
Adaptive Ranking-based Constraint Handling
for Explicitly Constrained Black-Box

Optimization

Naoki Sakamoto naoki@bbo.cs.tsukuba.ac.jp
Graduate School of Systems and Information Engineering, University of Tsukuba and
RIKEN Center for Advanced Intelligence Project

Youhei Akimoto akimoto@cs.tsukuba.ac.jp
Faculty of Engineering, Information and Systems, University of Tsukuba and RIKEN
Center for Advanced Intelligence Project

Abstract
We propose a novel constraint-handling technique for the covariance matrix adap-
tation evolution strategy (CMA-ES). The proposed technique is aimed at solving ex-
plicitly constrained black-box continuous optimization problems, in which the explicit
constraint is a constraint whereby the computational time for the constraint violation
and its (numerical) gradient are negligible compared to that for the objective function.
This method is designed to realize two invariance properties: invariance to the affine
transformation of the search space, and invariance to the increasing transformation of
the objective and constraint functions. The CMA-ES is designed to possess these prop-
erties for handling difficulties that appear in black-box optimization problems, such
as non-separability, ill-conditioning, ruggedness, and the different orders of magni-
tude in the objective. The proposed constraint-handling technique (CHT), known as
ARCH, modifies the underlying CMA-ES only in terms of the ranking of the candidate
solutions. It employs a repair operator and an adaptive ranking aggregation strategy
to compute the ranking. We developed test problems to evaluate the effects of the in-
variance properties, and performed experiments to empirically verify the invariance
of the algorithm. We compared the proposed method with other CHTs on the CEC
2006 constrained optimization benchmark suite to demonstrate its efficacy. Empirical
studies reveal that ARCH is able to exploit the explicitness of the constraint functions
effectively, sometimes even more efficiently than an existing box-constraint handling
technique on box-constrained problems, while exhibiting the invariance properties.
Moreover, ARCH overwhelmingly outperforms CHTs by not exploiting the explicit
constraints in terms of the number of objective function calls.

Keywords
Explicit constraint, black-box optimization, invariance, CMA-ES

1 Introduction

We consider explicitly constrained black-box continuous minimization problems de-
fined as

argmin
x∈Rn

f(x) subject to gj(x) 6 0, ∀j = 1, . . . ,m , (1)

©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

ar
X

iv
:1

81
1.

00
76

4v
3

 [
cs

.N
E

]
 9

 M
ay

 2
02

2

N. Sakamoto and Y. Akimoto

where f : Rn → R is the objective function and gj : Rn → R (j = 1, . . . ,m) are the
constraint functions. The equality constraints hk(x) = 0, ∀k = 1, . . . , l are assumed
to be transformed into inequality constraints gk(x) = |hk(x)| − εeq, with a numerical
tolerance εeq > 0. In the black-box optimization scenario, the evaluation of the objec-
tive function f often requires computationally expensive simulation, while the explicit
constraints can be computed independently of f -calls, and their computational cost
is significantly lower than that of f -calls. These can be presented in a relatively sim-
ple mathematical expression, and their gradients are available symbolically or can be
estimated numerically with a relatively low computational cost. The most common
example of an explicit constraint is the box constraint, in which each coordinate of the
design variable x is constrained in a closed interval. Explicit constraints often appear in
engineering optimization as prerequisites for executing the simulation to compute the
objective function. Taking into account the abovementioned situations, in this study,
we assume that

• the computational time for gj(x) and its (numerical) gradient∇gj(x) are negligible
compared to that for f(x); and

• the objective function f(x) is not necessarily defined for an infeasible solution x,
which violates some gj(x).

The covariance matrix adaptation evolution strategy (CMA-ES) (Hansen and Os-
termeier, 2001; Hansen et al., 2003; Hansen, 2016) is employed in this study as the base-
line optimization method for solving the problem (1). The CMA-ES is known as one of
the state-of-the-art zeroth-order optimization algorithms for unconstrained black-box
continuous optimization. In particular, it has been demonstrated as efficient for diffi-
cult objective functions such as non-convex, ill-conditioned, and non-separable func-
tions. Since these difficulties of objective functions naturally appear in engineering
optimization, whether or not constraints exist, it is desirable for search algorithms for
constrained optimization to operate efficiently under these difficulties. Although the
CMA-ES is designed for unconstrained optimization, it can be applied to constrained
optimization with the aid of constraint-handling techniques (CHTs).

One key characteristic of the CMA-ES is its invariance to several transformations of
the objective function and search space (Hansen et al., 2011). The invariance properties
induce equivalent problem classes. All instances (problems) in an equivalent class are
regarded as equivalent under the corresponding transformation of the initial search dis-
tribution. Owing to the invariance properties of the CMA-ES, if its initial state is trans-
formed properly, it is empirically observed that the CMA-ES minimizes ill-conditioned
and non-separable quadratic functions as efficiently as well-conditioned and separable
spherical functions. This is key to the success of the CMA-ES in real-world problems
because it is designed to adapt the distribution to such a proper state. Although the
invariance properties themselves do not imply algorithm efficacy, they are useful for
generalizing observations. That is, they are essential for assessing the performance
of algorithms empirically. The invariance further contributes to the quasi-parameter-
free feature of the CMA-ES, which is an important characteristic of the CMA-ES that
has attracted attention from practitioners. As opposed to many other evolutionary
approaches to continuous black-box optimization, in which the hyper-parameters are
required to be tuned depending on the problem characteristics to enable efficient per-
formance (Karafotias et al., 2015), default values are prepared for all hyper-parameters

2 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

of the CMA-ES, depending only on the search space dimension n. As many advantages
of the CMA-ES for unconstrained optimization originate from its invariance properties,
we hypothesize that a CHT for explicitly constrained optimization is desirable to pre-
serve the invariance as much as possible to use the CMA-ES for constrained optimiza-
tion.

However, the CHTs for explicit constraints employed in variants of the ES are not
designed to preserve the invariance of the baseline search algorithms, as we discuss
briefly in Section 3. When the CMA-ES is applied to an explicitly constrained black-
box optimization problem with these CHTs, it loses the invariance properties exhibited
by the CMA-ES. Certain CHTs, such as death penalty or resampling techniques, are
applicable to the CMA-ES and preserve its invariance properties. However, as these
approaches do not exploit the fact that the constraint violations are cheap to evaluate
and their gradient information is available, they are often inefficient, as observed in
Section 6.

We propose a novel CHT for the CMA-ES in solving the explicitly constrained op-
timization problem (1), named adaptive ranking-based constraint handling (ARCH).
ARCH is designed to include the following two types of invariance properties: invari-
ance to the element-wise increasing transformation of the objective and constraint func-
tions, and invariance to the affine transformation of the search space. ARCH replaces
the evaluation step in the sampling–evaluation–update cycle of the CMA-ES, as fol-
lows: A candidate solution generated by the CMA-ES is first repaired on a boundary of
the feasible domain. The objective function value is evaluated at the repaired point. A
penalty for the repair operation is computed by the Mahalanobis distance between the
original and repaired solutions under the covariance matrix of the current search distri-
bution. The candidate solutions are ranked based on the adaptive weighted sum of the
rankings of the objective function values and rankings of the penalty values. An adap-
tive penalty coefficient is introduced to control the balance between the rankings, and
is adapted for the search distribution so as not to move away from the feasible domain
in terms of the Mahalanobis distance, while allowing infeasible but near boundary so-
lutions to exhibit high rankings.

The contributions of this study are summarized as follows. Firstly, we present
ARCH, which can handle explicit and nonlinear constraints.1We prove that ARCH is
invariant to any element-wise increasing transformation of f and gj , and to any affine
transformation of the search space coordinates. To the best of the authors’ knowledge,
this is the first approach for explicit constraints that is invariant to these transforma-
tions. Secondly, we empirically evaluate the effectiveness of the proposed approach
from an invariance perspective. We develop test problems to demonstrate the effects
of the invariance to affine transformation. In test cases, we empirically observe that
ARCH is invariant to affine transformations, and illustrate that ARCH is even more
effective for box constrained optimization problems than an existing CHT specialized
for the box constraint. Thirdly, we compare ARCH with existing CHTs for non-explicit
constraints on problems in which the objective function is defined for the infeasible do-
main. We use the CEC 2006 constrained optimization benchmark suite to demonstrate
that ARCH overwhelmingly outperforms other CHTs for non-explicit constraints. This
indicates that the explicit constraints should be treated as explicit constraints even if the

1Our implementation of ARCH is available in a GitHub repository (https://github.com/
naoking158/ARCH).

Evolutionary Computation Volume x, Number x 3

https://github.com/naoking158/ARCH
https://github.com/naoking158/ARCH

N. Sakamoto and Y. Akimoto

Table 1: Default parameter setting for CMA-ES.

λ = 4 + b3 ln(n)c, µ = bλ/2c
wi =

ln(λ+1
2)−ln(i)∑µ

k=1(ln(λ+1
2)−ln(k))

, cσ = µw+2
n+µw+5 , cc = 4+µw/n

n+4+2µw/n

c1 = 2
(n+1.3)2+µw

, cµ = min
(

1− c1, 2(µw−2+1/µw)
(n+2)2+µw

)
dσ = 1 + cσ + 2×max

(
0,
√

µw−1
n+1 − 1

)

objective function is defined on an infeasible domain. Compared to the previous pub-
lication in Sakamoto and Akimoto (2019), we i) improve the algorithm to prevent the
search distribution from being unnecessarily biased toward the boundary if the popu-
lation size is larger than the default, ii) prove the invariance properties of ARCH, and
iii) compare ARCH with existing approaches on the CEC2006 testbed.

The remainder of this paper is organized as follows. We summarize the mathemat-
ical notations applied throughout the paper below. Section 2 introduces the baseline
optimization algorithm, namely the CMA-ES, and related CHTs. We discuss the in-
variance properties for constrained optimization problems in Section 3. Our proposed
CHT, ARCH, is described in Section 4. The invariant properties of ARCH are demon-
strated in Section 5. In Section 6, we empirically demonstrate how the invariance prop-
erties operate in practice, by means of numerical experiments on linearly constrained
quadratic problems, to observe the efficacy of ARCH. We present our comparison of
ARCH with other CHTs using the CEC 2006 constrained optimization testbed in Sec-
tion 7. The paper is concluded in Section 8.

Notations In the following, R is the set of real numbers and R+ is the set of strictly
positive real numbers. Let x ∈ Rn be an n-dimensional column vector, where xT is its
transpose, ‖x‖ denotes the Euclidean norm of x, and [x]i denotes the ith coordinate of
x. Note that the ith coordinate of the kth vector xk is denoted by [xk]i. The (i, j)th
element of a matrix A is also denoted by [A]i,j . The identity matrix is denoted by In.
The indicator function 1{condition} returns 1 if condition is true, and 0 otherwise.
The sign function sgn(a) returns 1 if a > 0, −1 if a < 0, and 0 otherwise. The integer
interval between and including a and b is denoted by Ja, bK.

2 CMA-ES and Related CHTs

In this section, we introduce the CMA-ES, which is our baseline algorithm for uncon-
strained continuous optimization, followed by an overview of the existing CHTs for
the CMA-ES.

2.1 CMA-ES

The CMA-ES (Hansen et al., 2003; Hansen, 2016) is a stochastic multi-point search al-
gorithm for black-box continuous minimization of f : Rn → R. The CMA-ES samples
λ candidate solutions xk for k ∈ {1, . . . , λ} from the multivariate normal distribution
N (m, σ2C), where m ∈ Rn is the mean vector, σ ∈ R+ is the step size, and C ∈ Rn×n is

4 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

the covariance matrix. These distribution parameters are updated using the candidate
solutions and their ranking information.

STEP 0. Initialize m(0), σ(0),C(0) according to the initial problem search domain,
and initialize two evolution paths p

(0)
c = p

(0)
σ = 0 and their correction factors γ(0)

σ =

γ
(0)
c = 0. All parameters that appear in the following are set to the default values listed

in Table 1. The meanings of these parameters are described in Hansen (2016). These are
designed based on theoretical ES research (e.g., see Akimoto et al. (2020)) and extensive
experiments. The CMA-ES repeats the following steps at each iteration, t = 0, 1, · · · ,
until a termination criterion is satisfied.

STEP 1. Draw λ samples zk for k ∈ {1, . . . , λ} independently fromN (0, In). Com-

pute yk =
√
C(t)zk and xk = m(t) + σ(t)yk. Then, xk (k = 1, . . . , λ) are the candidate

solutions that are independently N (m(t), (σ(t))2C(t)) distributed. Here,
√
C(t) is the

symmetric matrix satisfying C(t) =
(√

C(t)
)2

.

STEP 2. Evaluate the candidate solutions xk, for k ∈ {1, . . . , λ}, on the loss function
L, and sort them in ascending order. In an unconstrained optimization scenario, usu-
ally, L = f . Let the ith best candidate solution be denoted by xi:λ. In the same manner,
we denote the corresponding steps and normalized steps as yi:λ and zi:λ, respectively.

STEP 3. Compute the weighted sum of the µ best steps of the candidate solutions
〈y〉w =

∑µ
i=1 wiyi:λ and update the mean vector m(t), as follows:

m(t+1) = m(t) + σ(t)〈y〉w ,

where wi is the recombination weight for the ith best candidate, which satisfies w1 >
w2 > . . . > wµ > 0 and

∑µ
i=1 wi = 1.

STEP 4. Update the evolution paths according to

p(t+1)
σ = (1− cσ)p(t)

σ +
√
cσ(2− cσ)µw

(√
C(t)

)−1

〈y〉w ,

p(t+1)
c = (1− cc)p(t)

c + h(t+1)
σ

√
cc(2− cc)µw〈y〉w ,

where cσ and cc are the cumulation factors for the evolution paths, µw = 1/
∑µ
i=1 w2

i ,

h(t+1)
σ =

{
1 if ‖p(t+1)

σ ‖ <
(
1.4 + 2

n+1

)(
γ

(t+1)
σ

) 1
2χ

0 otherwise,

and χ = E[‖N (0, In)‖] ≈ n
1
2

(
1 − 1

4n + 1
21n2

)
is the expectation of the norm of the n

variate standard normal distribution. The Heaviside function h
(t+1)
σ stalls the update

of p(t+1)
c if ‖p(t+1)

σ ‖ is large. The correction factors for the evolution paths2 are updated
as follows:

γ(t+1)
σ = (1− cσ)2γ(t)

σ + cσ(2− cσ) ,

γ(t+1)
c = (1− cc)2γ(t)

c + h(t+1)
σ cc(2− cc) .

2Note that we introduce γσ and γc that does not appear in a standard formulation in order to treat the
initialization effect of the evolution paths and write it short. See Akimoto and Hansen (2020) for more detail.

Evolutionary Computation Volume x, Number x 5

N. Sakamoto and Y. Akimoto

STEP 5. Update the step size and covariance matrix as follows:

σ(t+1) = σ(t) exp

(
cσ
dσ

(
‖p(t+1)

σ ‖
χ

−
(
γ(t+1)
σ

) 1
2

))
,

C(t+1) = C(t) + c1

(
p(t+1)
c (p(t+1)

c)T − γ(t+1)
c C(t)

)
+ cµ

µ∑
i=1

wi

(
yi:λ(yi:λ)T −C(t)

)
,

where dσ is the damping parameter for the step size adaptation, while c1 and cµ are
the learning rate for the rank-one and rank-µ updates of the covariance matrix, respec-
tively.

2.2 CHTs for ESs

We briefly review the CHTs employed in variants of ESs.

2.2.1 Resampling and Death Penalty

The resampling technique is the simplest CHT. Candidate solutions are resampled re-
peatedly until λ feasible candidate solutions are generated. To guarantee that the re-
sampling stops within a finite time, the maximum number of sampling in one iteration
is set to a finite number. If the number of feasible candidate solutions is less than λ,
the current population is filled with infeasible solutions and the worst loss value is as-
signed to them (for example, +∞). When the maximum sampling number is set to λ,
the resampling technique is known as the death penalty.

The resampling and death penalty methods are easy to implement and are applica-
ble to any constraint type. However, they are not appropriate if the optimum is located
on the boundary of the feasible domain, as candidate solutions are biased in the fea-
sible domain and the search distribution tends to approach the boundary slowly, as
we observe in Section 6. Moreover, the search algorithm cannot conduct a meaningful
ranking of the candidate solutions if the probability of sampling feasible solutions is
rather low and the population is filled with infeasible solutions. If this is the case, the
parameter update will result in random fluctuation.

2.2.2 Penalty Function Methods

CHTs based on the penalization of infeasible candidate solutions are the most exten-
sively used CHTs for real-world engineering optimization problems. The main concept
of penalty function methods is transforming a constrained optimization problem into
an unconstrained optimization problem by defining the penalized loss function:

L(x) = f(x) + p(x) , (2)

where p is a penalty function. If the objective function value is not well defined for in-
feasible solutions, a repair operation needs to be applied, and the first term is replaced
with the objective function value evaluated at the repaired solution. The penalty func-
tion is manually designed in many engineering optimization problems, and a typical
choice is the weighted sum of the constraint violations max(gj(x), 0) or its monotone
transformation, such as square.

6 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

The adaptive penalty box constraint handling (AP-BCH) method (Hansen et al.,
2009) is a penalty function-based box CHT. The loss function is defined as

L(x) = f(xfeas) +
1

n

n∑
i=1

γi([x]i − [xfeas]i)
2 , (3)

where γi is an adaptive penalty coefficient and xfeas is a feasible vector closest to the
infeasible solution x; that is, xfeas = argminy‖x− y‖. The feasible solution xfeas is only
used for evaluating the objective function and the penalty; that is, the repair operator
is used in the Darwinian manner. This approach does not assume that the objective
function is well defined outside the feasible domain, but it is only applicable to box-
constrained problems.

The adaptive augmented Lagrangian constraint handling (AL) method (Arnold
and Porter, 2015; Atamna et al., 2016) adapts the augmented Lagrangian

L(x) = f(x) +

m∑
j=1

{
γjgj(x) +

ωj
2 g

2
j (x) if γj + ωjgj(x) 6 0 ,

− γ2
j

2ωj
otherwise ,

where γj ∈ R is a Lagrange factor, ωj ∈ R+ is a penalty coefficient, and both are adapted
during the optimization process. AL was initially proposed for (1 + 1)-ES (Arnold and
Porter, 2015), and was extended to the CMA-ES in a single constraint case (Atamna
et al., 2016), where the median success rule was applied for the step-size adaptation.
The AL is designed for implicit constraints, in which the implicit constraint means that
the evaluation is expensive or is computed at the same time as the objective function.
It requires the objective function to be defined in the infeasible domain.

2.2.3 Ranking-based Methods

Ranking-based CHTs aggregate the rankings of the objective function values and con-
straint function values to create the final rankings of the candidate solutions, instead
of aggregating the function values. The stochastic ranking technique (Runarsson and
Xin Yao, 2000) attempts to balance the objective and constraint functions by sorting the
candidate solutions according to the objective function with a probability Pf , and the
sum of the constraint function values with a probability 1−Pf . The multiple constraint
ranking (MCR) technique (de Paula Garcia et al., 2017) ranks the candidate solutions
according to the sum of the rankings of the objective values and rankings of each con-
straint violation value. Other techniques included in ranking-based CHTs such as the
lexicographic ordering and the ε-lexicographic ordering have been proposed in GA and
DE, and imported to ES (Oyman et al., 1999; Hellwig and Beyer, 2018). The advantage
of these approaches over penalty function-based approaches is that they are invariant
to strictly increasing transformation of the objective function and constraint functions,
which we later refer to as element-wise increasing transformation. Therefore, practitioners
do not need to tune the balance between the objective function values and constraint
violation values manually. As with the AL, however, this method requires the objective
function to be defined in the infeasible domain.

2.2.4 Active Constraint Handling

There are certain CHTs that modify the covariance matrix adaptation mechanism to
shrink the variance actively in the direction of the constraint function gradient so as

Evolutionary Computation Volume x, Number x 7

N. Sakamoto and Y. Akimoto

to decrease the likelihood of infeasible solutions. We refer to such methods as ac-
tive constraint handling (ACH) in this paper. Reference Arnold and Hansen (2012)
proposed the use of the active covariance matrix update in the (1+1)-CMA-ES. Simi-
lar concepts have been employed in other variants of the CMA-ES, such as the (µ, λ)-
CMA-ES in Chocat et al. (2015), MA-ES in Spettel and Beyer (2019), xCMA-ES in Krause
and Glasmachers (2015). As ACH techniques use binary information, whether or not
the constraint is violated, they are invariant to monotone transformations of the objec-
tive and constraint violations. Such methods can be applied to problems in which the
constraints return the outcome that the given solution is either feasible or not. How-
ever, this approach tends to be inefficient compared to other CHTs on quantifiable con-
straints, as it does not utilize the amount of constraint violations.

2.2.5 Other Explicit CHTs

The linear constraint covariance matrix self-adaptation ES (lcCMSA-ES) (Spettel et al.,
2019) handles explicit and linear constraints in a variant of CMA-ES, known as CMSA-
ES. It basically samples only feasible solutions, and updates the distribution parameters
by using the feasible solutions. Active-set ES (Arnold, 2016, 2017) is also designed for
explicit, but not necessarily linear, constraints. This approach is the most relevant one
from the perspective of the assumptions on the constraint problem. It is a (1+1)-ES
based approach that applies a repair operator in the Lamarckian manner; that is, the
repair solution is used as the candidate solution, and not only to compute the loss
function value. Unfortunately, it is not possible to directly extend it to the state-of-the-
art variant of the ES, namely (µ, λ)-CMA-ES.

2.3 Formal Classification of CHTs

We summarize the formal classification of the abovementioned CHTs in Table 2. The
taxonomy proposed in Le Digabel and Wild (2015) clasifies constraints as follows:
Quantifiable/Nonquantifiable, Relaxable/Unrelaxable, Simulation-based/A priori,
and Known/Hidden. A Quantifiable constraint is a constraint for which the amount
of feasibility and/or violation can be quantified, while a Nonquantifiable constraint re-
turns a binary output indicating whether or not the solution satisfies the constraint. A
Relaxable constraint is a constraint that does not need to be satisfied to compute the ob-
jective function, while an Unrelaxable constraint is a prerequisite for executing the sim-
ulation for the objective function computation. An A priori constraint is a constraint for
which the feasibility can be confirmed without running a simulation; that is, this con-
straint can be formulated using optimization variables such as g(x) =

∑n
i=1[x]i 6 1,

while a Simulation-based constraint is only computed through a computationally ex-
pensive simulation. A Known constraint is a constraint that is explicitly provided in
the problem formulation; for example, min f(x) s.t. g(x) 6 0. Constrained problems
can be expressed by combining these initial letters as an acronym, such as QRSK. Refer
to Le Digabel and Wild (2015) for further descriptions of each type of constraint and
example situations. Our assumption on the constraints is QUAK in this terminology.

CHTs assuming Unrelaxable constraints can be applied to QUAK constraints. For
example, the resampling technique can be applied to QUAK constraints. However,
CHTs assuming weaker conditions on constraints utilize less information on the con-
straints than that available to the optimization approaches. Therefore, we expect that
CHTs assuming QUAK constraints are more efficient for solving QUAK constrained

8 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

Table 2: Classification of CHTs, where bnds/lc/nlc means that the CHT can handle
bound constraints, linear constraints or nonlinear constraints, respectively.

CHT (bnds/lc/nlc) Taxonomy Invariance
ARCH [proposed CHT, described in Section 4] (nlc) QUAK increasing / affine
AP-BCH (Hansen et al., 2009) (bnds) QUAK × / ×
lcCMSA-ES (Spettel et al., 2019) (lc) QUAK increasing / ×
Active-set ES (Arnold, 2017) (nlc) QUAK increasing / ×
AL (Atamna et al., 2016) (nlc) QRSK × / affine
Stochastic ranking (Runarsson and Xin Yao, 2000) (nlc) QRSK × / affine
MCR (de Paula Garcia et al., 2017) (nlc) QRSK increasing / affine
(1+1)-CMA-ES with ACH (Arnold and Hansen, 2012) (nlc) NUSK increasing / affine
(µ, λ)-CMA-ES with ACH (Chocat et al., 2015) (nlc) NRSK increasing / affine
xCMA-ES with ACH (Krause and Glasmachers, 2015) (nlc) NUSK increasing / affine
MA-ES with ACH (Spettel and Beyer, 2019) (nlc) NUSK increasing / affine
Resampling technique (nlc) NUSH increasing / affine

optimization problems. Only two approaches in Table 2, including the proposed ap-
proach, are designed for QUAK nonlinear constraints. As it is not clear how active-set
ES is extended to a variant of the CMA-ES, the proposed approach is the only approach
applied to the CMA-ES. However, if the constraints are nonlinear but Relaxable, many
of the CHTs listed in Table 2 can be applied.

3 Desired Invariance Properties for Constrained Optimization

We describe two invariance properties that are desirable for a CHT that is designed for
variants of the CMA-ES.

3.1 Element-wise Increasing Transformation of Functions

An strictly increasing transformation h : R → R is a function satisfying h(t) < h(s) if
t < s. Invariance to an increasing transformation of the objective function in an uncon-
strained optimization scenario refers to the property whereby the algorithm does not
change the behavior (which is possibly characterized by the sequence of the solutions
generated by the algorithm) when solving f and its composite h ◦ f . Algorithms that
are invariant to any increasing transformation can solve, for example, a non-convex dis-
continuous function h◦ f as easily as a convex continuous functions f . The importance
of this invariance property is extensively recognized in engineering optimization: if the
search algorithm is not invariant, the objective function needs to be tuned for the search
algorithm to perform effectively, which is time consuming. Numerous evolutionary al-
gorithms, including the CMA-ES, are invariant to any increasing transformation of the
objective function, because they use only the objective function value rankings of the
candidate solutions.

In constrained optimization, we consider invariance to an element-wise increas-
ing transformation H = (h0, . . . , hm) : Rm+1 → Rm+1 of the objective and constraint
functions F = (f, g1, . . . , gm), where hj : R → R (j = 0, . . . ,m) is an increasing trans-
formation and hj for j = 1, . . . ,m satisfies hj(0) = 0. Invariance to an element-wise
increasing transformation of the objective and constraint functions refers to the prop-
erty whereby the algorithm does not change the behavior when solving a constrained
problem F = (f, g1, . . . , gm) = (h0 ◦ f, h1 ◦ g1, . . . , hm ◦ gm) = H ◦ F . The original

Evolutionary Computation Volume x, Number x 9

N. Sakamoto and Y. Akimoto

constrained optimization problem F and its transformation H ◦F models the same op-
timization problem in the sense that they define the same feasible domain X and the
same total order on X regarding the objective function value 3 .

In real-world applications, the ranges of the objective function values and con-
straint violations are often quite different. Algorithms without this invariance will suf-
fer from this difference and place implicit priority on an objective or certain constraints
depending on their values. Therefore, practitioners may determine a reasonable trans-
formation H . As described above for unconstrained optimization cases, this can be
time consuming, and requires domain knowledge of the problem and deep insight into
the optimization algorithm.

Although this invariance property is a straightforward extension of invariance to
the increasing transformation of the objective function and it is seemingly important,
it is not exhibited by the frequently used penalty function-based techniques that take
the sum of the objective and constraint function values as loss values. For example, it
is clear that the AL does not exhibit this invariance: it is not invariant to increasing the
transformation of f and gj . Although the AP-BCH is invariant to any increasing trans-
formation of gj , it is not invariant to an increasing transformation of f in general, as
the quadratic penalty term is added to the objective function value directly. It has been
demonstrated in Sakamoto and Akimoto (2017) that the AP-BCH deteriorates when the
objective function is, for example, an exponential function, where the objective function
value is more sensitive than the quadratic penalty term.

3.2 Affine Transformation of Search Space Coordinates

To formulate the invariance properties for constrained optimization problems, we con-
sider the fact that our minimization problem is defined on an n-dimensional inner
product space (V, 〈·, ·〉) on the real field R:

argmin
p∈V

fV (p) s.t. gVj (p) 6 0, ∀j = 1, . . . ,m , (4)

where fV : V → R and gVj : V → R are the objective and constraint functions, respec-
tively. The constrained problem (1) is considered a realization of (4) under an orthonor-
mal basis {ei ∈ V }ni=1 and a bias vector e0 ∈ V , where 〈ei, ei〉 = 1 for i = 1, . . . , n and
〈ei, ej〉 = 0 for any j 6= i (i, j > 1), and x ∈ Rn corresponds to p = e0+

∑n
i=1[x]iei ∈ V .

Let p 7→ x be denoted by ψe : V → Rn. If the optimization algorithm is defined on the
inner product space, its behavior (which is possibly characterized by the sequence of
the solutions generated by the algorithm) is identical on any basis {vi ∈ V }ni=1 with
a bias vector v0 ∈ V , where the bases are not necessarily orthonormal to one another.
Let p = v0 +

∑n
i=1[x̃]ivi 7→ x̃ be denoted by ψv : V → Rn. The map A : ψe ◦ ψ−1

v

from a coordinate system ψv to a coordinate system ψe is an affine transformation. The
invariance to an affine transformation of the search space coordinates refers to the prop-
erty whereby the algorithm behaves the same on the original coordinate system and its
affine transformed coordinate system.

The objective function fV (p) = 1
2 〈p,p〉 is expressed as fe(x) = fV (ψ−1

e (x)) =∑n
i=1[x − ψe(e0)]2i in the system ψe, while it is expressed as fv(x̃) = fe(A(x̃)) =

3This transformation is applied after the transformation from the equality constraint to the inequality one
described in the introduction is performed.

10 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

∑n
i=1[Ax̃ − ψe(v0)]2i in the system ψv . The former is the sphere function (well con-

ditioned and separable), while the latter is a convex quadratic function that is ill condi-
tioned if A also is, and is non-separable if A is not diagonal. If the algorithm is invari-
ant to any affine transformation of the search space coordinates, the algorithm solves
the ill-conditioned and non-separable function fv as efficiently as it solves the well-
conditioned and separable fe under the corresponding transformation of the initial
search distribution. Not all variants of the CMA-ES, including that presented in Sec-
tion 2.1, are (proven to be) invariant to any affine transformation of the search space
coordinate4, although we empirically observe statistically invariant behaviors under
arbitrary affine transformations (see Fig. 3). Numerous other evolutionary computa-
tion approaches are not invariant to these transformations, and we empirically observe
rather different performances depending on the affine transformation properties.

In real-world applications, the change in the coordinate system corresponds to
the change in the features describing the object to be optimized, or the change in the
unit in each feature. In a constrained optimization scenario, the constraint function
gj and the objective function f are transformed by the same transformation A, result-
ing in gj ◦ A and f ◦ A in the transformed coordinate system, respectively. The linear
constraints are again linear in the transformed coordinate system. However, a box con-
straint will no longer be a box constraint, but rather a set of linear constraints (forming
an n-parallelotope shape).

Suppose that the underlying unconstrained optimization algorithm is invariant to
any affine transformation of the search space coordinates. As summarized in Table 2,
CHTs that only touch the loss function values, such as the resampling technique, ACH,
and AL, do not disturb the invariance property of the underlying algorithm, resulting
in invariance to the affine transformation of the search space under the constraints (see
Atamna et al. (2020) for proof of the affine invariance of AL). However, CHTs for un-
relaxable constraints that require a repair operator often lose the invariance property.
For example, the AP-BCH does not exhibit this invariance property, as the repair oper-
ator used in this approach exploits the fact that the feasible domain is composed of an
interval in each coordinate. Repair operators that use the inner product or the distance
in Euclidean space are generally affected by the affine transformation of the coordinate
system.

4 ARCH

We propose an explicit constraint-handling method based on adaptive ranking, known
as ARCH. ARCH virtually transforms the constrained optimization problem into an
unconstrained problem by defining an adaptive loss function L. The loss L is defined
by the weighted sum of the rankings of the objective and constraint violations, denoted
as L = RT below. The proposed algorithm is designed to exhibit the invariance proper-
ties listed in Section 3, and it does not require the objective function to be well defined
in the infeasible domain.

4The invariance of CMA-ES can be proven by using ‖
(√

C(t)
)−1

pc‖ instead of ‖pσ‖ of the step size
update formula in Section 2.1 (note the meaning changes because what is accumulated is not z). However,
the step size formula using pσ is generally employed, and no adverse effect of this difference has been
empirically observed. Therefore, we use pσ as well in this paper.

Evolutionary Computation Volume x, Number x 11

N. Sakamoto and Y. Akimoto

4.1 Repair Operator

To make ARCH applicable to a problem in which the objective function values are
not defined in the infeasible domain, we employ a repair operator in the Darwinian
manner. Given a candidate solution x, ARCH determines a repaired solution x̃. The
repaired solution x̃ is only used for the objective function value computation.

The repair operator Repair(·) is defined as follows: Let S =
{x ∈ Rn | gj(x) 6 0, ∀j ∈ J1,mK } be the feasible domain. Given a solution x, let
J (x) = { j ∈ J1,mK | gj(x) > 0 } be the set of indices of the violated constraints. Let
A(x) = {y ∈ Rn | gj(y) = 0, ∀j ∈ J (x) } be the intersection of the violated constraint
boundaries. We introduce the repair operator defined as follows:

x̃ = Repair(x) = argminy ‖x− y‖2
Σ−1 s.t. y ∈

{A(x) ∩ S if A(x) ∩ S 6= ∅
S otherwise

,
(5)
(6)

Figure 1: For example, J (x1) =
{ 1, 2, 3 } and A(x1) = ∅, then x1

is repaired by using Eq. (6).

where ‖x − y‖2
Σ−1 = (x − y)TΣ−1(x − y) is

the Mahalanobis distance between x and y un-
der the inverse matrix Σ−1 = (σ2C)−1. This is
a constrained minimization of a quadratic func-
tion, which is solved by standard numerical op-
timization routines. If the constraints are all lin-
ear, the problem is reduced to a quadratic pro-
gramming problem. Equation (6) is the nearest
feasible solution to x, while Eq. (5) is the feasible
solution nearest to x under the constraint that
the active constraints at x remain active at x̃.
The reason that Eq. (5) is preferred over Eq. (6)
is explained in Appendix C.

The condition that A(x) ∩ S 6= ∅ is indeed
simplified to A(x) 6= ∅ when the constraints are
all linear and not redundant. Here, a redundant
constraint gj is defined as a constraint such that
the boundary of gj is never in contact with the
feasible domain; that is, {x ∈ Rn | gj(x) = 0 } /∈
S. Note that determining whether A(x) 6= ∅ is as easy as checking whether a system of
linear equations has a solution. In explicit linear constraint situations, such a redundant
constraint can be removed in advance.

In this approach, the Mahalanobis distance is employed rather than the Euclidean
distance ‖x−y‖2 = (x−y)T(x−y), in order to achieve affine invariance of the search
space coordinate system. This point is discussed formally in Section 5.

4.2 Total Ranking

The total ranking RT (xk) for k ∈ { 1, . . . , λ } at each iteration t ∈ { 0, 1, . . . } is a
weighted sum of the rankings of the candidate solutions based on the objective func-
tion values, Rf (xk), and based on the Mahalanobis distance to the feasible domain,

12 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

Rg(xk), namely:

RT (xk) = Rf (xk) + α(t+1)Rg(xk) , (7)

where α(t+1) is known as the ranking coefficient that controls the balance between the
objective and constraints. The rankings Rf (xk) and Rg(xk) are defined as follows:

The f -ranking, Rf (xk), is the number of better candidate solutions in terms of f ,
plus the number of tie candidate solutions divided by 2, namely

Rf (xk) =

λ∑
l=1

1{f(x̃l)<f(x̃k)} +
1

2

λ∑
l=1

1{f(x̃l)=f(x̃k)} , (8)

where x̃i = Repair(xi). Note that the sum of Rf (xk) for k ∈ { 1, . . . , λ } is λ2/2.
Moreover, in an unconstrained optimization scenario, the probability of sampling tie
solutions is often zero, while the second term above may be nonzero with a nonzero
probability in our situation owing to the repair operation.

The g-ranking, Rg(xk), is analogously defined by simply replacing f ◦Repair with
gΣ:

Rg(xk) =

λ∑
l=1

1{gΣ(xl)<gΣ(xk)} +
1

2

λ∑
l=1

1{gΣ(xl)=gΣ(xk)} , (9)

where gΣ(x) = ‖x− x̃‖2
Σ−1 and Σ = (σ(t))2C(t).

4.3 Adaptation of Ranking Coefficient

The ranking coefficient α controls the balance between Rf and Rg . If α is too large, the
search distribution is biased toward the feasible domain. If α is too small, the search
distribution is biased toward the infeasible domain. Therefore, the adaptation of α
significantly influences the search performance.

The adaptation of α is based on a theoretical study of the weighted recombination
ES on a spherical function. It was reported in Akimoto et al. (2020) that, in the optimal
situation in terms of quality gain (Beyer, 2001)

‖msph − x∗sph‖
n · σ =

1

σ̄∗
≈ 1

σ̂
, σ̂ =

c · n · µeff

n− 1 + c2 · µeff
, (10)

where msph and x∗sph are the mean vector and optimum on a spherical function,
respectively; σ̄∗ is the optimal normalized step size, which is approximated by σ̂;
c = −∑µ

i=1 wiE[Ni:λ] is the weighted average of the expected value of the normal
order statistics from λ samples and is usually in O(1); and µeff = (

∑µ
i=1 w2

i)
−1 is the

variance effective selection mass.

Ideally, the CMA-ES with the proposed constraint handling should treat a con-
strained sphere function as though it is an unconstrained sphere function. That is, we
wish (10) to hold even for a constrained sphere problem.

Assuming that the optimum of a constrained n-dimensional sphere problem hav-
ing n constraints is located on the n boundaries, we estimate the left-hand side of

Evolutionary Computation Volume x, Number x 13

N. Sakamoto and Y. Akimoto

(10) using the Mahalanobis distance between m violating n constraints and m̃ =
Repair(m):

‖msph − x∗sph‖2
σ2

≈ ‖m− m̃‖2Σ−1 . (11)

We define d(t+1)
m using the parameter at iteration t (m = m(t),Σ−1 = ((σ(t))2C(t))−1),

as follows:

d(t+1)
m =

‖m− m̃‖2
Σ−1 · σ̂2

n(n/2 + cact)
exp

(
min(0, λdef − λ)

λ

)
, (12)

where cact = | { j | gj(m̃) = 0, ∀j } | is the number of active constraints at the repaired
mean m̃. From the perspective of (10) and (11), we wish to maintain dm ≈ 1 if the
denominator is n2. However, in (12), we replace n2 with n(n/2+cact), leading to a vari-
ation in the denominator in [n2/2, 3n2/2]. The motivation is to incorporate the fact that
the numerator is expected to be smaller if cact is smaller, as the projection is performed
only on this cact-dimensional subspace. Moreover, we introduce the exponential term
to prevent the search distribution from being unnecessarily biased toward the bound-
ary if the population size λ is larger than the default λdef . If λ ∈ Ω(n), σ̂ will be inO(n),
while σ̂ ∈ O(µw) if λ� n. Then, to maintain dm ≈ 1, m needs to be closer to m̃, as λ is
greater. That is, a larger λ results in the search distribution being more biased toward
the feasible domain, and less efficient search performance. To mitigate this problem, we
allow m to be up to e times away from m̃ by introducing the exponential term when λ
is greater than λdef . We adapt α so that dm will remain approximately 1, as follows:

Ranking Coefficient Adaptation Initialize α(0) = 1, d(0)
m = 0. At iteration t, α(t) is

updated as

α(t+1) = α(t) ·
(
sgn(d

(t+1)
m − 1)

n

)
(13)

only if sgn(d
(t+1)
m − 1) = sgn(d

(t+1)
m − d(t)

m) or d(t+1)
m = 0, the latter of which is necessary

to decrease α when the mean vector remains in the feasible domain; that is, d(t)
m =

d
(t+1)
m = 0. Following the update, α(t+1) is clipped to [1/λ, λ], because α < 1/λ and
α > λ result in Rg and Rf being ignored, respectively 5.

5 Invariance Properties of ARCH

We prove that ARCH is invariant to the problem transformations described in Sec-
tion 3. ARCH receives the candidate solutions (xk)λk=1, and distribution parameters
m and Σ = σ2C, from the CMA-ES, and returns the total rankings

(
RT (xk)

)λ
k=1

of
the candidate solutions to the CMA-ES. Meanwhile, it maintains the penalty coefficient
α and retains dm for the next update. Therefore, the functionality of ARCH can be
formulated as

((RT (xk))λk=1, α
(t+1), d(t+1)

m) = ARCH((xk)λk=1,m,Σ−1, α(t), d(t)
m , F) , (14)

where F : x 7→ (f(x), g1(x), . . . , gm(x)) is the vector-valued function consisting of the
objective and constraints. In the following, we prove that the outputs of (14) remain
unchanged by the abovementioned transformations.

5We observed in preliminary experiments that the best result was obtained by using Eq. (13).

14 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

5.1 ARCH on Inner Product Space

We begin by defining ARCH on an inner product space (V, 〈·, ·〉).

A random vectorXV on the inner product space (V, 〈·, ·〉) has a normal distribution
N (µV ,ΣV) if 〈v, X〉 has the normal distribution N (〈v, µV 〉, 〈v,ΣV (v〉)) for any v ∈ V ,
where µV ∈ V is the mean vector and ΣV : V → V is the covariance (Eaton, 2007). Let
FV = (fV , gV1 , . . . , g

V
m) be the objective and constraint functions defined on V as (4).

ARCH on the inner product space receives these distribution parameters µV and ΣV ,
candidate solutions p1, . . . ,pλ drawn from the normal distribution, and the objective
and constraint functions FV .

Let p and q be the vectors in V . The Mahalanobis distance between p and q under
the covariance ΣV is defined as

‖p− q‖2
Σ−1
V

:= 〈p− q,Σ−1
V (p− q)〉 .

Let SV = {p ∈ V | gVj (p) 6 0, ∀j ∈ J1,mK } be the feasible domain. Given a solution
p ∈ V , let J V (p) = { j ∈ J1,mK | gVj (p) > 0 } be the set of indices of the unsatisfied
constraints, and let AV (p) = { q ∈ V | gVj (q) = 0, ∀j ∈ J V (p) } be the intersection of
the violated constraint boundaries. The repair operation is defined as follows:

RepairV (p) = argmin
q∈V

‖p− q‖2
Σ−1
V

s.t. q ∈
{
AV (p) ∩ SV if AV (p) ∩ SV 6= ∅
SV otherwise .

(15)

Let dm and α be computed as in (12) and (13), where m, m̃ = Repair(m), Σ−1, and
cact are replaced with µV , µ̃V = RepairV (µV), Σ−1

V , and cVact = | { j | gVj (µ̃V) = 0, ∀j } |,
respectively. Analogously to Eqs. (7) to (9), we compute

RV
T (pk) = RV

f (pk) + αRV
g (pk) , (16)

where

RV
f (pk) =

∑λ
l=1 1{fV (p̃l)<f

V (p̃k)} + 1
2

∑λ
l=1 1{fV (p̃l)=f

V (p̃k)} (17)

RV
g (pk) =

∑λ
l=1 1{gVΣ (pl)<g

V
Σ (pk)} + 1

2

∑λ
l=1 1{gVΣ (pl)=g

V
Σ (pk)} , (18)

in which gVΣ (p) = ‖p− p̃‖2
Σ−1
V

and p̃ = RepairV (p).

The operation of ARCH on the inner product space (V, 〈·, ·〉) is then expressed as

((RV
T (pk))λk=1, α

(t+1), d(t+1)
m) = ARCHV ((pk)λk=1, µV ,Σ

−1
V , α(t), d(t)

m , FV) . (19)

Note that ARCHV is defined without relying on any coordinate system. This implies
that ARCHV is invariant to any coordinate system transformation.

5.2 Invariance to Affine Transformation of Search Space Coordinates

Firstly, we demonstrate that ARCH is invariant to an arbitrary affine transformation of
the search space coordinate system. For this purpose, it is sufficient to prove that the
operation of ARCH (14) on any given coordinate system x = ψ(p) is equivalent to the
operation of ARCH (19) on the inner product space (V, 〈·, ·〉).

Evolutionary Computation Volume x, Number x 15

N. Sakamoto and Y. Akimoto

Note that the normal distribution N (µV ,ΣV) on V corresponds to the normal dis-
tribution N (µψ,Σψ) on Rn in the coordinate system ψ : V → Rn, where µψ = ψ(µV)
and [Σψ]i,j = 〈ei,ΣV (ej)〉. The objective and constraint function F : Rn → Rm+1

corresponding to FV : V → Rm+1 is expressed as F = FV ◦ ψ−1.

Theorem 1. Let ψ : V → Rn be an arbitrary coordinate system. Let µV ∈ V be an arbitrary
vector and ΣV : V → V be an arbitrary positive definite symmetric linear transformation. Let
µψ = ψ(µV) and [Σψ]i,j = 〈ei,ΣV (ej)〉 and F = FV ◦ ψ−1, assume that the feasible domain
S is convex. Then, for any pk ∈ V for k = 1, . . . , λ, α > 0 and dm > 0,

ARCH((ψ(pk))λk=1, µψ,Σ
−1
ψ , α, dm, F) = ARCHV ((pk)λk=1, µV ,Σ

−1
V , α, dm, F

V) .

The proof of Theorem 1 is provided in Appendix A.1.

5.3 Invariance to Element-wise Increasing Transformation

Next, we demonstrate that ARCH is invariant to an arbitrary element-wise increasing
transformation. That is, the ranking and internal parameter updates are not affected by
the transformation.

Theorem 2. Let H = (h0, h1, . . . , hm) be an arbitrary element-wise increasing transforma-
tion, assume that the feasible domain S is convex. For any xk ∈ Rn for k = 1, . . . , λ, α > 0,
and dm > 0,

ARCH((xk)λk=1,m,Σ−1, α, dm, F) = ARCH((xk)λk=1,m,Σ−1, α, dm, H ◦ F) .

The proof of Theorem 2 is provided in Appendix A.2.

5.4 Invariance Properties of Entire Algorithm

Finally, we discuss the invariance properties of the search algorithm including ARCH.

Suppose that the underlying unconstrained optimization algorithm is defined on
an inner product space, and the following steps are repeated:

1. p1, . . . ,pλ = SAMPLE(µV ,ΣV , θV);

2. Rf (p1), . . . ,Rf (pλ) = EVALUATE((pk)λk=1, f
V); and

3. µV ,ΣV , θV = UPDATE((pk,Rf (pk))λk=1, µV ,ΣV , θV),

where θV contains all of the information used in the algorithm. By nature, it is invariant
to any strictly increasing transformation of the objective function fV , as the outputs
of EVALUATE are the rankings of the objective function values, and it is invariant to
any strictly increasing transformation h. Moreover, as it is defined independently of
a coordinate system, its implementation under a given coordinate system ψ produces
ψ(p1), . . . , ψ(pλ), µψ,Σψ, θψ at any iteration t, where p1, . . . ,pλ are the candidate solu-
tions mentioned above, while µψ , Σψ , and θψ are the expressions of µV , ΣV , and θV ,
respectively, in the coordinate system ψ.

When solving an explicitly constrained minimization problem FV , we simply re-
place the evaluation step as follows:

16 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

1. p1, . . . ,pλ = SAMPLE(µV ,ΣV , θV);

2. RT (p1), . . . ,RT (pλ), α, dm = ARCHV ((pk)λk=1, µV ,Σ
−1
V , α, dm, F

V); and

3. µV ,ΣV , θV = UPDATE((pk,RT (pk))λk=1, µV ,ΣV , θV).

As all of the operations are defined independently from a coordinate system, the entire
algorithm is invariant to any affine coordinate system transformation. Moreover, be-
cause ARCHV is invariant to any element-wise increasing transformation H , and the
underlying algorithm only relies on the rankings of the candidate solutions, all of the
operations are invariant to H .

ARCH can be combined with a search algorithm that is not generalized to an inner
product space. For example, our baseline CMA-ES, which is described in Section 2.1,
does not generalize to an inner product space (as pσ is coordinate dependent), although
we empirically observe quite uniform behaviors under different coordinate systems, as
we observe in Section 6. ARCH does not disturb the uniform behavior, as ARCH itself
is invariant to any affine coordinate transformation.

6 Experiments on Linearly Constrained Quadratic Problems

Our first numerical experiments are aimed at demonstrating the effects of the invari-
ance to affine coordinate transformations of ARCH. We develop a set of linearly con-
strained test problems. We compare ARCH with other CHTs for the CMA-ES, demon-
strating the manner in which affine coordinate transformations affect the performances
of CHTs that are not invariant thereto, while ARCH performs equally effectively un-
der different transformations. Moreover, we compare ARCH with CHTs that are spe-
cialized for box constraints. Note that box CHTs are expected to be more efficient for
box-constrained optimization problems than other CHTs for general linear constraints.
We observe that ARCH is competitive with and sometimes outperforms these, even on
box-constrained problems.

6.1 Linearly Constrained Quadratic Minimization Problems

We consider a linearly constrained problem (P0), defined in the n-dimensional inner
product space (V, 〈·, ·〉) on the real field R as (4), where the constraints are defined as
gi(p) = 〈−vi,p〉− [LB]i and gn+i(p) = 〈vi,p〉− [UB]i, where vi ∈ V is the normal vector
of the ith constraint and these are orthogonal to one another; that is, 〈vi,vj〉 = δi,j , and
[LB]i, [UB]i ∈ R are the lower and upper bounds, respectively.

We consider the coordinate system ψ : V → Rn with {vi} as the basis vectors. That
is, ψ : p =

∑n
i=1[x]ivi 7→ x. On this coordinate system, (P0) can be expressed as the

box-constrained minimization problem (P1), as follows:

argmin
x∈Rn

f(P1)(x) = f(
∑n
i=1[x]ivi) s.t. g(P1)(x) = Ax− b � 0 , (20)

where A = [−In, In]T and b = [LBT,UBT], and g(P1) = (g1, . . . , gm) is a vector form
of m = 2n constraint functions. We define an initial mean vector and initial covariance
matrix as m(0) and C(0), respectively, on this coordinate system.

Evolutionary Computation Volume x, Number x 17

N. Sakamoto and Y. Akimoto

Figure 2: Same problem with different coordinate systems.

By taking another basis {wi}, the general linearly constrained optimization prob-
lem (P2) can be defined as

argmin
y∈Rn

f(P2)(y) = f(P1)(Py) s.t. g(P2)(y) = APy − b � 0 . (21)

On this coordinate system, the coordinate vector y ∈ Rn is transformed as x = Py
using a basis-transformation matrix P , which transforms {vi} into {wi}. The initial
mean vector and covariance matrix are transformed as P−1m(0) and P−1C(0)(P−1)T,
respectively.

These optimization problems (P1) and (P2) are equivalent to (P0). However, (P1)
has a box constraint, while (P2) has a set of linear constraints. Algorithms that are
invariant to any affine transformation of the search space must perform equivalently
on these problems. We use these problems to assess the invariance properties.

6.2 Settings

For the test problem (P1) in (20), we use three objective functions: sphere (fsph(x) =∑n
i=1[x]2i), ellipsoid (fell(x) =

∑n
i=1 106 i−1

n−1 [x]2i), and rotated ellipsoid (frotell(x) =
fell(Qθx)), where Qθ ∈ Rn×n is a block diagonal matrix such that each block is a 2× 2
orthogonal (that is, rotation) matrix and all blocks share the same matrix. We let the
counter-clockwise rotation angle of each block be θ = π/6 in this experiment.

Problem (P1) is a box-constrained problem. The lower and upper bounds are set as
LB = [−1, 1, . . . ,−1, 1]T and UB = LB + [5, . . . , 5]T, respectively. The optimal solution,
which is obtained by the Karush–Kuhn–Tucker (KKT) condition, is located at x∗ =
[0, 1, . . . , 0, 1]T for fsph and fell, and x∗ ≈ [0.37, 1, . . . , 0.37, 1]T for frotell. That is, the
even-numbered coordinates of the optimum are on the boundary, while the others are
not. The number of active constraints at the optimum is n/2.

We use the following two matrices for the transformation matrix P in (21): P rot =
Qθ′ and P illrot = QT

θ′DQθ′ with θ′ = π/4, where Qθ′ is as defined above, with θ 6= θ′,
and D = diag(1, 10, . . . , 1, 10) is a diagonal matrix. The transformation matrix P rot

only rotates the search space, while P illrot transforms the rectangular feasible domain
into an n-parallelotope shape. Hereunder, problem (P1) is denoted by Box, the linearly
constrained problem (P2) using P rot is denoted by rotBox, and (P2) using P illrot is de-
noted by illrotBox. Their feasible domains and the levelsets of the objective function
are illustrated in Figure 2.

For the box-constrained optimization problem (P1), the initial mean vector is
m(0) = UB+LB

2 + U(−1, 1)n, and the initial covariance matrix is C(0) = In. For the

18 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

0 500 1000
10−8

10−5

10−2

101
‖m
−
x
∗ ‖

2 H

A
P

-B
C

H

A
R

C
H

Resampling

fsph, n = 20 Box

rotBox

illrotBox

iterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterations
0 2000 4000 6000 8000

10−8

10−4

100

104

108

‖m
−
x
∗ ‖

2 H

A
P

-B
C

H

A
R

C
H

Resampling

fell, n = 20 Box

rotBox

illrotBox

iterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterationsiterations
0 2000 4000 6000 8000

10−8

10−4

100

104

‖m
−
x
∗ ‖

2 H

A
P

-B
C

H

A
R

C
H

Resampling

frotell, n = 20 Box

rotBox

illrotBox

iterations

0 500 1000 1500 2000
10−8

10−5

10−2

101

‖m
−
x
∗ ‖

2 H

A
P

-B
C

H
A

R
C

H

Resampling

fsph, n = 50 Box

rotBox

illrotBox

iterations
0 5000 10000 15000

10−8

10−4

100

104

108

‖m
−
x
∗ ‖

2 H

AP-BCHARCH

Resampling

fell, n = 50 Box

rotBox

illrotBox

iterations
0 5000 10000 15000

10−8

10−4

100

104

108

‖m
−
x
∗ ‖

2 H

AP-BCHARCH

Resampling

frotell, n = 50 Box

rotBox

illrotBox

iterations

Figure 3: Median (line) and 25% to 75%-ile range (band) over 100 trials.

linearly constrained optimization problem (P2), m(0) and C(0) are transformed in the
manner described in Section 6.1. The search space dimension is n ∈ {20, 50}, the initial
step size is σ(0) = 1

n

∑n
i=1

[UB]i−[LB]i
4 = 1.25, and the other parameters are set to their

default values, as defined in Table 1.

6.3 Results and Discussion

Figure 3 presents the performance of ARCH, the resampling technique with a maxi-
mum resampling number of 500, and AP-BCH (Hansen et al., 2009) on fsph, fell, and
frotell under three different coordinate systems (Box, rotBox, and illrotBox) on
n = 20 and n = 50 dimensions. As AP-BCH is a box CHT, the results are illustrated
only for Box. The optimization progress is measured by the Mahalanobis distance be-
tween the mean vector and optimal solution ‖m−x∗‖2H = (m−x∗)TH(m−x∗) given
the Hessian matrix H ∈ Rn×n of the objective function. Figure 4 presents the results
of typical runs of the CMA-ES on unconstrained problems, resampling, AP-BCH, and
ARCH on fsph and fell under the Box constraint on n = 20 dimensions. For AP-BCH
and ARCH, the ratio of the number of constraints satisfied by the mean vector m,

rfeas =
1

n
|{ i ∈ J1, nK | [LB]i 6 [m]i 6 [UB]i }| , (22)

is illustrated for discussion.

Firstly, we focus on the results of ARCH and the resampling technique in Fig-
ure 3. Although the underlying CMA-ES is not mathematically proven to be invariant
to affine transformation of the search space, we observe in Figure 3 that the lines of
ARCH for Box, rotBox, and illrotBox overlap one another, owing to the invariance
of ARCH to the affine transformation of the search space. For resampling as well, we
observe the same. This indicates that the performance comparison can be conducted on
the most convenient case, namely the Box constraint case. In the following, we focus
on analyzing the results on Box, which can be generalized to general cases.

Next, we investigate the behavior of ARCH. We observe in Figure 4 that the pa-
rameter dm is maintained at approximately 1. This is the desired behavior, as we design

Evolutionary Computation Volume x, Number x 19

N. Sakamoto and Y. Akimoto

0 50 100 150 200
10−8

10−5

10−2

101

‖m− x∗‖2
H

eig(
√
C)

σ

0 50 100 150 200

−2

0

2

4

m
ea

n
ve

ct
or
m

unconstrained fsph, CMA-ES (n = 20)

iterations
0 500 1000 1500

10−8

10−4

100

104

‖m− x∗‖2
H

eig(
√
C)

σ

0 500 1000 1500

−5

0

5

10

m
ea

n
ve

ct
or
m

unconstrained fell, CMA-ES (n = 20)

iterations

0 2000 4000
10−8

10−5

10−2

101

‖m− x∗‖2
H

eig(
√
C)

σ

0 2000 4000

0

1

2

m
ea

n
ve

ct
or
m

fsph with Box, Resampling (n = 20)

iterations
0 5000 10000

10−8

10−4

100

104

‖m− x∗‖2
H

eig(
√
C)

σ

0 5000 10000

0

2

4

6

m
ea

n
ve

ct
or
m

fell with Box, Resampling (n = 20)

iterations

0 200
10−8

10−5

10−2

101

‖m− x∗‖2
H

eig(
√
C)

σ

0 200

0

2

4

m
ea

n
ve

ct
or
m

0.0

0.2

0.4

0.6

0.8

1.0
rfeas

fsph with Box, AP-BCH (n = 20)

iterations
0 1000 2000 3000

10−8

10−4

100

104

‖m− x∗‖2
H

eig(
√
C)

σ

0 1000 2000 3000

0

2

4

6

m
ea

n
ve

ct
or
m

0.0

0.2

0.4

0.6

0.8

1.0
rfeas

fell with Box, AP-BCH (n = 20)

iterations

0 100 200 300
10−8

10−5

10−2

101

‖m− x∗‖2
H

eig(
√
C)

σ

0 100 200 300
−2

0

2

4

m
ea

n
ve

ct
or
m

0.0

0.2

0.4

0.6

0.8

1.0
rfeas

0 100 200 300
10−2

10−1

100

101

102

dm

0 100 200 300

0.4

0.6

0.8

1.0 α

fsph with Box, ARCH (n = 20)

iterations

0 500 1000 1500
10−8

10−4

100

104

‖m− x∗‖2
H

eig(
√
C)

σ

0 500 1000 1500
−2

0

2

4

6

m
ea

n
ve

ct
or
m

0.0

0.2

0.4

0.6

0.8

1.0
rfeas

0 500 1000 1500
10−2

10−1

100

dm

0 500 1000 1500

0.2

0.4

0.6

0.8
α

fell with Box, ARCH (n = 20)

iterations

Figure 4: Typical single runs of CMA-ES (first row) on unconstrained fsph and fell,
resampling (second row), AP-BCH (third row), and ARCH (fourth row) on fsph and
fell with Box. The figures indicate: the Mahalanobis distance ‖m− x∗‖2H between the
mean vector m and optimal solution x∗, given the Hessian matrix H of the objective
f ; the step size σ; the eigenvalues eig(

√
C) of the square root of C; the coordinates of

m; the ratio rfeas of the constraints satisfied by m; the coefficient α and the parameter
dm used for updating α versus the number of iterations.

the adaptation of α to maintain dm ≈ 1. Moreover, we can observe from the results that
the behaviors of the CMA-ES on the unconstrained problem and the behaviors of the
CMA-ES with ARCH and AP-BCH are similar, in that the covariance matrix tends to be
proportional to the inverse of the Hessian matrix of the objective function. However,
in Figure 3, we observe the difference between these two algorithms in terms of the
adaptation speed of the covariance matrix. On fell and frotell, the CMA-ES with ARCH
adapts the covariance matrix significantly faster than that with AP-BCH. By adapting
the coefficient α, ARCH appears to resemble the selection of candidate solutions on an

20 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

unconstrained problem better than AP-BCH.

The resampling technique exhibits different behavior. The eigenvalues of the co-
variance matrix are divided into two, with the smaller values corresponding to the axes
where the constraints are active at the optimum, and the greater values corresponding
to the axes where the constraints are inactive at the optimum. If we do not use any
information from the infeasible domain and generate only feasible candidate solutions,
this is a reasonable approach to cause the distribution to be narrow in the directions of
the active constraints. This concept has indeed been employed in (Arnold and Hansen,
2012). However, this strategy significantly reduces the speed of the approach of the
mean vector to the optimum on the boundary.

We provide additional experimental results in Appendix D.

7 Experiments on CEC 2006 Constrained Optimization Testbed

The aim of our second numerical experiments is twofold.

Firstly, we demonstrate that ARCH can be applied to nonlinearly as well as linearly
constrained problems. To evaluate the efficacy, we compare ARCH with the active-
set ES (Arnold, 2017) that can deal with explicit (a priori) and nonlinear constraints,
because there is currently only one CHT designed for such a constraint. This is the
(1 + 1)-ES-based approach, and the covariance matrix adaptation is not incorporated.

Secondly, we show that, even if the infeasible solutions can be evaluated on
the objective, ARCH , which only evaluates the solutions in the feasible domain,
exhibits advantages in solving constrained optimization with explicit (a priori) con-
straints. For this purpose, we compare ARCH with the AL (Atamna et al., 2016) and
MCR (de Paula Garcia et al., 2017), which are designed for simulation-based constraints
under the relaxed assumption that any infeasible solutions can be evaluated on the ob-
jective.

7.1 CEC 2006 testbed

To compare the CHTs, we use the CEC 2006 testbed (Liang et al., 2006), which con-
sists of 24 constrained problems including linear/nonlinear and equality/inequality
constraints, where the equality constraints hj(x) = 0 are transformed into inequali-
ties, as described below Eq. (1), with εeq = 10−4. We reuse the CEC2006 testbed since
this testbed is widely used in existing works, which make it easy to compare algo-
rithms. All optimization variables are bounded as [LB]i 6 [x]i 6 [UB]i (i ∈ { 1, . . . , n }).
The bound constraints are transformed into a set of linear inequality constraints, as in
Eq. (20). Note that ARCH is independent of the manner in which they are transformed,
but certain existing CHTs, such as MCR, are dependent on this. Table 3 summarizes
the features of the constrained problems. Our implementation of the CEC2006 testbed
is available in the repository (https://github.com/naoking158/ARCH).

7.2 ARCH vs Active-Set ES

In this section, we compare ARCH with the active-set ES (Arnold, 2017).

Evolutionary Computation Volume x, Number x 21

N. Sakamoto and Y. Akimoto

Table 3: Details of 24 constrained problems of CEC 2006 testbed: n is the search space
dimension; LI, NI, LE, and NE are the number of linear/nonlinear inequality con-
straints and linear/nonlinear equality constraints, respectively; andmact is the number
of active constraints at the optimum.

Prob. n Type of f LI NI LE NE mact

g01 13 quadratic 9 0 0 0 6
g02 20 nonlinear 0 2 0 0 1
g03 10 polynomial 0 0 0 1 1
g04 5 quadratic 0 6 0 0 2
g05 4 cubic 2 0 0 3 3
g06 2 cubic 0 2 0 0 2
g07 10 quadratic 3 5 0 0 6
g08 2 nonlinear 0 2 0 0 0
g09 7 polynomial 0 4 0 0 2
g10 8 linear 3 3 0 0 6
g11 2 quadratic 0 0 0 1 1
g12 3 quadratic 0 1 0 0 0
g13 5 nonlinear 0 0 0 3 3
g14 10 nonlinear 0 0 3 0 3
g15 3 quadratic 0 0 1 1 2
g16 5 nonlinear 4 34 0 0 4
g17 6 nonlinear 0 0 0 4 4
g18 9 quadratic 0 13 0 0 6
g19 15 nonlinear 0 5 0 0 0
g20 24 linear 0 6 2 12 16
g21 7 linear 0 1 0 5 6
g22 22 linear 0 1 8 11 19
g23 9 linear 0 2 3 1 6
g24 2 linear 0 2 0 0 2

7.2.1 Settings

We follow the experimental setup of Arnold (2017). Note that the test problems used
in Arnold (2017), known as the Michalewicz/Schoenauer test set (Michalewicz and
Schoenauer, 1996), are equivalent to the first 11 constrained problems in the CEC
2006 testbed. The initial mean vector m(0) is sampled from the uniform distribution
U [LB,UB], and then projected onto the boundary of the feasible domain by the repair
operator defined by each CHT if the sampled point is infeasible. The initial step size
and covariance matrix are set to σ(0) = 0.2 min {UB− LB } and C(0) = In, respectively.
A run is terminated if the algorithm reaches 1200 iterations or locates a feasible can-
didate solution x with the objective value f(x) < f∗ + ε|f∗|, where f∗ is the optimal
objective function value, as reported in Liang et al. (2006), and ε ∈ { 10−4, 10−8 } is
referred to as the target accuracy. The other parameters of the CMA-ES are set to the
default values listed in Table 1.

7.2.2 Results and Discussion

We conduct 100 runs of each algorithm for each problem. The results are summarized
in Table 4. The success rate is defined as the number of runs in which the algorithm can
reach the target within 1200 iterations, divided by the total number of runs (100).

22 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

Table 4: Median number of function evaluations (NFES), iterations (# Iterations) and
success rate (SR) among 100 independent runs for each problem and each algorithm.
The results of the active-set ES were obtained from (Arnold, 2017).

Prob. Target Accuracy Active-set ES ARCH
ε NFES (# Iterations) SR NFES # Iterations SR

g01
10−4 30 61% 154 14 96%
10−8 30 62% 154 14 96%

g02
10−4 – 0% – – 0%
10−8 – 0% – – 0%

g03
10−4 463 100% 900 90 100%
10−8 863 100% 1720 172 100%

g04
10−4 22 100% 176 22 100%
10−8 24 100% 176 22 100%

g05
10−4 36 100% 624 78 97%
10−8 82 100% 1160 145 41%

g06
10−4 5 100% 6 1 100%
10−8 5 100% 6 1 100%

g07
10−4 325 100% 1635 163.5 100%
10−8 557 100% 2705 270.5 100%

g08
10−4 107 38% 510 85 57%
10−8 210 44% 636 106 57%

g09
10−4 307 100% 846 94 100%
10−8 582 100% 1620 180 100%

g10
10−4 117 100% 580 58 100%
10−8 236 100% 2985 298.5 100%

g11
10−4 25 100% 60 10 100%
10−8 73 100% 258 43 100%

Comparing the median number of f -calls for reaching the same accuracy, ε, in
Table 4, we can observe that the active-set ES achieves the target accuracy with a lower
number of f -calls. However, the median number of iterations is lower for ARCH, as it
is the population-based approach. As the number of candidate solutions per iteration
is increased, we expect the number of iterations to decrease. This is an advantage of
ARCH when the candidate solutions can be evaluated on f in parallel.

Focusing on problems g01 and g08, ARCH exhibits higher success rates than the
active-set ES. This is possibly because ARCH is combined with the (µ, λ) type ES, rather
than the (1+1)-ES. As these problems have local minima, ARCH can reach the target at
a higher rate than the active-set ES, which is (1+1)-ES based. None of the algorithms
can solve problem g02, because this problem has a strongly multimodal landscape.

Another advantage that does not appear in this experiment is that we incorpo-
rate the covariance matrix adaptation, which is desirable for ill-conditioned and non-
separable problems.

7.3 ARCH vs AL & MCR

In this section, we compare ARCH with the AL (Atamna et al., 2016) and
MCR (de Paula Garcia et al., 2017) techniques.

Evolutionary Computation Volume x, Number x 23

N. Sakamoto and Y. Akimoto

7.3.1 Settings

In this experiment, we use all 24 problems in the CEC 2006 testbed. Following the de-
fault setup in Liang et al. (2006), we regard each run as successful if a feasible candidate
solution x with the objective function value f(x)− f∗ 6 10−4 is located within 5× 105

f -calls, where f∗ is the optimal objective value.

Because we consider the constraints to be explicit, it is a natural approach to pre-
pare a set of feasible solutions and begin the optimization process with one feasible
solution as the initial search point. The set of feasible solutions is generated as follows.
We run the CMA-ES with the following loss function L : Rn → R,

L(x) =

m∑
j=1

Rgj (x) , Rgj (x) =

λ∑
k=1

1{g+
j (xk)<g+

j (x)} +
1

2

λ∑
k=1

1{g+
j (xk)=g+

j (x)} , (23)

where g+
j (x) = max(0, gj(x)). If the candidate solutions are all feasible, they receive

the same ranking and the distribution parameter update becomes an unbiased random
walk. Then, the CMA-ES tends to produce feasible solutions extensively in a connected
feasible subset. To obtain diverse feasible solutions, we run the CMA-ES until 10n feasi-
ble solutions are generated, and repeat it 50 times with the following initial parameters:
σ(0) = exp

(
1
n

∑n
i=1 ln

([UB]i−[LB]i
5

))
, C(0) = diag(UB−LB

5σ(0))2, and m(0) ∼ U [LB,UB].

Because multimodal functions exist in the CEC 2006 testbed, we use the BIPOP
restart strategy (Hansen, 2009), which updates the population size and initial step size
for every restart. Instead of randomly sampling an initial mean vector m(0) from the
entire search space, we randomly sample one feasible solution from the above prepared
feasible set in each restart. The initial step size and covariance matrix are set to σ(0) =

exp
(

1
n

∑n
i=1 ln

(
[UB]i−[LB]i

5

))
and C(0) = diag(UB−LB

5σ(0))2, respectively, with the step size
scaled by the BIPOP strategy in each restart. The other parameters of the CMA-ES are
set to the default values listed in Table 1, and we follow the restart condition described
in Hansen (2009).

7.3.2 Results and Discussion

All results are summarized in Table 5. The statistical significance is tested using the
two-sided Mann–Whitney rank test, with a significance level of 5%/m, where m = 42
is the number of tests (Bonferroni correction). 6

The MCR and AL are CHTs that are often used for simulation-based constraints.
They do not exploit the fact that the constraints are explicit, but assume that f is de-
fined on the infeasible domain. With the exception of problems g08 and g16, ARCH
overwhelmingly outperforms the MCR and AL, which do not explicitly utilize the fact
that g-calls are computationally cheaper than f -calls, and perform as many f -calls as
g-calls. This indicates that ARCH can efficiently exploit the fact that the constraints are
explicit, even if the objective function is defined on the infeasible domain.

ARCH does not reach the target for problems g02, g16, and g20 to g22. For g02,
g20, g21, and g22, no algorithms can reach the target value. Problem g02 has a strongly
multimodal landscape, and it is difficult to locate the global optimum among many

6Since the tests have been performed excluding the results where no runs reached the target, the number
of tests was 42, not 24× 3 = 72.

24 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

Table 5: Median number of function evaluations (NFES) and success rate (SR) among
25 independent runs for each problem and each algorithm. The subscript of the NFES
indicates the average number of restarts for the successful runs. The markers ∗ (AL
vs ARCH), + (AL vs MCR), and ◦ (MCR vs ARCH) indicate the statistical significance
according to the two-sided Mann–Whitney rank test with a significance level of 5/m%,
where m = 42 is the number of tests (Bonferroni correction).

Prob. AL MCR ARCH
NFES SR NFES SR NFES SR

g01 - 0% 320245(4.92) 100% 737◦(0.38) 100%
g02 - 0% - 0% - 0%
g03 - 0% 10670(0.33) 100% 1030◦(0.75) 100%
g04 - 0% 7728(0.25) 100% 120◦(0.21) 100%
g05 22056+

(10.00) 100% 269447(47.96) 8% 737◦∗(1.46) 100%
g06 8981(43.50) 4% 1332+

(0.00) 100% 90◦∗(3.62) 100%
g07 14415(2.42) 100% 19860(0.17) 100% 2782◦∗(3.88) 100%
g08 468(0.46) 100% 162(0.17) 100% 390(3.08) 100%
g09 2079+

(0.00) 100% 5328(0.00) 100% 1791◦(2.42) 100%
g10 - 0% 41780(1.12) 100% 2990◦(0.33) 100%
g11 294+

(0.00) 100% 3204(0.88) 100% 54◦∗(0.17) 100%
g12 15601(6.08) 100% 2870+

(1.38) 100% 902◦∗(6.21) 100%
g13 14208(2.12) 100% - 0% 2686∗(4.96) 100%
g14 418341(16.17) 12% 16830+

(0.46) 100% 2172◦∗(2.50) 100%
g15 2317+

(0.42) 100% 72239(11.17) 100% 175◦∗(0.92) 100%
g16 5816(0.54) 100% 8664(0.46) 100% - 0%
g17 29400(5.92) 100% - 0% 1814∗(4.17) 100%
g18 11490(2.75) 100% 8810(1.58) 100% 3939◦∗(6.83) 100%
g19 - 0% 127308(1.38) 100% 5772◦(0.08) 100%
g20 - 0% - 0% - 0%
g21 - 0% - 0% - 0%
g22 - 0% - 0% - 0%
g23 - 0% 96078(34.38) 4% 9386◦(4.62) 100%
g24 7422(3.33) 100% 600+

(0.21) 100% 54◦∗(0.38) 100%

local optima. Problems g20 to g22 have many nonlinear equality constraints, and it
is difficult to grasp the global landscape without using the function values outside of
the feasible domain. In particular, a feasible solution has not yet been determined for
problem g20 (Liang et al., 2006). Problem g16 is a unique problem that can be solved
by the AL and MCR, but not ARCH. In ARCH, the internal optimizer (SLSQP) used in
the repair operation fails to locate the solution. This may occur if there are too many
complex constraints.

Evolutionary Computation Volume x, Number x 25

N. Sakamoto and Y. Akimoto

8 Conclusions

A constrained continuous optimization problem has been addressed in this study, in
which the constraints are assumed to be explicitly written as mathematical expressions
and their evaluation time is negligible compared to that of the objective function. We
do not assume that the objective function values are defined outside of the feasible do-
main. Our proposed CHT for the CMA-ES, known as ARCH, can handle explicit and
nonlinear constraints. ARCH is designed to be invariant to any element-wise transfor-
mation of the objective and constraint functions, as well as to any affine transformation
of the search space coordinate, so as to preserve the invariance properties of the under-
lying CMA-ES. The invariance properties are mathematically proven and empirically
validated. To the best of the authors’ knowledge, this is the first approach for explicit
constraints that is invariant to those transformations.

Two sets of experiments revealed the effectiveness of ARCH. The first demon-
strated that the convergence speed of ARCH improved compared with BCH, in the
especially ill-conditioned and non-separable objective function while it is almost the
same as in the well-conditioned problem. . These results could be attributed to the
fact that adapting the coefficient α allows for faster adaptation of the covariance ma-
trix C, and the affine invariance allows for a search behavior that resembles one on the
well-conditioned function. The second experiment revealed that ARCH is overwhelm-
ingly more efficient than the CHTs that do not exploit the explicit constraints. This
implies that the explicit constraints should be exploited inin the constraint handling,
which ARCH effectively achieves. However, note that the CHTs used in the compari-
son are limited to those available to the CMA-ES. Further comparison with state-of-the-
art methods is necessary to show the usefulness of ARCH among existing approaches.
On the other hand, the comparison to the active-set (1+1)-ES showed a possibility to
further improve the efficacy of ARCH in terms of the number of the objective function
calls. Incorporating the idea of the active-set ES into the repair operator in ARCH is a
possible direction of a future work.

ARCH is designed to solve the constrained continuous optimization problems
where the constraints are all explicit. Box-constrained optimization problems are such
examples, where ARCH exhibits superior performance to an existing box constraint
handling technique. However, it is often the case that there exist explicit constraints and
simulation-based constraints at the same time, where the explicit constraints are pre-
requisites to a simulator that computes the objective function value and the simulation-
based constraint violation values. ARCH is expected to be inefficient for such problems
as it requires a substantial amount of constraint evaluations. To deal with the combina-
tion of these two types of constraints, one might need to combine an explicit constraint
handling such as ARCH and a simulation-based constraint handling such as the multi-
ple constraint ranking (MCR) technique. The invariance properties of ARCH will play
an important role to preserve the invariance properties of the entire search algorithm
when two CHTs are combined. This is an important direction of future work.

26 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

Acknowledgements

This work was supported by the JSPS KAKENHI under Grant Numbers 19H04179 and
19J21892.

Appendix

A Proofs

A.1 Proof of Theorem 1

Let px ∈ V and py ∈ V be the vectors of which the coordinates in ψ are x ∈ Rn and
y ∈ Rn, respectively. Firstly, observe

‖px − py‖2Σ−1
V

= 〈px − py,Σ
−1
V (px − py)〉

= 〈∑n
i=1[x− y]iei,Σ

−1
V (
∑n
i=1[x− y]iei)〉

= 〈∑n
i=1[x− y]iei,

∑n
i=1[x− y]iΣ

−1
V (ei)〉

=
∑n
i=1

∑n
j=1[x− y]i[x− y]j〈ei,Σ−1

V (ej)〉
= (x− y)TΣ−1

ψ (x− y) = ‖x− y‖2
Σ−1
ψ

.

Moreover, it is obvious that S = ψ(SV), J (x) = J V (px), and A(x) = ψ(AV (px)).
Hence, the solution x̃ = Repair(x) and the solution p̃x = RepairV (px) are equivalent;
that is, x̃ = ψ(p̃x). Then, we also have f(x̃) = fV (p̃x) and gΣ(x) = gVΣ (px), leading
to Rf (x) = RV

f (px) and Rg(x) = RV
g (px). As ‖µψ − µfeas

ψ ‖Σ−1
ψ

= ‖µV − µfeas
V ‖Σ−1

V

‖µψ − Repair(µψ)‖Σ−1
ψ

= ‖µV − RepairV (µV)‖Σ−1
V

, it is easy to observe that d(t+1)
m

computed in ARCH and ARCHV are equal under the same d(t)
m = dm. This also leads

to the same α(t+1) computed in ARCH and ARCHV under the same α(t) = α. Finally,
we obtain RT (x) = RV

T (px), which demonstrates that the outputs of the operations of
ARCH and ARCHV are the same. This completes the proof.

A.2 Proof of Theorem 2

Firstly, we observe that gj(x) 6 0 if and only if hj(gj(x)) 6 0 for any x ∈ Rn and any
j = 1, . . . ,m. Therefore, it is clear that the feasible domain S , the set J (x) of indices
of the violated constraints, and the intersection A(x) of the violated constraints are
unchanged by any H . As the Mahalanobis distance is not affected by H , the above
facts imply that the repair operation remains unchanged; that is, Repair(x) for any x
is the same on F and H ◦ F , and hence, gΣ(x) is unchanged. This implies that dm, and
hence also α, are unchanged.

Moreover, the rankings Rf and Rg are not affected by H because 1{f(y)<f(x)} and
1{f(y)=f(x)} are equivalent to 1{h0(f(y))<h0(f(x))}, and 1{h0(f(y))=h0(f(x))} and gΣ(x) is
unchanged by H . Hence, RT is not affected by H .

Therefore, all of the outputs of ARCH remain unchanged by any H .

Evolutionary Computation Volume x, Number x 27

N. Sakamoto and Y. Akimoto

B Implementation remarks for the repair operation

In practice, numerical errors in the implementation of the repair operator Eqs. (5)
and (6) must be dealt with as numerical optimization routines that sometimes return
solutions that violate the constraints slightly. To guarantee the production of a feasible
solution so that it can be evaluated on f , we replace all of the constraints in (5) and (6)
with g(x) � −ε(t). Then, even with numerical errors, the repair operator is likely to
return a feasible solution (that is, g(Repair(x)) � 0) if it is solvable. We state that the
repair operation is successful if a repaired solution is feasible.

The repair operator is implemented as follows: Firstly, we attempt to solve (5) and
return the solution if it is feasible. Otherwise, we attempt to solve (6) and return the
solution if it is feasible. If a repaired candidate is still infeasible, we cannot evaluate
its f -value. Instead, we set an artificial value, f infeas, which is treated as f infeas > f(x)
for all x ∈ S and f infeas = f(x) for all x /∈ S. The f -ranking (8) is computed using
f infeas, i.e., the worst f -ranking is assigned to such a point, while the computation of
the g-ranking (9) remains unchanged: we use the Mahalanobis distance between the
original candidate x and unsuccessfully repaired candidate Repair(x). To maintain a
high probability of success of the repaired operation, we adapt ε(t). We set ε(0) = 10−13

and update it as

ε(t+1) = ε(t) ×
{

1
2 |{unsuccessfully repaired points at iteration t}| 6 d0.1λe ,
10 otherwise ,

and ε(t+1) is clipped to [10−15, 10−4].

The optimization routine for the repair operation can be selected according to the
problem. For example, if the constraints are linear and not redundant, we can obtain
the repaired point without relying on gradient-based minimization of (5). If nonlinear
constraints are considered, we employ SLSQP (Kraft, 1988). Whether or not the opti-
mization problems (5) and (6) are solvable depends on the assumptions on the internal
optimization method. If these assumptions are not satisfied, the repair operation is not
guaranteed to return the optimal solution, and it may output infeasible or feasible but
sub-optimal solutions.

C The reason that Eq. (5) is preferred over Eq. (6)

We describe why Eq. (5) is preferable to Eq. (6). Figure 5 illustrates a typical run on fsph

with Box, where the experiment is the same as Section 6. We observe that the eigenval-
ues of the sampling distribution, namely eig(

√
C), are divided into two groups. This

is similar to the behavior of the resampling in Figure 4. The reason for the behavior is
described as follows. The points repaired on the intersection of the boundaries of the
constraints that are active at the optimum tend to exhibit better f -values than the other
points. We refer to the region where the points are repaired onto the abovementioned
intersection as a preferred region of the algorithm. Once solutions in the preferred re-
gion have been determined, they are ranked highly, and the next covariance matrix is
updated to increase the likelihood of these solutions. This tends to increase the eigen-
values in the directions to the preferred region. The preferred region is dependent on
the distribution shape, and it will become sharper as the distribution does, resulting in
a very sharp distribution. The step-size first dropped to a very small value as it does

28 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

0 100 200 300
10−8

10−5

10−2

101

‖m− x∗‖2
H

eig(
√
C)

σ

0 100 200 300
−2

0

2

4

m
ea

n
ve

ct
or
m

0.0

0.2

0.4

0.6

0.8

1.0
rfeas

0 100 200 300
10−2

10−1

100

101

102

dm

0 100 200 300

0.4

0.6

0.8

1.0 α

fsph with Box, ARCH (n = 20)

iterations

0 2000 4000
10−8

10−5

10−2

101

‖m− x∗‖2
H

eig(
√
C)

σ

0 2000 4000
−1

0

1

2

3

m
ea

n
ve

ct
or
m

0.0

0.2

0.4

0.6

0.8

1.0
rfeas

0 2000 4000
10−2

10−1

100

101
dm

0 2000 4000

0.2

0.4

0.6

0.8 α

fsph with Box, ARCH (n = 20)

iterations

Figure 5: Behavior of ARCH solving Eq. (5)(left) and Eq. (6)(right) for repair.

on very ill-conditioned functions and increased once the covariance matrix learned the
long axes. The preferred region of the algorithm using (5) is less dependent on the dis-
tribution shape, and performs significantly better than that using (6). This is why we
attempt to solve Eq. (5) first.

D Additional Experiments on Linearly Constrained Problems

We show additional experimental results on linearly constrained problems. In Sec-
tion 6, the initial covariance matrix was set as C

(0)
Box = In on the Box prob-

lem, C
(0)
rotBox = P−1

rotC
(0)
Box(P−1

rot)
T on the rotBox problem, and C

(0)
illrotBox =

P−1
illrotC

(0)
Box(P−1

illrot)
T on the illrotBox problem. That is, the shape of the initial

search distribution matches the shape of the n-parallelotope-shaped feasible domain.
In this experiment, we mismatch the initial search distribution with the shape of
the feasible domain by setting C

(0)
illrotBox = In on the illrotBox problem, i.e.,

C
(0)
Box = P illrot(P illrot)

T on the Box problem. Experimental settings are the same as
in Section 6, except for the initial covariance matrix C(0).

The results are shown in Figure 6. The optimization progress is measured by the
Mahalanobis distance between the mean vector and optimal solution ‖m−x∗‖2H given
the Hessian matrix H of the objective function.

The lines of ARCH overlap as in Figure 3 except for deviations observed on fsph
with n = 50, which is due to numerical errors of the repair operation. Comparing the
convergence speeds on fsph, ARCH reached the target threshold with less than the half
of iterations spent by AP-BCH, while it was almost the same in Figure 3. The difference
is due to the adaptation speed of the covariance matrix. In this experiment, the initial
covariance matrix is ill-conditioned and rotated, i.e., it is necessary to learn the isotropic
scale of the sphere function.

References

Akimoto, Y., Auger, A., and Hansen, N. (2020). Quality gain analysis of the weighted
recombination evolution strategy on general convex quadratic functions. Theoretical
Computer Science, 832:42 – 67. Theory of Evolutionary Computation.

Evolutionary Computation Volume x, Number x 29

N. Sakamoto and Y. Akimoto

ResamplingAP-BCH

ARCH

Resampling

AP-BCH

AR
CH

Resampling

AP-BCH

AR
CH

Resampling

AP-BCH

ARCH

Resampling
AP-BCHAR

CH

Resampling
AP-BCHAR

CH

Figure 6: Median (line) and 25% to 75%-ile range (band) over 100 trials.

Akimoto, Y. and Hansen, N. (2020). Diagonal acceleration for covariance matrix adap-
tation evolution strategies. Evolutionary Computation, 28(3):405–435. PMID: 31120772.

Arnold, D. V. (2016). An active-set evolution strategy for optimization with known
constraints. In International Conference on Parallel Problem Solving from Nature, pages
192–202. Springer.

Arnold, D. V. (2017). Reconsidering constraint release for active-set evolution strategies.
In Proceedings of the Genetic and Evolutionary Computation Conference, pages 665–672.
ACM.

Arnold, D. V. and Hansen, N. (2012). A (1+1)-CMA-ES for constrained optimisation. In
Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Com-
putation Conference, GECCO ’12, pages 297–304, New York, NY, USA. ACM.

Arnold, D. V. and Porter, J. (2015). Towards an augmented Lagrangian constraint han-
dling approach for the (1+1)-es. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15, pages 249–256, New York, NY, USA. ACM.

Atamna, A., Auger, A., and Hansen, N. (2016). Augmented Lagrangian Constraint
Handling for CMA-ES—Case of a Single Linear Constraint. In Proceedings of the 14th
International Conference on Parallel Problem Solving from Nature, pages 181 – 191, Edin-
burgh, United Kingdom.

Atamna, A., Auger, A., and Hansen, N. (2020). On invariance and linear convergence
of evolution strategies with augmented lagrangian constraint handling. Theoretical
Computer Science, 832:68 – 97. Theory of Evolutionary Computation.

Beyer, H.-G. (2001). The theory of evolution strategies. Springer Science & Business Media.

Chocat, R., Brevault, L., Balesdent, M., and Defoort, S. (2015). Modified covariance
matrix adaptation–evolution strategy algorithm for constrained optimization under
uncertainty, application to rocket design. International Journal for Simulation and Mul-
tidisciplinary Design Optimization, 6:A1.

30 Evolutionary Computation Volume x, Number x

Adaptive Ranking-based Constraint Handling

de Paula Garcia, R., de Lima, B. S. L. P., de Castro Lemonge, A. C., and Jacob, B. P.
(2017). A rank-based constraint handling technique for engineering design optimiza-
tion problems solved by genetic algorithms. Computers & Structures, 187:77 – 87.

Eaton, M. (2007). Chapter 3: The normal distribution on a vector space, ser. Lecture
Notes–Monograph Series. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 53.

Hansen, N. (2009). Benchmarking a bi-population cma-es on the bbob-2009 function
testbed. In Workshop Proceedings of the GECCO Genetic and Evolutionary Computation
Conference, pages 2389–2395, New York, New York, USA. ACM Press.

Hansen, N. (2016). The CMA Evolution Strategy: A Tutorial. ArXiv e-prints.

Hansen, N., Muller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation (cma-es).
Evolutionary Computation, 11(1):1–18.

Hansen, N., Niederberger, A. S. P., Guzzella, L., and Koumoutsakos, P. (2009). A
method for handling uncertainty in evolutionary optimization with an application
to feedback control of combustion. IEEE Transactions on Evolutionary Computation,
13(1):180–197.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation, 9(2):159–195.

Hansen, N., Ros, R., Mauny, N., Schoenauer, M., and Auger, A. (2011). Impacts of
invariance in search: When cma-es and pso face ill-conditioned and non-separable
problems. Applied Soft Computing, 11(8):5755–5769.

Hellwig, M. and Beyer, H. (2018). A matrix adaptation evolution strategy for con-
strained real-parameter optimization. In 2018 IEEE Congress on Evolutionary Compu-
tation (CEC), pages 1–8.

Karafotias, G., Hoogendoorn, M., and Eiben, A. E. (2015). Parameter control in evolu-
tionary algorithms: Trends and challenges. IEEE Transactions on Evolutionary Compu-
tation, 19(2):167–187.

Kraft, D. (1988). A software package for sequential quadratic programming. Tech. Rep.
DFVLR-FB 88-28, DLR German Aerospace Center – Institute for Flight Mechanics, Koln,
Germany.

Krause, O. and Glasmachers, T. (2015). A cma-es with multiplicative covariance ma-
trix updates. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, pages 281–288, New York, NY, USA. ACM.

Le Digabel, S. and Wild, S. M. (2015). A Taxonomy of Constraints in Simulation-Based
Optimization. ArXiv e-prints.

Liang, J., Runarsson, T. P., Mezura-Montes, E., Clerc, M., Suganthan, P. N., Coello,
C. C., and Deb, K. (2006). Problem definitions and evaluation criteria for the cec
2006 special session on constrained real-parameter optimization. Journal of Applied
Mechanics, 41(8):8–31.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for constrained
parameter optimization problems. Evolutionary computation, 4(1):1–32.

Evolutionary Computation Volume x, Number x 31

N. Sakamoto and Y. Akimoto

Oyman, A. I., Deb, K., and Beyer, H. . (1999). An alternative constraint handling
method for evolution strategies. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), volume 1, pages 612–619 Vol. 1.

Runarsson, T. P. and Xin Yao (2000). Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294.

Sakamoto, N. and Akimoto, Y. (2017). Modified box constraint handling for the covari-
ance matrix adaptation evolution strategy. In Proceedings of GECCO ’17 Companion,
Berlin, Germany, July 15-19, 2017, pages 183–184. ACM.

Sakamoto, N. and Akimoto, Y. (2019). Adaptive ranking based constraint handling
for explicitly constrained black-box optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’19, page 700–708, New York, NY, USA.
Association for Computing Machinery.

Spettel, P., Beyer, H., and Hellwig, M. (2019). A covariance matrix self-adaptation evo-
lution strategy for optimization under linear constraints. IEEE Transactions on Evolu-
tionary Computation, 23(3):514–524.

Spettel, P. and Beyer, H.-G. (2019). A multi-recombinative active matrix adaptation
evolution strategy for constrained optimization. Soft Computing.

32 Evolutionary Computation Volume x, Number x

	1 Introduction
	2 CMA-ES and Related CHTs
	2.1 CMA-ES
	2.2 CHTs for ESs
	2.2.1 Resampling and Death Penalty
	2.2.2 Penalty Function Methods
	2.2.3 Ranking-based Methods
	2.2.4 Active Constraint Handling
	2.2.5 Other Explicit CHTs

	2.3 Formal Classification of CHTs

	3 Desired Invariance Properties for Constrained Optimization
	3.1 Element-wise Increasing Transformation of Functions
	3.2 Affine Transformation of Search Space Coordinates

	4 ARCH
	4.1 Repair Operator
	4.2 Total Ranking
	4.3 Adaptation of Ranking Coefficient

	5 Invariance Properties of ARCH
	5.1 ARCH on Inner Product Space
	5.2 Invariance to Affine Transformation of Search Space Coordinates
	5.3 Invariance to Element-wise Increasing Transformation
	5.4 Invariance Properties of Entire Algorithm

	6 Experiments on Linearly Constrained Quadratic Problems
	6.1 Linearly Constrained Quadratic Minimization Problems
	6.2 Settings
	6.3 Results and Discussion

	7 Experiments on CEC 2006 Constrained Optimization Testbed
	7.1 CEC 2006 testbed
	7.2 ARCH vs Active-Set ES
	7.2.1 Settings
	7.2.2 Results and Discussion

	7.3 ARCH vs AL & MCR
	7.3.1 Settings
	7.3.2 Results and Discussion

	8 Conclusions
	A Proofs
	A.1 Proof of theorem:affine
	A.2 Proof of theorem:increasing

	B Implementation remarks for the repair operation
	C The reason that eq:intersection is preferred over eq:nearest
	D Additional Experiments on Linearly Constrained Problems

