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A Feature Rich Distance-Based Many-Objective
Visualisable Test Problem Generator
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ABSTRACT
In optimiser analysis and design it is informative useful to be able

to visualise how a search point/population moves through the de-

sign space over time. Visualisable distance-based many-objective

optimization problems have been developed over the last decade

to aid this — whose design space is in two-dimensions, but which

can have with arbitrarily many objective dimensions. Previous

work has shown how disconnected Pareto sets may be formed in

this framework, how these problems can be projected to and from

arbitrarily many design dimensions, and how dominance resistant

regions of design space may be de�ned. Most recently, a test suite

has been proposed for this problem class when using distances to

lines rather than points. However, uptake in the optimisation com-

munity of such a�ention to visualisable problems has been limited

when compared to other test problem frameworks/suites. One of

the likely reasons for this is �is may be because the type of prob-

lem characteristics available in the distance-based framework has

been relatively limited compared to the wide range seen in many

practical problems (and non-visualisable problem suites). Here we

introduce the mechanisms required to embed a number of several

widely seen problem characteristics in this a distance-based prob-

lem framework, which we hope will make the problem framework

much more attractive to the community. �ese include local fronts,

variable density of solutions in objective space, landscape discon-

tinuities, varying objective ranges, neutrality in objective, space,

and non-identical disconnected Pareto set regions. Furthermore

we also provide an automatic problem generator for this problem

class (work until now has been restricted opposed to hand-tuned

problem de�nitions). Additionally, example performance results
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are provided on some popular optimisers on sampled problem in-

stances.
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1 INTRODUCTION
�e ability to see how a multi/many-objective optimisation algo-

rithm is progressing is o�en a vital aspect of algorithm design and

analysis. In terms of progress quality, this may be from a conver-

gence plot to some indicator (e.g. hypervolume [33] or inverted

generational distance [4]), however visualising how the search pop-

ulation moves/converges in its native domain to the Pareto set

and other a�ractors to understand e.g. search bias is much more

di�cult.

Widely used, the popular parallel coordinate plot and heatmap

visualisations show the distribution of solutions, but as the number

of dimensions (in either space) increases, picking out relationships

quickly is more di�cult. �e set of alternative solutions to compare

also tends to grow with the objective number K . Specialised scat-

terplot visualisation approaches are lossy in general due their data

compression from a higher number of dimensions into the two or

three dimension used to visualise the data [8, 17, 27]. Alternatively

if pair-wise plots are used the number required become rapidly

overwhelming (as K2 − K plots are needed for K objectives).
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�e Evolutionary Multi-criterion Optimisation (EMO) commu-

nity has proposed a range of test problems over the years to val-

idate an algorithms ability to deal with di�erent problem charac-

teristics. For instance, prominent representatives of discrete prob-

lems include multiobjective knapsack [33] and NK-landscapes [1],

while commonly used permutation problems include multiobjec-

tive travelling salesman problem [5] and �owshop scheduling [14].

Arguably, the largest number of test problems have been pro-

posed for the continuous domain ones including test suites such as

DTLZ [6] and WFG [10], and, more recently, many-objective test

problems [3, 25]. Although these multi/many-objective problems

allow the user to adjust various problem features, such as dimension

of the decision and/or objective space, and aspects of the Pareto-set

shape, the issue of being unable to visualise the movement of the

search population in its native domain remains.

Distance-based multi- and many-objective problems, which were

initially popularised in [15, 16] for visualisation, sidestep these is-

sues — by creating problems which are themselves inherently visu-

alisable. �ey formulate problems which can have arbitrarily many

objectives, but whose design space natively lives in two-dimensions

— where the Pareto set is easy to identify by eye. Subsequent work

extended these to include (i) arbitrarily many design dimensions

that could be projected back to the 2D visualisation space [21],

(ii) disconnected Pareto sets of same [13] or di�erent shapes [11],

and (iii) dominance resistance regions [7]. Distance-based problems

have been used in a number of empirical studies (e.g. [12, 13, 20, 26])

in order to visualise the distribution of designs maintained by multi-

and many-objective optimisers during their search — and their

e�ectiveness/bias in locating the Pareto set of solutions. A line-

based-distance test suite was introduced in [18, 19], though most

work remains on point-based formulations, which we are concerned

with here (the extension of line-based distance test problems with

the problem features proposed here is part of future research).

To cover in Intro:

• Why do we focus on point-based and not on line-based

formulations.

In the distance-based formulation (also referred to as a Pareto-

box formulation), a putative solution is a point in the plane, and its

performance on each objective is calculated as its distance to a point

in that space. Here we use the acronym DBMOPP as shorthand for

distance-based multi/many-objective point problems.

Contributions of this work are:

(1) the introduction of local fronts into the DBMOPP frame-

work
1
.

(2) the ability to vary the density of solutions that lie in dif-

ferent regions of the Pareto set — thus varying the density

across the Pareto front.

(3) an alternative approach to create disconnected Pareto sets

which map to di�erent regions of the Pareto front;

(4) the ability to have discontinuities in the fi ;
(5) the ability to have the objectives on markedly di�erent

scales;

1
�is was mentioned as potential future work in [7] but not pursued.

(6) A generator to supply well-formed problems with arbitrar-

ily many objectives, design variables, local fronts, discon-

nected fronts, dominance resistance regions and varying

projection densities — all visualisable in the plane.

�e rest of this work proceeds as follows: [TODO: DETAIL

CONTENTS]

2 VISUALISABLE DISTANCE-BASED TEST
PROBLEMS

Before outlining the problem properties, it is useful to formally

de�ning Pareto optimality and dominance.

2.1 Pareto optimality
For multi/many-objective optimisation problems, w.l.o.g. we seek

to simultaneously minimiseK objectives: fk (x), d = 1, . . . ,K where

each objective depends upon a vector x = (x1, . . . ,xN ) of N param-

eters or decision variables. �ese parameters may also be subject

to equality and inequality constraints. Such constraints de�ne

X ⊆ RN , the feasible search space. Related to this is Y, the objec-

tive space image of X (the feasible objective space). When there is

more than one objective to be minimised, solutions may exist for

which performance on one objective cannot be improved without

reducing performance on at least one other. Such solutions are said

to be Pareto optimal. �e set of all Pareto optimal solutions is said

to form the Pareto set, P, whose image in objective space is known

as the Pareto front, F. Identifying such solutions relies on Pareto

dominance. A decision vector x is said to dominate another x′ i�

fd (x) ≤ fd (x′) ∀d = 1, . . . ,D and f(x) , f(x′) (1)

�is is o�en simply denoted as x ≺ x′ rather than f(x) ≺ f(x′) .

2.2 Problem de�nition
In standard visualisable distance-based problemsX ⊆ R2

. For point-

based formulations in this domain there are a K sets of vectors

de�ned, where the kth set, Vk = {v1, . . . , vmk }, determines the

quality of a putative design vector x ∈ X, on the kth objective. �is

is typically calculated as

fk (x) = min

v∈Vk
(dist(x, v)).

Note the subscript onmk indicates the number of elements ofVk . It

is legal for |Vi | , |Vj |, but |Vi | ≥ 1∀i . �e function dist(x, v) typi-

cally returns the Euclidean distance between x and v. An alternative

distance metric, not considered in this paper, is the Manha�an dis-

tance [31, 32].

Work up until now has hand-tuned such problems. One of our

contributions here is the introduction of a generator to automat-

ically construct DBMOPPs with a range of properties, allowing

empirical analysis based on test problem sampling, supporting

the assessment of generalisable results, rather than those tuned

to a particular suite of problems (see e.g. [2]). �is is a valuable

provision alongside those other generators available for di�erent

problem forms (e.g. multi-modal problems [24], multi-objective NK

landscapes [30] and discrete optimisation problems [28]).

Let us consider the simplest distance-based problem formula-

tion using points, where |Vi | = 1∀i . �is means there is a single

connected Pareto set, and there are no other a�ractors in design
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Figure 1: A basic problem with three objectives, Vk = {vk,i },
|Vk | = 1. Le�: the three locations in X, which lie on the
circumference of the black circle, determine the objective
value minima. �ey describe a three-sided polygonal Pareto
set (coloured grey). Right: samples on the corresponding
Pareto front generated by Monte Carlo sampling the Pareto
set.

space providing additional features, as illustrated in Figure 1. We

could de�ne our placement options directly as the locations of the

vector(s) in the Vi , meaning 2 × K parameters to �x to de�ne a

problem. A more a�ractive representation however is to use a cen-

tre (2 coordinate values), a circle radius (r ), and an angle for each

objective minimising vector, making 3 + K parameters to �x when

initialising a problem. �is has the advantage of having the same or

fewer parameters for all K > 2 compared to directly choosing the

point coordinates. Additionally, the polygon de�ned by the points

generated in this fashion will always result in a well-formed Pareto

set (a convex hull formed from them will have every element of

point on its perimeter). We use this convention here in our genera-

tor, and to illustrate how we achieve the various feature additions

to the DBMOPP framework.

2.3 Existing features in the DBMOPP literature
Here we brie�y describe the existing features enabled in DBMOPP

from the literature.

2.3.1 Disconnected Pareto sets. Where |Vi | > 1∀i it is possible

to generate a disconnected Pareto set of solutions (as long as the

relative positions of the groups of points de�ning each Pareto set

region are kept the same) [13]. We denote the jth of these regions

containing Pareto optimal designs Rj . �is is actually relatively

easy to achieve given the proposed representation, as the angles

and radii can replicated across all regions, and only the centres

need varying. Care does need to be taken to ensure the distance

between the centres is always su�cient to prevent Pareto set loca-

tions being formed between di�erent point groupings. A minimum

centre distance of > 4r will always ensure this, even if the Rj are

rotated with respect to each other. �is is illustrated in Figure 2

For c disconnected set regions this results in 1 + K + c × 2 pa-

rameters to �x. See Figure 3 for an illustration.

2.3.2 Arbitrarily large design spaces. �e original 2D design

space can be projected into arbitrarily many dimensions via two

orthogonal vectors forming a basis [21], generating a new design

space Z ∈ RN ,N > 2. Designs from this larger space, z, can be
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Figure 2: Requirement of 4r separation. Two Pareto sets
(grey lines) de�ned by centres c1 and c2. If the centres were
≤ 4r apart the Pareto set would be induced between the two
regions, as v1,1 would be closer to v2,2 than v2,1.
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Figure 3: Illustrations of disconnected Pareto sets. Le�: a
K = 3 problem with three disconnected Ri . Right: a K = 7

problem with 10 disconnected Ri .

mapped to a corresponding x using the orthogonal projection vec-

tors, the basis (π1,π2), where they can be subsequently evaluated

and visualised.

x =
(z · π1)
| |π1 | |

(
1

0

)
+
(z · π2)
| |π2 | |

(
0

1

)
.

It is possible to have a single 2D space with multiple Rj projected

via two orthogonal vectors, but it is also possible to have multiple

di�erent 2D spaces, projected with di�erent orthogonal vector pairs

of the same dimension and evaluate a z using each of these projec-

tions. �is allows the di�erent Rj to be oriented di�erently inZ
(and be more distant than in the single projection case) [21].

2.3.3 Non-identical disconnected Pareto sets. [11] illustrate how

non identical Pareto set regions may be formed via positioning

points to describe identical convex polygons, but swapping posi-

tions of points minimising each objective in each. �is does however

have the e�ect that the Pareto set is potentially a non-convex subre-

gion of the polygon. another disconnected Pareto set is illustrated

via a map based problem, with multiple locations (railway stations,

schools, etc.) de�ning the minimising locations. �is is an excellent

example of a real-world problem of the same form, but for arbitrary

test problem design is is less advantageous as here we would like to

control a number of other problem properties when automatically

generating problem instances, and ensure instances are viable, and

Pareto sets are easy to identify a priori. We detail the approach we
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Figure 4: Illustrations of dominance resistance regions
(coloured blue) in DBMOPP instances. Le�: a K = 3 problem
with two disconnected Ri and one dominance resistance re-
gion. Right: aK = 7 problemwith three disconnected Ri and
seven dominance resistance regions.

use here in section 3.3 (which relies on some additional features we

must introduce �rst).

2.3.4 Dominance resistance regions. �e usual generation of a

DBMOPP results in all solutions which minimise any individual

objective fi being Pareto optimal point. [7] introduced region

constructions which would overcome this limitation and supply

designs which were dominance resistant [9] (i.e. dominated but

weakly Pareto optimal when compared to Pareto set members [22]).

�ese regions had points whose relative positions matched those

in the Pareto set, but which are described by at most K − 1 of the

points used to de�ne an R1, meaning each solution in a dominance

resistance region is dominated by at least on member of the Pareto

set. Illustrations are provided in Figure 4.

3 NEW/ENHANCED DBMOPP FEATURES
We now describe the new features (or in the case of non-identical

disconnected Pareto sets, an enhanced feature) that we have added

to the the DBMOPP framework as developed until now in the

literature, and which we have implemented in our problem instance

generator alongside those previously described.

3.1 Local fronts
Local fronts in multi-objective problems act much like local optima

in uni-objective problems — generating basins of a�raction which

compete with the Pareto set. �ese may be easily generated in our

framework by using the angles selected for the placement of the

objective minima points around the centre in the Pareto set, but

applying a larger radius when distributing a�ractor points for local

regions
2
. An illustration is provided in the top panel of Figure 5,

with the corresponding local dominance landscape shown in the

bo�om panel (generated through sampling on a 500 × 500 grid).

�e black regions in the local dominance landscape are com-

prised of cells in the discretised space where all eight immediate

neighbouring locations (the Moore neighbourhood) are mutually

non-dominating with the centre cell (denoting Pareto-neutral local

optima regions). �ese may be identi�ed by point-based Pareto

2
Note, for computational reasons a problem instance generator must to pre-calculate

the maximum local front radius, which must be smaller than mmax
.
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1

Figure 5: Illustration of local fronts. Top: A K = 4 problem
instance with one global Pareto set and nine local front re-
gions (in green). Bo�om: local dominance landscape approx-
imated by sampling X on a 500 × 500 grid.

hill-climbing [29], but note a contiguous region of such local op-

tima is not guaranteed to be composed entirely of members that

are mutually non-dominating (a local Pareto set), as construction

of these relies on a set-based rather than point-based hill-climb (see

e.g. [23]). Instead the black regions describe a locally dominance-

neutral region, where all local moves are incomparable from a

dominance perspective. Grey regions in the plot are made up of

cells which have at least one dominating neighbour (i.e. lie on a

dominance hill-climb path, rather than the end of a path), and all

dominating movement paths from neighbours in grey regions lead

to the same local optima region. As such the grey regions denote

those basin components which lead to the same dominance-neutral

a�ractor. White regions are comprised of cells whose neighbours

lead to multiple di�erent a�ractor regions (and therefore denote

boundary regions/saddle-points).

Note the complex interactions in the landscape in the bo�om

panel of Figure 5. �e local Pareto-neutral regions include the



A Feature Rich Distance-Based Many-Objective
Visualisable Test Problem Generator GECCO ’19, July 13–17, 2019, Prague, Czech Republic

x1

x2

-1 -0.5 0.5 1

-1

-0.5

0.5

1

X

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6: Illustrations of a penalty points and their e�ect on
an objective landscape. Le�: A K = 4 problem instance with
10 penalty regions (indicated with �lled red circles). Right:
f1 quality landscape.

Pareto set and the regions denoting speci�ed local fronts from the

top panel, but also additional Pareto-neutral regions lying between

these have been induced by the a�ractor points. �ese generally

have much smaller basins (and in some cases no basin at all). As

noted, the Pareto-neutral regions may be larger than the corre-

sponding region illustrated in the top panel of Figure 5 — this

is because the Pareto-neutrality is local to the neighbourhood of

each cell, rather than calculated with respect to every member

of the region (denoting the landscape observed by a local greedy

dominance-based hill-climber).

3.2 Discontinuous objective surfaces
�e use of the V in DBMOPP construction results in smooth objec-

tive landscapes. We propose here the introduction of discontinuities.

�ese can be introduced via penalty regions, p. �ese may be used

to apply a �xed or varying non-zero penalty to one or more ob-

jective values for all locations within the region. �is induces a

discontinuity in the landscape of those fi a�ected by the penalty

at all locations that lie on the perimeter of the penalty region. An

illustration if this is provided in Figure 6.

Here we use arbitrary convex polygonal shapes to de�ne these

penalty regions, and circular penalty regions de�ned by a centre

and radius.

Where a penalty region intersects a Rj , or lies entirely within

one, additional features are induced, which we now detail.

3.3 Non-identical disconnected Pareto sets
Under most current DBMOPP formulations the image of each Rj
in X under f describes the entire Pareto front. However, if we place

penalty regions which intersecting with a Rj (or which lie entirely

within a Rj ), whose penalty is su�cient to make points within

the penalty zone dominated by elements of X, we can e�ectively

‘cut-out’ a chunk of that Rj .
Furthermore, if penalty regions are placed in di�erent Rj asym-

metrically, then each Rj will map to di�erent parts of the Pareto

front (depending on construction, these my be partially overlapping,

or non-intersecting). An illustration if this is provided in Figure 7.

Given the penalty locations some objective combinations are only

available in one of the Ri (e.g. the right-hand edge of the front

in the middle – as this area is removed from two of the three Ri ),
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Figure 7: Illustrations of penalty coordinates generating
non-identical disconnected Pareto sets. Right: Penalty
zones intersect the three Ri in di�erent areas. Le�: X is
sampled and evaluated under f , the non-dominated subset
is shown, with the three di�erent colours represented in the
three di�erent Ri responsible for the front members.
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Figure 8: Illustration of varying density inX, and thereby in
the objective space. N = 10,

∑
π1 = 2,

∑
π2 = 8. �e problem

from Figure � is used. Z is Monte Carlo sampled, with pro-
jected locations in X plotted (right panel), and their image
under f (le� panel). Observe how the density of solutions
has decreased in some areas and increased in others com-
pared to the right panel of Figure �.

some to di�erent pairs of Ri (i.e. the corner regions, where one of

the three Ri each have a penalty centred). Some optimal objective

combinations reside in all three disconnected sets (i.e. the central

portion of the front).

3.4 Varying solution density in Pareto sets
Varying the relative lengths of the orthogonal projection vectors

used to generate arbitrarily large design spaces allows us to vary the

density of the solutions mapped back to the 2D representation in

X. �is can in turn make some Rj , and regions of the Pareto front,

more di�cult to a�ain than others.
3

An illustration is provided in

Figure 8.

3
Alternatively a non-linear transform to the fi value may be applied (i.e. taking the

natural logarithm) to vary the density of mapping from the search domain to the

objective space.
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3.5 Varying objective scales
In standard formulations of DBMOPP the range of each objective

does not vary greatly, and the minimum of all fi is 0. We can

however shi� the objective ranges to be arbitrarily wide/narrow,

with arbitrary maxima and minima via a multiplication and shi�

term, i.e. f r escaledi (x) = ai + bi × fi (x).

3.6 Neutrality
Neutral (�at) regions of the objective/domination landscape can be

generated using the penalty region approach detailed in Section

3.2, where instead of an additive/multiplicative penalty on the ob-

jective(s) associated with designs in the region, a constant value is

used to replace objective values. �is has the e�ect of making all

design variables in the region have identical objective values for

the set of objectives a�ected.

4 PROBLEM INSTANCE GENERATOR
Given the wealth of features described above extending the DB-

MOPP framework, which can be incorporated in a DBMOPP in-

stance, the question is how to generate a problem automatically

and correctly, ensuring the desired properties are all present (and to

the correct degree). We solve this here by observing that X may be

partitioned into areas concerned with providing examples of each

of the various properties desired. �ese are largely determined by

sets of points de�ning the di�erent regions types (Pareto sets, domi-

nance resistance regions, penalty zones, non-identical disconnected

Pareto sets including penalty zones, local fronts, etc.).

Algorithm 1 outlines the procedure at a high-level.
4

4.1 Randomly placing region centres
We allocate the centres de�ning each of the regions at random, but

subject to a lying at least 4r from the closest next region for all

a�ractor regions. r is the largest radius employed by any individual

region. Additionally, all region centres must be at least r from the

domain boundary. We employ a Monte Carlo circle placement with

rejection sampling for this. In the case of non-a�ractor regions

— i.e. penalty regions forming discontinuities or neutral regions

in the objective landscapes — these may be placed immediately

adjacent to a�ractor regions (i.e. at centres least 2r from other

region centres), as they cannot induce Pareto optimal regions if

placed too close (unlike the other region types).

�e region radius r cannot be set arbitrarily as, depending on

the number of circles being �t into a bounded X, legal placement

for all may be impossible. Given n a�ractor regions and n′ non-

a�ractor regions to be placed, and our domain boundaries (−1,+1),
we can calculate the maximum possible value this could take, rmax

,

a prior. �is corresponds to packing in all n + n′ regions of the

two distinct types in the bounded area in a regular grid (with four

non-a�ractor regions having the same minimum area requirements

as one a�ractor region). As such rmax = 1/(2 + d
√
(n + n′

4
)e), and

for a particular problem instance r ∼ U(0, rmax ).

4
A Matlab implementation of the generator and supporting functions to plot the

regions in 2D, plot dominance landscape, and create the set of TikZ commands

in LATEXto generate illustrations (as in many of the subplots here) are available at

URL-ANONYMISED-FORREVIEW.

Algorithm 1 DPMOPP-generator

1: function generator(K ,nR ,nl ,nd ,nr r ,non identical ,
non convex ,vary scales, random seed)

2: set seed(random seed) . Ensure instance reproducability

3: Vk := ∅ ∀k . Empty set of objective minima coordinates

4: (Pk ,Rk ) := (∅, ∅)∀k . Empty penalty locations and radii

5: C := ∅ . Empty set of region centres

6: n := nR + nl + nd . Total number of centred regions

7: rmax
:= U(0, 1/(1 + d2

√
(n)e)) . Draw rmax

8: rPareto := rmax . Default radius of Pareto set regions

9: a := [0]K×1 . Additive constants for objective rescaling

10: b := [1]K×1 . Multiplicative constants for objective

rescaling

11: if nl > 0 then . If local fronts are generated

12: (V ,C, rPareto ) := place local fronts(V ,C,nl , rmax )
13: end if
14: (V ,C) := place Pareto set(V ,C,nR , rPareto )
15: if nr r > 0 then . If dominance resistance regions needed

16: (V ,C) := place dom resistance(V ,C,nr r , rPareto )
17: end if
18: if non identical = true then . |Ri | vary

19: (P ,R) := modfiy regions with assym pen(V ,C, P ,R)
20: end if
21: if nd > 0 then . If discontinuities outside of Ri
22: (P ,R,C) := place discontinuities(V ,C,nl , rmax )
23: end if
24: if vary scales = true then . Modify ojectives ranges

25: (a, b) := sample scaling constants(K)
26: end if
27: return (V , P ,R, a, b) . (Points, penalties, penalty radii,

objective rescaling)

28: end function

In reality the legal Monte Carlo allocation of all n + n′ centres

with r = rmax
is vanishingly small, as it essentially requires the

random generation of n +n′ points on a regular grid. Subsequently,

so although for each instance r is drawn from the uniform distri-

butionU(0, rmax ), if a legal set of centres is not drawn via Monte

Carlo sampling su�ciently quickly, a shrinkage factor of 0.95 is

recursively multiplied to r until a legal set can be generated.
5

5 ILLUSTRATION ON SOME POPULAR
OPTIMISERS

5
In practise we found that for all r < 0.7rmax

we found a legal set immediately,

without recourse to shrinkage.

URL-ANONYMISED-FOR REVIEW
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6 DISCUSSION
A number of di�erent illustrations are possible:

• X with regions indicated (Pareto set, local a�ractor sets,

etc.)

• Basins of dominance a�raction (greedy local domination

moves shown with arrows, indicating total basin sizes)

• Densities in objective space for K = 2

• Projection densities in 2D when using orthogonal mapping

vectors from higher D design space

Future work:

• More complex penalty geometries, allowing more compli-

cated front surfaces (arbitrary polygons)

• Dynamic problem variants

• Disconnected front regions

• rigourous analysis of popular optimisers on range of prob-

lem instances

ACKNOWLEDGMENTS
ANONYMISED FOR REVIEW

REFERENCES
[1] H. E. Aguirre and K. Tanaka. 2007. Working principles, behavior, and performance

of MOEAs on MNK-landscapes. European Journal of Operational Research 181, 3

(2007), 1670–1690.

[2] T. Bartz-Beielstein. 2015. How to create generalizable results. In Springer Hand-
book of Computational Intelligence. Springer, 1127–1142.

[3] Y-M. Cheung, F. Gu, and H-L. Liu. 2016. Objective extraction for many-objective

optimization problems: Algorithm and test problems. IEEE Transactions on
Evolutionary Computation 20, 5 (2016), 755–772.

[4] C. A. C. Coello and M. R. Sierra. 2004. A study of the parallelization of a

coevolutionary multi-objective evolutionary algorithm. In Mexican International
Conference on Arti�cial Intelligence. Springer, 688–697.

[5] D. W. Corne and J. D. Knowles. 2007. Techniques for highly multiobjective

optimisation: some nondominated points are be�er than others. In Proceedings
of the 9th annual conference on Genetic and evolutionary computation. ACM,

773–780.

[6] K. Deb, L. �iele, M. Laumanns, and E. Zitzler. 2005. Scalable test problems

for evolutionary multiobjective optimization. In Evolutionary multiobjective
optimization. Springer, 105–145.

[7] J. E. Fieldsend. 2016. Enabling Dominance Resistance in Visualisable Distance-

Based Many-Objective Problems. In GECCO’16 Companion. 1429–1436.

[8] J. E. Fieldsend and R. M. Everson. 2013. Visualising high-dimensional Pareto

relationships in two-dimensional sca�erplots. In Evolutionary Multi-criterion
Optimization, EMO 2013. 558–572.

[9] T. Hanne. 1999. On the convergence of multi objective evolutionary algorithms.

European Journal of Operational Research 117 (1999), 553–564.

[10] S. Huband, P. Hingston, L. Barone, and L. While. 2006. A review of multiob-

jective test problems and a scalable test problem toolkit. IEEE Transactions on
Evolutionary Computation 10, 5 (2006), 477–506.

[11] H. Ishibuchi, N. Akedo, and Y. Nojima. 2011. A Many-Objective Test Problem

for Visually Examining Diversity Maintenance Behavior in a Decision Space. In

Genetic and Evolutionary Computation Conference, GECCO’11. 649–656.

[12] H. Ishibuchi, N. Akedo, H. Ohyanagi, and Y. Nojima. 2011. Behavior of EMO Al-

gorithms on Many-Objective Optimization Problems with Correlated Objectives.

In IEEE Congress on Evolutionary Computation (CEC). 1465–1472.

[13] H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima. 2010. Many-

objective test problems to visually examine the behavior of multiobjective evolu-

tion in a decision space. In International Conference on Parallel Problem Solving
from Nature. Springer, 91–100.

[14] H. Ishibuchi, T. Yoshida, and T. Murata. 2003. Balance between genetic search

and local search in memetic algorithms for multiobjective permutation �owshop

scheduling. IEEE transactions on evolutionary computation 7, 2 (2003), 204–223.
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