗ 0.4086∗ - - -
gPCD-Keyword 0.5069 0.4114 0.3708 - - -
gPCD-Listening - - - 0.5188∗ 0.5865 0.3550∗

Note: “*” means the p-value through a pairwise t-test is smaller than 0.001.
Table 3: Personalized Community Evaluation on gPCD and
Baselines.

For the music task, text information is not available. The centroid
embedding of the songs listened to by a target user are taken as
user need.

Community Accuracy: We compare the average performance
of our model on all testing users with baselines. Table 3 shows the
detailed metrics. When running on the Scholarly graph, both Cita-
tion model and Keyword model can achieve around 10% increase on
F1-score compared with all baselines. Citation model also performs
the best in Rand Index and Jaccard Index. For Music graph, our
Listening model also has a significant improvement on F1-score
and Jaccard Index. Although it has similar performance on Rand
Index compared with Infomap, we believe our model in fact works
much better due to the Infomap’s poor performance on the rest two
metrics. Moreover, we apply pairwise t-tests [9] for all metrics on
all testing users. All metrics’ p-values in Citation model and the
p-values of F1-score and Jaccard Index in Listening model are all
smaller than 0.001, which means the improvements of our model
performance are significant compared with baselines.

Running Time Comparison: Table 4 shows both the theoreti-
cal time complexity and real running time. To represent baseline
algorithms’ time complexity, “V " refers to the vertex number and
“E" refers to the edge number in the graphG(V ,E). For some models
(FG, Walktrap, and Infomap.), their specific time complexities are
officially mentioned in the original papers. The time complexity
of Louvain and Bigclam are roughly estimated in the original pa-
pers as well but those papers don’t mention specific numbers. For
Spinglass, DeepWalk and Node2vec, we can’t find the exact time
complexity in existing studies. Hence in this paper, we arbitrarily
assign labels based on the their real running speed. Considering
the running time, all the baseline algorithms run relatively fast
except for the Spinglass algorithm. However, compared with all
other models, the distributed gPCD always performs the fastest. Its

Model Time Complexity Scholarly Graph (s) Music Graph (s)
Spinglass very slow 12548.68 10372.17

FG O ( |V |loд2 |V |) 280.60 272.34
Louvain linear 80.01 63.02
Walktrap O ( |V |2loд |V |) 638.44 503.24
Infomap O ( |V |( |V | + |E |)) 501.79 425.63
Bigclam linear 57.01 112.43
DeepWalk fast 720.56 688.32
Node2vec slow 3508.44 3100.12

gPCD O ( 2dKPM ) 5.25 6.50

Table 4: Running time analysis on gPCD and all baselines in
seconds (s).

real running time of is less than one-tenth of the fastest baseline’s
running time.

4.3.2 Parameter Analysis.
We show how three parameters can affect our gPCD model

performance in this section. They are the depth of the binary com-
munity tree d , genetic iteration number T and user searching pref-
erence λ. Figure 4 show the overall impacts of all tuned parameters.

Depth on the Tree: Figure 4(a) to Figure 4(c) show how the
depth of the binary community tree affects the model performance
in accuracy and efficiency. From the figures, larger depth leads
to a better personalized community detection result, while causes
an exponential running time increase at the same time. Based on
empirical studies, the upper bound of the depth is set to be 10 in
this paper. While the depth selection may varies based on different
graph sizes.

Convergence Analysis: We observe the best chromosome up-
dates in 40 iterations. From Figure 4(d), we can see the fitness score
start to be stable after the 30 iterations, which means the best chro-
mosome is no longer changed after around 30 iterations. Thus, we
set T = 30 as the default iteration number in our approach.

Searching Preference: In Figure 4(e), λ reflects the user search-
ing preference whether he/she wants to explore new information
or avoid redundant information. By selecting λ from 0 to 1, we
find the F1-score are not very stable or have a clear correlation
with λ. Based on the empirical experiments, we achieve the best
performance on three models when λ = 0.6.

5 CONCLUSION
To our best knowledge, the personalized community detection task
proposed in this paper is the first attempt to address on detecting
communities with different resolutions to meet with user need. To
solve this task, we propose a model with an offline binary com-
munity tree construction step and an online genetic pruning step.
A distributed version of our model is also deployed to accelerate
running efficiency. Extensive experiments on two different datasets
shows our model outperforms all baselines in terms of accuracy
and efficiency. However, the current approach still partially relies
on existing models such as Infomap and Node2vec. In the next step,
we will design our own user-independent community detection and
vertex & user need representation models so that we can achieve a
more integrated and unified model.
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