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Abstract

We prove that the compact genetic algorithm (cGA) with hypo-
thetical population size µ = Ω(

√
n log n)∩poly(n) with high probabil-

ity finds the optimum of any n-dimensional jump function with jump
size k < 1

20 lnn in O(µ
√
n) iterations. Since it is known that the cGA

with high probability needs at least Ω(µ
√
n + n log n) iterations to

optimize the unimodal OneMax function, our result shows that the
cGA in contrast to most classic evolutionary algorithms here is able
to cross moderate-sized valleys of low fitness at no extra cost.

Our runtime guarantee improves over the recent upper bound
O(µn1.5 log n) valid for µ = Ω(n3.5+ε) of Hasenöhrl and Sutton
(GECCO 2018). For the best choice of the hypothetical population
size, this result gives a runtime guarantee of O(n5+ε), whereas ours
gives O(n log n).

We also provide a simple general method based on parallel runs
that, under mild conditions, (i) overcomes the need to specify a suit-
able population size, but gives a performance close to the one stem-
ming from the best-possible population size, and (ii) transforms EDAs
with high-probability performance guarantees into EDAs with similar
bounds on the expected runtime.

∗Full version of a paper [Doe19] appearing at GECCO 2019.
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1 Introduction

While the mathematical analysis of evolutionary algorithms (EAs) has pro-
duced a plethora of insightful results in the last over 20 years, the rigorous
understanding of estimation-of-distribution algorithms (EDAs) is much less
developed [KW18]. Obviously, this is due to the highly complex stochastic
processes that describe the runs of such algorithms. In consequence, despite
significant efforts and deep results [Dro06, SW16, LSW18], not even the run-
time of the compact genetic algorithm (cGA) on the OneMax benchmark
function is fully understood (here we would argue that the cGA is the most
simple EDA and that the unimodal OneMax function, counting the number
of ones in a bit string, is the most simple optimization problem with unique
global optimum). It is therefore not surprising that many questions which
are well-understood for EAs are only started being understood for EDAs.
One such question is how EDAs optimize objective functions that are not
unimodal.

In the first and so far only runtime analysis of an EDA on a non-unimodal
objective function, Hasenöhrl and Sutton [HS18] regard the optimization
time of the cGA on the jump function class, which are unimodal apart from
having a valley of low fitness of scalable size k around the global optimum.
They show [HS18, Theorem 3.3] that, for a sufficiently large constant C
and any constant ε > 0, the cGA with hypothetical population size at least
µ ≥ max{Cne4k, n3.5+ε}1 with probability 1 − o(1) finds the optimum of
any jump function with jump size at most k = o(n) in O(µn1.5 log n + e4k)
generations (which is also the number of fitness evaluations, since the cGA
evaluates only two search points in each iteration).

This result is remarkable in that it shows that the cGA with the right
choice of µ and for k ≥ 6 is more efficient on jump functions than most evo-
lutionary algorithms, who have a runtime of at least Ω(nk), see Section 2.2.

There is one aspect in which the result of Hasenöhrl and Sutton is not
yet perfect (and this is the motivation of this work). We note that even
when choosing the smallest possible population size µ = n3.5+ε, the runtime
guarantee becomes at least Ω(n5+ε). While clearly a polynomial runtime, and
thus efficient in the classic complexity theory view, this is a runtime that is
not practical in many applications (and we recall here that the target of the
mathematical analysis of evolutionary algorithms is not to understand jump
functions, but to derive from the analysis on simple test problems insight
that extend to practically relevant problems). Also, this runtime guarantee

1In the paper, this is stated as minimum of the two terms, but from the proofs it is
clear that it should be the maximum.
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is weaker than the O(nk) bound for simple mutation-based EAs such as the
(1 + 1) EA when k ≤ 5. Hence one could feel that the result of Hasenöhrl
and Sutton shows the superiority of EDAs rather for problem instances for
which both the runtime of typical EAs and the performance guarantee for
the cGA are prohibitively large. In a similar vein, one has to question if a
practitioner would run the cGA with a hypothetical population size of more
than n3.5 when solving a problem defined over bit strings of length n.

Our main result is that these potential weaknesses of the cGA are not
real and that the cGA performs in fact much better than what the previous
work shows. We prove rigorously that the cGA with hypothetical popula-
tion size µ ≥ K

√
n log n, K a sufficiently large constant, and µ polynomially

bounded in n with high probability optimizes any n-dimensional jump func-
tion with jump size k < 1

20
lnn in only O(µ

√
n) iterations. For the smallest

admissible populations size µ = Θ(
√
n logn), this gives a runtime guarantee

of O(n logn), a result that both overcomes the large runtime and the large
required hypothetical population size of the previous result.

From a broader perspective our result shows that the cGA (and we expect
similar result to hold for other EDAs) does not suffer from moderate-size
valleys of low fitness. We recall that Sudholt and Witt [SW16] have shown
that the cGA with any hypothetical population size (polynomial in n) with
high probability needs Ω(µ

√
n+n logn) iterations to optimize the OneMax

function. Hence our result shows that adding a valley of low fitness to the
OneMax function does not worsen the asymptotic performance of the cGA
as long as the fitness valley is smaller than 1

20
lnn.

We may add that our work also makes some arguments of [HS18] more
rigorous. In particular, we observe that the progress of the cGA cannot
be estimated by taking the progress one would have when no fitness valley
was present and correcting this estimate by inverting the progress with the
probability that a search point is sampled in the fitness valley. This argu-
ment ignores the stochastic dependencies between the absolute value of the
progress and the event that a solution in the gap is sampled. These depen-
dencies are real and have a negative impact as discussed in more detail before
Lemma 6.

We note that the approach of intentionally ignoring some dependencies
to make a mathematical analysis tractable, often called mean-field analysis,
is common in some scientific areas, most notably statistical physics, and has
also been used in evolutionary computation, e.g., [ZYD18]. This approach,
however, needs an additional justification, e.g., via specific experiments, why
the omission of the dependencies should not change the matter substantially.
In any case, such mean-field approaches do not lead to results fully proven in
the mathematical sense. In this sense, we hope that our work also provides
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methods that help in future analyses of EDAs on non-unimodal optimization
problems.

As a side result, triggered by the fact that we “only” show a bound
that holds with high probability, but not a bound on the expected runtime,
we provide a general approach to transform an EDA using a population size
parameter µ into an algorithm that does not require the specification of such
a parameter, but has a performance similar to the one of the EDA with
optimally chosen parameter. This performance guarantee also holds for the
expected runtime, even if for the EDA only a with-high-probability runtime
guarantee is known.

2 Preliminaries

2.1 The Compact Genetic Algorithm

The compact genetic algorithm (cGA) is an estimation-of-distribution algo-
rithm (EDA) proposed by Harik, Lobo, and Goldberg [HLG99] for the max-
imization of pseudo-Boolean functions F : {0, 1}n → R. Being a univari-
ate EDA, it develops a probabilistic model described by a frequency vector
f ∈ [0, 1]n. This frequency vector describes a probability distribution on the
search space {0, 1}n. If X = (X1, . . . , Xn) ∈ {0, 1}n is a search point sampled
according to this distribution—we write

X ∼ Sample(f)

to indicate this—then we have Pr[Xi = 1] = fi independently for all i ∈
[1..n] := {1, . . . , n}. In other words, the probability that X equals some
fixed search point y is

Pr[X = y] =
∏

i:yi=1

fi
∏

i:yi=0

(1− fi).

In each iteration, the cGA updates this probabilistic model as follows.
It samples two search points x1, x2 ∼ Sample(f), computes the fitness of
both, and defines (y1, y2) = (x1, x2) when x1 is at least as fit as x2 and
(y1, y2) = (x2, x1) otherwise. Consequently, y1 is the rather better search
point of the two. We then define a preliminary model by f ′ := f+ 1

µ
(y1−y2).

This definition ensures that, when y1 and y2 differ in some bit position i, the
i-th preliminary frequency moves by a step of 1

µ
into the direction of y1i ,

which we hope to be the right direction since y1 is the better of the two
search points. The hypothetical populations size µ is used to control how
strong this update is.
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To avoid a premature convergence, we ensure that the new frequency
vector is in [ 1

n
, 1− 1

n
]n by capping too small or too large values at the corre-

sponding boundaries. More precisely, for all ℓ ≤ u and all r ∈ R we define

minmax(ℓ, r, u) := max{ℓ,min{r, u}} =











ℓ if r < ℓ

r if r ∈ [ℓ, u]

u if r > u

and we lift this notation to vectors by reading it component-wise. Now the
new frequency vector is minmax( 1

n
1n, f

′, (1− 1
n
)1n).

This iterative frequency development is pursued until some termination
criterion is met. Since we aim at analyzing the time (number of iterations)
it takes to sample the optimal solution (this is what we call the runtime of
the cGA), we do not specify a termination criterion and pretend that the
algorithm runs forever.

The pseudo-code for the cGA is given in Algorithm 1. We shall use the
notation given there frequently in our proofs. For the frequency vector ft
obtained at the end of iteration t, we denote its i-th component by fi,t or,
when there is no risk of ambiguity, by fit.

Algorithm 1: The compact genetic algorithm (cGA) to maximize a
function F : {0, 1}n → R.

1 t← 0;
2 ft = (1

2
, . . . , 1

2
) ∈ [0, 1]n;

3 repeat

4 x1 ← Sample(ft);
5 x2 ← Sample(ft);
6 if F(x1) ≥ F(x2) then (y1, y2)← (x1, x2) else (y1, y2)← (x2, x1);
7 f ′

t+1 ← ft +
1
µ
(y1 − y2);

8 ft+1 ← minmax( 1
n
1n, f

′
t+1, (1− 1

n
)1n);

9 t← t+ 1;

10 until forever ;

Well-behaved frequency assumption: For the hypothetical popula-
tion size µ, we take the common assumption that any two frequencies that
can occur in a run of the cGA differ by a multiple of 1

µ
. We call this the

well-behaved frequency assumption. This assumption was implicitly already
made in [HLG99] by using even µ in all experiments (note that the hypothet-
ical population size is denoted by n in [HLG99]). This assumption was made
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explicit in [Dro06] by requiring µ to be even. Both works do not use the fre-
quencies boundaries 1

n
and 1− 1

n
, so an even value for µ ensures well-behaved

frequencies.
For the case with frequency boundaries, the well-behaved frequency as-

sumption is equivalent to (1− 2
n
) being an even multiple of the update step

size 1
µ
. In this case, nµ = (1 − 2

n
)µ ∈ 2N and the set of frequencies that can

occur is
F := Fµ := { 1

n
+ i

µ
| i ∈ [0..nµ]}.

This assumption was made, e.g., in the proof of Theorem 2 in [SW16] and in
the paper [LSW18] (see the paragraph following Lemma 2.1).

2.2 Related Work

In all results described in this section, we shall assume that the hypothetical
population size is at most polynomial in the problem size n, that is, that
there is a constant c such that µ ≤ nc.

The first to conduct a rigorous runtime analysis for the cGA was Droste
in his seminal work [Dro06]. He regarded the cGA without frequency bound-
aries, that is, he just took ft+1 := f ′

t+1 in our notation. He showed that this
algorithm with µ ≥ n1/2+ε, ε > 0 any positive constant, finds the optimum
of the OneMax function defined by

OneMax(x) = ‖x‖1 =
n
∑

i=1

xi

for all x ∈ {0, 1}n with probability at least 1/2 in O(µ
√
n) iterations [Dro06,

Theorem 8].
Droste also showed that this cGA for any objective function F with

unique optimum has an expected runtime of Ω(µ
√
n) when conditioning

on no premature convergence [Dro06, Theorem 6]. It is easy to see that
his proof of the lower bound can be extended to the cGA with frequency
boundaries, that is, to Algorithm 1. For this, it suffices to deduce from his
drift argument the result that the first time Tn/4 that the frequency distance

D =
∑n

i=1(1 − fit) is less than n/4 satisfies E[Tn/4] ≥ µ
√
n

√
2
4
. Since the

probability to sample the optimum from a frequency distance of at least n/4
is at most

n
∏

i=1

fit =

n
∏

i=1

(1− (1− fit)) ≤
n
∏

i=1

exp(−(1− fit))

= exp

(

−
n
∑

i=1

(1− fit)

)

≤ exp(−n/4),
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the algorithm with high probability does not find the optimum before
time Tn/4.

Ten years after Droste’s work, Sudholt and Witt [SW16] showed that the
O(µ
√
n) upper bound also holds for the cGA with frequency boundaries.

There (but the same should be true for the cGA without boundaries) a
hypothetical population size of µ = Ω(

√
n log n) suffices (recall that Droste

required µ = Ω(n1/2+ε)). The technically biggest progress with respect to
upper bounds most likely lies in the fact that the analysis in [SW16] also
holds for the expected optimization time, which means that it also includes
the rare case that frequencies reach the lower boundary (see our discussion
of the relation of expectations and tail bounds for runtimes of EDAs in
Section 2.3). Sudholt and Witt also show that the cGA with frequency
boundaries with high probability (and thus also in expectation) needs at
least Ω(µ

√
n + n log n) iterations to optimize OneMax. While the µ

√
n

lower bound could have been also obtained with methods similar to Droste’s
(in Lemma 5 we do something very similar), the innocent-looking Ω(n log n)
bound is surprisingly difficult to prove.

Not much is known for hypothetical population sizes below the order of√
n. It is clear that then the frequencies will reach the lower boundary of

the frequency range, so working with a non-trivial lower boundary like 1
n

is necessary to prevent premature convergence. The recent lower bound
Ω(µ1/3n) valid for µ = O(

√
n

logn log logn
) of [LSW18] indicates that already a

little below the
√
n regime significantly larger runtimes occur, but with no

upper bounds this regime remains largely not understood.
We refer the reader to the recent survey [KW18] for more results on the

runtime of the cGA on classic unimodal test functions like LeadingOnes

and BinVal. Interestingly, nothing was known for non-unimodal functions
before the recent work of Hasenöhrl and Sutton [HS18] on jump functions,
which we discussed already in the introduction.

To round off the picture, we briefly describe some typical runtimes of
evolutionary algorithms on jump functions. We recall that the n-dimensional
jump function with jump size k ≥ 1 is defined by

Jumpnk(x) =

{

‖x‖1 + k if ‖x‖1 ∈ [0..n− k] ∪ {n},
n− ‖x‖1 if ‖x‖1 ∈ [n− k + 1 .. n− 1].

Hence for k = 1, we have a fitness landscape isomorphic to the one of
OneMax, but for larger values of k there is a fitness valley consisting of
the k − 1 highest sub-optimal fitness levels of the OneMax function. This
valley is hard to cross for evolutionary algorithms using standard-bit mu-
tation with mutation rate 1

n
since with very high probability they need to
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generate the optimum from one of the local optima, which in a single appli-
cation of the mutation operator happens only with probability less than n−k.
For this reason, e.g., the classic (µ + λ) and (µ, λ) EAs all have a runtime
of at least nk. This was proven formally for the (1 + 1) EA in the clas-
sic paper [DJW02], but the argument just given proves the nk lower bound
equally well for all (µ + λ) and (µ, λ) EAs. By using larger mutation rates
or a heavy-tailed mutation operator, a kΘ(k) runtime improvement can be
obtained [DLMN17], but the runtime remains Ω(nk) for k constant.

Asymptotically better runtimes can be achieved when using crossover,
though this is harder than expected. The first work in this direction [JW02],
among other results, could show that a simple (µ+ 1) genetic algorithm us-
ing uniform crossover with rate pc = O(1/kn) obtains an O(µn2k3 + 22kp−1

c )
runtime when the population size is at least µ = Ω(k logn). A shortcom-
ing of this result, already noted by the authors, is that it only applies to
uncommonly small crossover rates. Using a different algorithm that first al-
ways applies crossover and then mutation, a runtime of O(nk−1 logn) was
achieved by Dang et al. [DFK+18, Theorem 2]. For k ≥ 3, the logarithmic
factor in the runtime can be removed by using a higher mutation rate. With
additional diversity mechanisms, the runtime can be further reduced up to
O(n logn + 4k), see [DFK+16]. In the light of this last result, the insight
stemming from the previous work [HS18] and ours is that the cGA appar-
ently without further modifications supplies the necessary diversity to obtain
a runtime of O(n logn + 2O(k)).

Finally, we note that runtimes of O(n
(

n
k

)

) and O(k log(n)
(

n
k

)

) were shown
for the (1 + 1) IAhyp and the (1 + 1) Fast-IA artificial immune systems,
respectively [COY17, COY18].

2.3 Expected Runtimes versus Guarantees with High

Probability

We note that our main result as well as the previous one [HS18] for this
problem give runtime bounds that hold with high probability, that is, with
probability 1 − o(1). However, we do not show a bound on the expected
runtime. Let us quickly argue what the differences are, why we chose to
prove a high-probability statement, and how to transform EDAs with high-
probability guarantees into those with guarantees on the expected runtime.
We note that Wegener [Weg05, Section 3] with different arguments also sug-
gests to prefer high-probability guarantees over expected runtimes.

For most evolutionary algorithms a high-probability guarantee can easily
be turned into a bound on the expected runtime. If we know that a certain
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algorithm from any initial state finds the optimum in time T with at least con-
stant probability, then by splitting time into consecutive segments of length
T we see that after time γT the probability that the algorithm has not suc-
ceeded is at most exp(−Ω(γ)). Consequently, the runtime is stochastically
dominated by T times a geometric random variable with constant success
rate, and consequently, the expected runtime is O(T ). The same argument
gives a scalable tail bound of type “with probability at most exp(−Ω(γ)),
the runtime is more than γT .”

For EDAs, it is usually much harder to show a good performance for any
initial situation since there are some states which are particularly unfavorable
(usually when all frequencies are close to the wrong boundary value). This
does not rule out that the expected runtime and the time that is obtained
with high probability are of the same order, but proving the bound on the
expected runtime needs stronger arguments. The analysis of the expected
runtime of the cGA on OneMax in [SW16] is an example for such a result.

This additional proof complexity raises the question if this effort is justi-
fied if the hardest part is dealing with states of the algorithm that are rarely
reached (in [SW16] with probability O(n−c) only, where c can be any positive
constant). While we think that is was very valuable that the work [SW16]
showed how to compute expected runtimes for EDAs, we feel that such re-
sults are not always needed, both because of the difficulty to obtain such
results and because, in some sense, they are a mildly unnatural remedy to
the deeper problem.

As said, the main reason why guarantees for the expected runtime of an
EDA can be difficult to show is that the EDA with small probability can
reach a state from which the optimum is hard to reach. When in such a
state, however, instead of spending much time to leave the unfavorable state,
it would be more efficient and more natural to simply restart the algorithm
and have a new good chance for a fast optimization process. While we
cannot expect the algorithm to detect that it is in an unfavorable state
(except in the case of premature convergence when no frequency boundaries
are used), the following simple parallel-run strategy under mild assumptions
can do this automatically. More precisely, via suitable parallel runs we
obtain an expected runtime that is only a logarithmic factor above the
runtime the EDA would have with high probability when using the optimal
population size. Hence this approach both obtains expected runtimes and
optimizes the value of the parameter µ.

Parallel EDA runs with exponentially growing population size: Let
A be an EDA with a parameter µ and let P be a problem we want to solve.
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We assume that there are unknown values µ̃ and T such that A with any
parameter value µ ≥ µ̃ solves P in time µT with probability at least 3

4
.

We propose the following strategy to solve P via parallel runs of A with
different parameter values. We start with no process running. In round
i = 1, 2, . . . of our strategy, we let all running processes (which are process 1
to i− 1) use a computational budget of 2i−1; further, we start process i with
parameter µ = µi := 2i−1 and let it use a budget of

∑i−1
j=0 2

j. We stop when
any process has solved the problem.

We observe that at the end of round i, processes 1 to i are running and
have each spent a budget of

∑i−1
j=0 2

j . Consequently, the total budget spent

in the first i rounds is less than i2i.
Note that after round i0 = 1 + ⌈log2 µ̃⌉ + ⌊log2 T ⌋, the process with

parameter µ = 2⌈log2 µ̃⌉ ≥ µ̃ has started and has used a time budget of

i0−1
∑

j=0

2j ≥
i0−1
∑

j=⌈log2 µ̃⌉
2j = µ

⌊log2 T ⌋
∑

j=0

2j ≥ µT.

Consequently, with probability 3/4 this process has found the optimum at
that time. With the same type of computation, we see that in round i0+j, the
process with parameter 2jµ is finished with probability 3/4. Consequently,
the round in which we found the solution is dominated by i0 − 1 plus a
geometric distribution with success rate 3/4. The expected time taken by
this strategy to solve the problem thus is at most

∞
∑

i=i0

(

1

4

)i−i0 (3

4

)

i 2i =
3

4
2i0

∞
∑

j=0

2−j(j + i0) = 3 · 2i0−1(i0 + 1)

using the well-known result
∑∞

j=0 j 2
−j = 2. We further estimate the ex-

pected runtime of our parallel-run strategy by

3 · 2i0−1(i0 + 1) ≤ 3µT (log2(µT ) + 2) ≤ 6µ̃T (log2(µ̃T ) + 3) =: Tpar.

We note that, again, analogous arguments give the scalable tail bound that
with probability at most exp(−Ω(γ)), the runtime exceeds γTpar. We recall
here that for EDAs such tail bounds are usually not shown, again due to the
fact that the EDA may reach a situation from which is takes a long time to
reach the optimum.

We note that if the values of µ̃ and T were known in advance, then restart-
ing the EDA with µ = µ̃ and with a budget of T until the problem is solved
would immediately give an algorithm with expected runtime T ∗ ≤ 4

3
µ̃T . This

is the best-possible expected runtime that can be deduced from our assump-
tions. Consequently, our parallel-run strategy with its O(T ∗ log T ∗) expected
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runtime obtains the optimal expected runtime apart from a logarithmic fac-
tor.

We remark that a logarithmic factor usually is not a lot compared to what
can be lost by choosing a wrong algorithm parameter, in particular, when
the parameter is hard to guess. We note here that the recent work [LSW18]
suggests that already for the simple OneMax function, the hypothetical
population size has a non-obvious influence on the runtime: Sufficiently small
values give an O(n logn) runtime, in a middle regime the runtime increases
to Ω̃(n7/6) before dropping again to O(n logn) and then increasing linearly
with µ. In the light of such results, a logarithmic overhead for exploiting a
near-optimal rate appears to be a good trade-off.

3 Main Technical Analysis

We now conduct our runtime analysis of the cGA on jump functions. We
start by giving a rough overview of the proof, then provide the necessary
ingredients of the main proof, and finally state and prove our main result.

3.1 Proof Overview

We now give a brief overview of our runtime analysis and show how the
different partial results work together. We leave it to the reader to read this
section now or after the presentation of the partial results (or twice).

In our analysis, we roughly distinguish three phases of the optimization
process. The first phase lasts until for the first time the frequency distance
Dt := n−‖ft‖1 is O(logn) with a large implicit constant. During this phase,
by Lemma 1 and a union bound, with high probability we will never sample a
solution in the gap. Consequently, we can pretend that we are optimizing the
OneMax function and use our analysis of Lemma 5, which reuses arguments
of the classic result by Droste [Dro06] including Lemma 4. The second phase
then lasts until we have aDt value of O(k), again with large implicit constant.
In this phase, we use the drift computed in Lemma 6. We profit from the
fact that in this phase we only need to obtain a moderate decrease of Dt

and apply the additive drift theorem with the smallest drift that can occur
in this phase, which is Ω(1/µ). Since this phase is so short, a simple Markov
bound suffices to show that the phase ends with high probability in due time.
Once we reach a Dt value of O(k), we have a reasonable chance to sample
the optimum by Lemma 7. Since in this phase samples in the gap occur
frequently, we have less control over Dt, in particular, we cannot exhibit an
expected decrease of Dt. We therefore pessimistically estimate Dt as if Dt
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would always increase, which gives (apart from the boundary effects described
in Lemma 2) an increase of |‖x1‖1−‖x2‖1|. Since Dt is small, these increases
are small as well, as again ensured by Lemma 1. With this observation, we
can argue that we have a Dt value of O(k) for almost µ iterations, which
suffices to sample the optimum with high probability.

All the arguments above need that the frequencies are bounded away from
the lower boundary of 1

n
, more precisely, that they are Ω(1) at all times. In

the first two phases, we ensure this via Lemma 3, our general result for
random processes that are not Markov processes. To this aim, we estimate
the probabilities of certain frequency changes by adjusting this data from the
OneMax process (Lemma 8, taken from Sudholt and Witt [SW16]) via a
pessimistic estimate of the negative influence of search points sampled in the
gap. For the third phase, the fact that this phase only last o(µ) iterations
implies that frequencies change by at most o(1), hence the Ω(1) lower bound
remains intact.

3.2 Technical Ingredients of the Main Proof

In this section, we collect the central arguments needed in the proof of our
main result. Since we hope that some arguments are helpful for other runtime
analyses of EDAs, we fix no general notation apart from the one defined in
Algorithm 1 (at the price of occasionally restating a notion).

We frequently use the following estimate, which states that the OneMax

fitness of a search point sampled from Sample(f) is close to the expected
OneMax fitness ‖f‖1. Since we mostly need such results for frequency
vectors close to (1, . . . , 1), we formulate this result in terms of distances to
the maximum values.

Lemma 1. Let f ∈ [0, 1]n, D := n− ‖f‖1, D− ≤ D ≤ D+, x ∼ Sample(f),
and d(x) := n− ‖x‖1. Then for all δ ∈ [0, 1], we have

Pr[d(x) ≥ (1 + δ)D+] ≤ exp(−1
3
δ2D+),

Pr[d(x) ≤ (1− δ)D−] ≤ exp(−1
2
δ2D−).

Proof. The random variable n − ‖x‖1 can be written as a sum n − ‖x‖1 =:
Z =

∑n
i=1 Zi of n independent binary random variables Z1, . . . , Zn such that

Pr[Zi = 1] = 1−fi. By definition, E[Z] = D. The claims follow directly from
the classic multiplicative Chernoff bounds (Theorem 1 in [Hoe63] or, e.g.,
Theorems 10.1 and 10.5 together with Section 10.1.8 in the survey [Doe18]).

We need the lemma above in particular to argue that the probability to
sample a search point in the gap region of the Jump function is small. For the
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Jumpnk function, we observe that when D := n−‖f‖1 is at least 2k, then the
probability that x ∼ Sample(f) lies in the gap, that is, has n−k < ‖x‖1 < n,
is e−Ω(k). We can also get low constant probabilities for sampling in the gap
when D ≥ k +Ω(

√
k) with large implicit constant. In [HS18, Lemma 3.2], a

gap probability of at most 1 − 1/
√
2 ≤ 0.293 is shown when D ≥ k + c for

c a sufficiently large constant and k = o(n), but we are skeptical that this is
true. Note that when f = n−k−c

n
1n, then X = n− ‖x‖1 with x ∼ Sample(f)

follows a binomial distribution with parameters n and k+c
n
. Hence if k is large

compared to c, then Pr[X < k] = Pr[X < E[X ]− c] ≈ 1
2
.

When, in the notation of Algorithm 1, the current frequency vector ft
is such that fit ∈ { 1n , 1 − 1

n
} for some i ∈ [1..n], then it may happen that

f ′
t+1 /∈ [ 1

n
, 1 − 1

n
] and consequently ft+1 does not satisfy the nice relation

ft+1 = ft +
1
µ
(y1 − y2). The following lemma quantifies these discrepancies.

Lemma 2. Let P = 2 1
n
(1 − 1

n
). Let t ≥ 0. Using the notation given in

Algorithm 1, consider iteration t+1 of a run of the cGA started with a fixed
frequency vector ft ∈ [ 1

n
, 1− 1

n
]n.

(i) Let L := {i ∈ [1..n] | fit = 1
n
}, ℓ = |L|, and M := {i ∈ L | x1

i 6=
x2
i }. Then |M | ∼ Bin(ℓ, P ) and ‖ft+1‖1 − ‖f ′

t+1‖1 � ‖(ft+1)|L‖1 −
‖(f ′

t+1)|L‖1 � 1
µ
|M | � 1

µ
Bin(n, 2

n
).

(ii) Let L := {i ∈ [1..n] | fit = 1 − 1
n
}, ℓ = |L|, and M := {i ∈ L |

x1
i 6= x2

i }. Then |M | ∼ Bin(ℓ, P ) and ‖f ′
t+1‖1−‖ft+1‖1 � ‖(f ′

t+1)|L‖1−
‖(ft+1)|L‖1 � 1

µ
|M | � 1

µ
Bin(n, 2

n
).

Proof. By symmetry, it suffices to prove the first part. For an i ∈ L, we have
Pr[x1

i 6= x2
i ] = 2 1

n
(1 − 1

n
) = P . Since the bits of x1 and x2 were sampled

independently, we have |M | ∼ Bin(ℓ, P ).
By the well-behaved frequency assumption and the fact that f ′

t+1 = ft +
1
µ
(y1 − y2) for binary vectors y1 and y2, we can have f ′

i,t+1 < 1
n
and thus

fi,t+1 > f ′
i,t+1 only when fit =

1
n
and x1

i 6= x2
i , that is, when i ∈ M . This

shows ‖ft+1‖1 − ‖f ′
t+1‖1 � ‖(ft+1)|L‖1 − ‖(f ′

t+1)|L‖1.
Since fi,t+1 > f ′

i,t+1 implies fi,t+1 = f ′
i,t+1 +

1
µ
, we also have ‖(ft+1)|L‖1 −

‖(f ′
t+1)|L‖1 � 1

µ
|M | � 1

µ
Bin(n, 2

n
).

Since sampling the optimum is particularly unlikely when frequencies are
close to the lower boundary, we shall argue that the frequencies in a run of
the cGA on OneMax stay away from the lower boundary for a decent time.

A similar result was given in [HS18, Lemma 2.4], however, the proof ap-
pears to be not complete. It seems to us that the main technical prerequisite
of this result, Lemma 2.2 in [HS18] with a proof of a little over one page in

13



the condensed proceedings style, is not correct for two reasons. Since the
proof of Lemma 2.2 never refers to the frequency boundaries, it is not clear
if it is applicable for the cGA with these boundaries. Rather, a frequency
vector having one entry fit =

1
n
and another one fjt = 1 − 1

n
seems to be

a counter-example (note that the frequency vector is called pt instead of ft
in [HS18]). However, also for the case without boundaries counter-examples
seem to exist for all value of µ, e.g., the frequency vector ft = ( 1

100
, 1
2
).

We did not see how to repair the otherwise elegant argument via the
Azuma-Hoeffding inequality. For this reason, using a sequence of elementary
reductions, we argue that the true random process of a frequency, which
is not a Markov process when regarding one frequency in isolation, can be
pessimistically replaced by a fair random walk on an unbounded frequency
domain. For the analysis of the latter, classic Chernoff bounds can be used.
This general approach was also taken in [Dro06], however in the easier situa-
tion that there are no frequency boundaries and that the objective function
is OneMax.

Lemma 3. Let µ be arbitrary except that it satisfies the well-behaved fre-
quency assumption. Let ε > 0. Let Z0, Z1, . . . be any random process
on Fµ such that (i) Z0 = 1

2
, (ii) for all t = 0, 1, . . . there are numbers

pt, qt, rt ∈ [0, 1], depending on Z0, Z1, . . . , Zt, such that pt + qt + rt = 1 and,
conditional on Z0, . . . , Zt,

Pr[Zt+1 = Zt] = pt

Pr[Zt+1 = Zt +
1
µ
] = qt

Pr[Zt+1 = Zt − 1
µ
] = rt.

We further assume that rt = 0 when Zt =
1
n
, that qt = 0 if Zt = 1 − 1

n
, and

that qt ≥ rt when Zt 6= 1− 1
n
. Then for all T ∈ N,

Pr[∃t ∈ [0..T ] : Zt <
1
2
− ε] ≤ 2 exp

(

−2µ
2ε2

T

)

.

Proof. We first observe that we can assume pt = 0 for all t. The event
Zt+1 = Zt that the process does not move only slows down the process in the
sense that it visits fewer states. Similarly, we can assume that qt = rt except
in the cases Zt ∈ { 1n , 1− 1

n
}. For this now uniquely defined process, which is

an unbiased random walk with reflecting boundaries, we show

Pr[∃t ∈ [0..T ] : Zt /∈ [1
2
− ε, 1

2
+ ε]] ≤ 2 exp

(

−2µ
2ε2

T

)

.
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Being interested in the event that the process reaches a state outside
[1
2
− ε, 1

2
+ ε] at least once, we can also drop the boundary conditions and as-

sume that we have Zt+1 ∈ {Zt− 1
µ
, Zt +

1
µ
} uniformly at random at all times

t. We can now rewrite the Zt as follows. Let X1, . . . , XT be independent
random variables uniformly distributed on {− 1

µ
, 1
µ
}. Then for all t, Zt has

the same distribution as 1
2
+
∑t

i=1Xt. Consequently, by the additive Cher-
noff bound (in the sharper version working also for maxima, see (2.17) and
Theorem 2 in [Hoe63] or, e.g., Theorem 10.31 together with Theorem 10.9
in [Doe18]), we have

Pr[∃t ∈ [0..T ] : Zt /∈ [1
2
− ε, 1

2
+ ε]]

= Pr[∃t ∈ [0..T ] : |Zt − E[Zt]| > ε]

≤ 2 exp

(

− 2ε2

T (1/µ)2

)

= 2 exp

(

−2µ
2ε2

T

)

.

The following result is a weaker form of what was shown in the proof of
Lemma 5 in [Dro06].

Lemma 4. There is a constant C > 0 such that the following holds. Let
n ∈ N and D ∈ N. Let f ∈ [1

3
, 1]n such that ‖f‖1 ≤ n − D. Let x1, x2 ∼

Sample(f) independently. Then

Pr
[

∣

∣‖x1‖1 − ‖x2‖1
∣

∣ ≥ 1
5

√
D
]

≥ C.

Since we shall use that the optimization process of the cGA on a jump
function is identical to the one on the OneMax function as long as no
search point in the gap region is sampled, we find the following analysis of
the optimization process onOneMax useful. It differs from Droste’s analysis
of the cGA on OneMax [Dro06] in that it regards the cGA with boundaries
and in that it proves a high-probability statement for reaching a near-optimal
frequency vector. We note that our analysis can easily be extended to also
give a bound for the time to sample an optimal solution, but we do not need
such a result (and in fact, such a result is implied by our main result). Also,
a simplified version of our proof would apply to the cGA without boundaries.

Lemma 5. Consider a run of the cGA with µ ≥ log2 n on the OneMax

benchmark function. Let Dt := n − ‖ft‖1 for all t. Let K be a sufficiently
large constant. Let T be the first time that Dt ≤ K or that there is an
i ∈ [1..n] with fit <

1
3
. Then

Pr

[

T ≥ 10(2 +
√
2)

C
µ
√
n

]

= exp(−Ω(µ)),
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where C is the constant from Lemma 4.

Proof. Consider a run of the cGA on OneMax. Define D′
t := n − ‖f ′

t‖1 for
all t ≥ 1. Since we are done when we reach a frequency below 1

3
, we can

in the following assume whenever convenient that ft ∈ [1
3
, 1]n. To be very

precise, we note that we do not condition on this event, since the conditional
probability space is harder to work with, among others, because there the
bit values of the offspring are not sampled independently.

For i = 1, 2, . . . let di = 2−in. Without loss of generality, we may assume
that K = 2−ℓ−1n for some ℓ ∈ N. Note that ℓ ≤ log2 n. We say that the
optimization process enters Phase i (and thus leaves its current phase) when
for the first time Dt ≤ di. Note that we stay in Phase i even when after
entering this phase Dt increases beyond di. Note further that, by definition,
the process starts in Phase 1.

We analyze the time spend in Phase i ≤ ℓ and show that this time, with
probability at least 1− exp(−Ω(µ)), is at most Ti = ⌈20 1

C
µ
√

di+1⌉. Let t′ be
the iteration in which the process enters Phase i. To ease the argument, we
now consider exactly Ti iterations. In case the phase ends earlier, we shall
from that point on regard an artificial process, with a slight abuse of notation
also denoted by Dt and D′

t, that satisfies the conditions

Pr[D′
t+1 = Dt − 1

5

√

di+1/µ | Dt] = C,

Pr[D′
t+1 = Dt | Dt] = 1− C,

Pr[Dt+1 = D′
t+1 | D′

t+1] = 1.

Such an artificial extension of a process was, to the best of our knowledge,
in the theory of evolutionary algorithms first used in [DHK11].

When all frequencies are at least 1
3
, by Lemma 4 we have Pr[|‖x1‖1 −

‖x2‖1| ≥ 1
5

√
Dt] ≥ C for an absolute constant C. Since we have ‖y1‖1 ≥

‖y2‖1 when optimizing OneMax, we have that D′
t+1 with probability at

least C satisfies D′
t+1 ≤ Dt − 1

5

√
Dt/µ ≤ Dt − 1

5

√

di+1/µ. We call this
a success. Note that the probability for a success is at least C regardless
of what happened before in this phase. Consequently, in Ti iterations, we
not only have an expected number of at least 20µ

√

di+1 successes, but by
Lemma 11 of [DJ10] and the multiplicative Chernoff bounds we also have at
least 10µ

√

di+1 successes with probability at least 1−exp(−5
2
µ
√

di+1). Note
that with probability one we have D′

t+1 ≤ Dt, again because ‖y1‖1 ≥ ‖y2‖1.
By Lemma 2 (ii), we have Dt+1 � D′

t+1 + Bin(n, 2
n
), again regardless of

what happened in earlier iterations. Consequently, the total number of times
we increase Dt due to reaching the upper boundary can be estimated by a
sum of Tin independent binary random variables with success probability
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2
n
. Hence the expectation of this number is at most 2Ti ≤ 40 1

C
µ
√

di+1 + 2

and with probability at least 1 − exp(−40
3

1
C
µ
√

di+1) this number is at most

4Ti = 80 1
C
µ
√

di+1 + 4.
Taking these two observations together, we see that with probability

1− exp

(

−5
2
µ
√

di+1

)

− exp

(

−40
3

1

C
µ
√

di+1

)

= 1− exp (−Ω(µ)) ,

we have

Dt′+Ti
≤ Dt′ − 10µ

√

di+1 · 15
√

di+1/µ+ (80 1
C
µ
√

di+1 + 4)/µ

= Dt′ − 2di+1 +
80
C

√

di+1 + 4/µ.

Since K = 2−ℓ−1n ≤ di+1 was chosen sufficiently sufficiently large, we have
Dt′+Ti

≤ Dt′ − di+1, that is, Dt′+Ti
belongs to a later phase already. Conse-

quently, we have that with probability at least 1 − exp(−Ω(µ)), at most Ti

rounds are spend in Phase i.
We show our claim by computing

ℓ
∑

i=1

Ti ≤ ℓ+
ℓ
∑

i=1

20
1

C
µ
√
2−(i+1)n ≤ 10

C
µ
√
n

∞
∑

i=0

(2−1/2)i

=
10

C
µ
√
n

1

1− 2−1/2
=

10(2 +
√
2)

C
µ
√
n.

We now analyze the drift in Dt when we are that close to the gap that
we cannot assume anymore that we never sample a search point in the gap.
To be precise, let us define the gap by

G := Gnk := {x ∈ {0, 1}n | n− k < ‖x‖1 < n}.

Let G+ := G ∪ {(1, . . . , 1)}.
A difficulty here, which was not treated fully rigorously in [HS18,

Lemma 3.1], is that the event Gt that x
1 or x2 lie in the gap and the random

variable |‖x1‖1 − ‖x2‖1| are not independent. Consequently, the estimate
E[Dt − Dt+1 | Dt] =

1
µ
|‖x1‖1 − ‖x2‖1|(1 − 2 Pr[Gt]) is not correct. In fact,

the correlation is indeed not in our favor. When |‖x1‖1 − ‖x2‖1| is large,
the probability that a search point in the gap was sampled (and thus the
frequency update is done in the unwanted direction) is higher.
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Lemma 6. Let µ be arbitrary satisfying the well-behaved frequency assump-
tion. Let k ∈ [1..1

2
n − 1]. Consider an iteration t of the cGA optimizing

Jumpnk started with a frequency vector ft such that Dt = n−‖ft‖1 ≥ 2k and
such that fit ≥ 1

3
for all i ∈ [1..n]. Then

E[µDt − µDt+1] ≥ 1
5
C
√

Dt − 6Dt exp(−1
8
Dt)− 2,

where C is the constant from Lemma 4.

Proof. From the definition of the cGA, we note that when x1 and x2 are both
not in G+, then D′

t+1 := n− ‖f ′
t+1‖1 satisfies D′

t+1 = Dt − 1
µ
|‖x1‖1 − ‖x2‖1|.

In all other cases, we have D′
t+1 ≤ Dt +

1
µ
|‖x1‖1 − ‖x2‖1|. Consequently,

E[µDt − µD′
t+1]

≥ Pr[x1, x2 /∈ G+]E[|‖x1‖1 − ‖x2‖1| | x1, x2 /∈ G+]

− Pr[{x1, x2} ∩G+ 6= ∅]E[|‖x1‖1 − ‖x2‖1| | {x1, x2} ∩G+ 6= ∅]
= E[|‖x1‖1 − ‖x2‖1|]
− 2 Pr[{x1, x2} ∩G+ 6= ∅]E[|‖x1‖1 − ‖x2‖1| | {x1, x2} ∩G+ 6= ∅].

When the frequencies are all at least 1
3
, we conclude from Lemma 4 that

E[|‖x1‖1 − ‖x2‖1|] ≥ 1
5
C
√
Dt.

For the contribution when search points are in G+, we first note that the
second bound of Lemma 1 (with δ = 1

2
and D− = Dt) and Dt ≥ 2k yield

Pr[x1 ∈ G+] ≤ Pr[d(x1) ≤ 1
2
Dt] ≤ exp(−1

8
Dt).

Then, exploiting the symmetry between x1 and x2, counting the case x1, x2 ∈
G+ twice, and using again 1

2
Dt ≥ k, we compute

Pr[{x1, x2} ∩G+ 6= ∅]E[|‖x1‖1 − ‖x2‖1| | {x1, x2} ∩G+ 6= ∅]
≤ 2 Pr[x1 ∈ G+]E[|‖x1‖1 − ‖x2‖1| | x1 ∈ G+]

≤ 2 Pr[x1 ∈ G+]
(

E[|‖x1‖1 − n| | x1 ∈ G+] + E[|n− ‖x2‖1|]
)

≤ 2 Pr[x1 ∈ G+] (k +Dt)

≤ 2 exp(−1
8
Dt)(

1
2
Dt +Dt) = 3 exp(−1

8
Dt)Dt.

In summary, we have

E[µDt − µD′
t+1] ≥ 1

5
C
√

Dt − 6Dt exp(−1
8
Dt).

By Lemma 2, we further have E[µDt+1 − µD′
t+1] ≤ 2. Consequently,

recalling that the linearity of expectation holds also for dependent random
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variables, we have

E[µDt − µDt+1] = E[µDt − µD′
t+1]− E[µDt+1 − µD′

t+1]

≥ 1
5
C
√

Dt − 6Dt exp(−1
8
Dt)− 2.

The following elementary estimate gives a lower bound for the probability
to sample the optimum.

Lemma 7. Let 0 < c < 1 and f ∈ [c, 1]n. Let x ∼ Sample(f). Then
Pr[x = (1, . . . , 1)] ≥ c(n−‖f‖1)/(1−c).

Proof. For i ∈ [1..n], let αi :=
1−fi
1−c

. Then fi = αic + (1− αi)1 is the unique
representation of fi as convex combination of c and 1. Since the logarithm
is concave, we have

log fi = log(αic+ (1− αi)1) ≥ αi log c+ (1− αi) log 1 = log(cαi11−αi).

Since the logarithm is monotonically increasing, this inequality implies
fi ≥ cαi11−αi = cαi . Consequently,

Pr[x = (1, . . . , 1)] =
n
∏

i=1

fi ≥
n
∏

i=1

cαi = c
∑n

i=1
αi = c(n−‖f‖1)/(1−c).

We shall use the following estimate on the expected change of a frequency
that is not affected by the boundaries. This result was proven in [SW16,
Lemma 3].

Lemma 8. Let µ be arbitrary. Consider a run of the cGA optimizing
OneMax. Consider an iteration starting with a frequency vector ft. Let
i ∈ [1..n] be such that 1

n
+ 1

µ
≤ fit ≤ (1− 1

n
)− 1

µ
. Then

E[fi,t+1 − fit] ≥
2

11

fit(1− fit)

µ

(

∑

j 6=i

fjt(1− fjt)

)−1/2

.

3.3 Main Result and Proof

We are now ready to state and prove our main result.
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Theorem 9. Let k ≤ 1
20
ln(n)−1. Let µ ≥ K

√
n ln(n) for a sufficiently large

constant K, but polynomially bounded in n. Then the cGA with frequency
boundaries (Algorithm 1) with hypothetical population size µ with probability
1− o(1) finds the optimum of the Jumpnk function in time O(n logn).

Proof. To allow the reader to easily check that all implicit constants can be
chosen in a way that they give the claimed results, we make these constants
explicit in the following proof, but note that for most of them it just suffices
to choose them sufficiently large.

Let k ≤ Ck ln(n) − 1, Ck = 1
20
. Let µ ≥ cµ

√
n ln(n) and µ ≤ nCµ for a

constant cµ to be defined in a moment and, say, Cµ ≥ 1. Consider a run of
the cGA on the objective function Jumpnk.

Let T̃ ′ be the first time that Dt := n−‖ft‖1 satisfies Dt ≤ D′ := CD′ lnn,
where CD′ ≥ 8Cµ+12 is a constant. Let T̃ ′′ be the first time that Dt ≤ D′′ :=
max{2k + 1, CD′′}, where CD′′ is a sufficiently large constant (independent
also of all other constants).

Let T ′ = min{T̃ ′, ⌊CT ′µ
√
n⌋} with CT ′ = 10(2+

√
2)

C
, where C is the con-

stant from Lemma 4. Let T ′′ = min{T̃ ′′, ⌊CT ′′µ
√
n⌋} with CT ′′ = CT ′ + 1.

Let now cµ ≥ 36CT ′′.
We first argue that with high probability we have no frequencies below 1

3

up to time T ′′. For this, consider some time t such that ft ∈ [1
3
, 1]n and

Dt ≥ D′′. Consider a fixed bit i ∈ [1..n] such that fit 6= 1 − 1
n
. If we were

optimizing the OneMax function, then by Lemma 8,

Pr[fi,t+1 = fit +
1
µ
]− Pr[fi,t+1 = fit − 1

µ
]

= µE[fi,t+1 − fit]

≥ 2

11
fit(1− fit)

(

∑

j 6=i

fjt(1− fjt)

)−1/2

≥ 2

11
fit(1− fit) (Dt)

−1/2 .

Regardless of whether we optimize OneMax or Jumpnk, the events
fi,t+1 = fit +

1
µ
and fi,t+1 = fit − 1

µ
can only occur when the two search

points sampled in this iteration satisfy x1
i 6= x2

i . Further, the definition of
fi,t+1 differs from the OneMax case at most when at least one of x1 and
x2 lie in the gap Gnk. Hence the following coarse correction of the above
estimate is valid for the optimization of Jumpnk.

Pr[fi,t+1 = fit +
1
µ
]− Pr[fi,t+1 = fit − 1

µ
]

≥ 2
11
fit(1− fit) (Dt)

−1/2 − Pr[(x1
i 6= x2

i ) ∧ ({x1, x2} ∩Gnk 6= ∅)].
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We now estimate this correction term, first by noting that Pr[(x1
i 6= x2

i ) ∧
({x1, x2} ∩ Gnk 6= ∅)] = Pr[x1

i 6= x2
i ] · Pr[{x1, x2} ∩ Gnk 6= ∅ | x1

i 6= x2
i ],

then by using the union bound estimate Pr[{x1, x2} ∩ Gnk 6= ∅ | x1
i 6= x2

i ] ≤
2 Pr[x1 ∈ Gnk | x1

i 6= x2
i ]. Conditional on x1

i 6= x2
i , the bit string x1 is

sampled from Sample(ft), however, conditional on the i-th bit being zero or
one. In either case, to have x1 ∈ Gnk, we need that D̃ =

∑

j 6=i(1 − x1
j ) is

at most k ≤ 1
2
(Dt − 1), where we recall that Dt ≥ D′′ ≥ 2k + 1. Since

E[D̃] = Dt − (1− fit) ≥ Dt − 1, by Lemma 1 with δ = 1
2
this event happens

with probability at most exp(−1
8
(Dt − 1)). Together with Pr[x1

i 6= x2
i ] =

2fit(1− fit), we obtain

Pr[fi,t+1 = fit +
1
µ
]− Pr[fi,t+1 = fit − 1

µ
]

≥ 2
11
fit(1− fit) (Dt)

−1/2 − 2fit(1− fit) exp(−1
8
(Dt − 1)),

which is non-negative since Dt ≥ D′′ ≥ CD′′ , which was chosen sufficiently
large.

Consequently, the process (fit)t satisfies the assumptions of Lemma 3 up
to time T ′′. If T ′′ < CT ′′µ

√
n, we artificially extend the process (for the

following argument only) by setting fit = fiT ′′ for all t ∈ [T ′′ + 1..CT ′′µ
√
n].

By Lemma 3 we thus obtain that up to time T = ⌊CT ′′µ
√
n⌋, the i-th

frequency is always at least 1
3
with probability 1 − 2 exp(− µ2

18T
) ≥ 1 −

2 exp(− µ
18CT ′′

√
n
) ≥ 1 − 2 exp(− cµ

18CT ′′

lnn). With a union bound over the

n frequencies, we have ft ∈ [1
3
, 1]n in this time interval with probability at

least 1− 2n exp(− cµ
18CT ′′

lnn) = 1− O(1/n) by choice of cµ and CT ′′ .

Since D′ = CD′ lnn with CD′ ≥ 12 and k ≤ Ck lnn ≤ CD′

2
lnn, by

Lemma 1 and a union bound the probability that within the first T ′ ≤
CT ′µ

√
n iterations a search point in the gap region is sampled, is at most

2CT ′µ
√
n exp(−CD′

8
lnn) ≤ 2CT ′nCµ+0.5−CD′/8 = O(1/n). Consequently, by

Lemma 5, after at most CT ′µ
√
n iterations with probability 1 − O(1/n) we

have Dt ≤ D′.
We now estimate the additional time it takes to reach Dt ≤ D′′. Let t0

be the first time such that Dt ≤ D′. By Lemma 6 and using our assumption
that CD′′ is a large absolute constant, we have E[Dt −Dt+1 | Dt] ≥ 1

µ
when

Dt ≥ D′′ ≥ CD′′. We define a random process D̃t as follows. Let t ≥ t0.
If Ds < D′′ for some s ∈ [t0..t], then D̃t−t0 = 0. Otherwise, D̃t−t0 = Dt.
By the above observation, we have E[D̃t − D̃t+1 | D̃t > 0] ≥ 1

µ
. By the

additive drift theorem [HY01], also to be found in the recent survey [Len17],
T := min{t | D̃t = 0} satisfies E[T ] ≤ D′

1/µ
= O(µ logn). By Markov’s

inequality, we have T = O(µn0.4 log n) with probability 1− n−0.4.
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Let now t0 be such that Dt0 ≤ D′′ and all frequencies are at least 1
3
.

We first argue that if Dt ≤ ln(n)2, then Pr[Dt+1 ≥ Dt +
4
µ
ln(n)2] ≤ nω(1).

By Lemma 1, we have Pr[d(xj) ≥ 2 ln(n)2] ≤ exp(− ln(n)2/3) = nω(1) for
j = 1, 2. Consequently, with probability 1−nω(1), we have both ‖x1‖1 ≥ n−
2 ln(n)2 and ‖x2‖1 ≥ n−2 ln(n)2. In this case, the Hamming distance between
x1 and x2 satisfies H(x1, x2) ≤ 4 ln(n)2, which implies that |Dt − Dt+1| ≤
‖ft−ft+1‖1 ≤ 4

µ
ln(n)2 and thusDt+1 ≤ Dt+

4
µ
ln(n)2. By a union bound, with

probability 1−nω(1), this happens in all iterations t0, . . . , t0+⌊ D′′

(4/µ) ln(n)2
⌋−1

and consequently, throughout these L = ⌊ D′′

(4/µ) ln(n)2
⌋ iterations we have Dt ≤

2D′′. Note that L = O(µ/ log(n)), hence throughout this period we also have
fit ≥ 1

3
− 1

µ
L ≥ 0.32 (assuming n to be sufficiently large). By Lemma 7, the

probability that a fixed search point sampled in this period is the optimum,
is at least 0.322D

′′/0.68 ≥ 0.324Ck ln(n)/0.68 = exp(4Ck ln(n) ln(0.32)/0.68) ≥
n−6.71Ck ≥ n−0.34 by choice of Ck. Hence the probability that the optimum is
not sampled in this period is at most (1 − n−0.34)2L ≤ (1 − n−0.34)µ/ ln(n)

2 ≤
exp(−n−0.34 · µ/ ln(n)2) ≤ exp(−Ω(n0.16/ log(n))).

Let us remark that we did not try to optimize the implicit constants, nor
did we try to find the largest constant Ck such that the O(n logn) runtime
guarantee holds for all k ≤ Ck ln(n) − 1. We further note that all but one
argument in the above proof, by choosing the constants right, would give
a success probability of 1 − n−c, where c can be any constant. This is not
true for the Markov bound argument in the analysis of the time to reach a
Dt value of at most D′′. Without further details, we note that also for this
phase an arbitrary inverse-polynomial failure probability could be obtained
with stronger methods.

Finally, we note that by taking k = 1, our result also applies to the
OneMax function.

4 Conclusion

This is, to the best of our knowledge, only the second mathematical analysis
of an EDA on a multi-modal optimization problem. Our main result shows
that the cGA can optimize jump functions with logarithmic jump sizes in
asymptotically the same efficiency as the simple OneMax function. It thus
does not suffer from the fitness valleys present in these objective function.

The obvious question arising from this work is to what extent such or sim-
ilar results hold for other EDAs. Natural candidates could be the UMDA, for
which several rigorous runtime results exist, see [KW18], and the significance-
based cGA [DK18], which might profit from using only the three frequencies
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1
n
, 1

2
, and 1 − 1

n
. Equally interesting would be results for other multi-modal

optimization problems. On the more speculative side, given that the black-
box complexity of jump functions is low even for large jump sizes [BDK16],
one could also try to challenge the upper bound exp(O(k)) given in [HS18]
for larger values of k, either by proving that the cGA also performs better
here or by exploring if suitable modifications of the cGA can lead to a better
performance.
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