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ABSTRACT
Synthetic datasets play an important role in evaluating clustering al-
gorithms, as they can help shed light on consistent biases, strengths,
and weaknesses of particular techniques, thereby supporting sound
conclusions. Despite this, there is a surprisingly small set of estab-
lished clustering benchmark data, and many of these are currently
handcrafted. Even then, their difficulty is typically not quantified
or considered, limiting the ability to interpret algorithmic perfor-
mance on these datasets. Here, we introduce HAWKS, a new data
generator that uses an evolutionary algorithm to evolve cluster
structure of a synthetic data set. We demonstrate how such an
approach can be used to produce datasets of a pre-specified diffi-
culty, to trade off different aspects of problem difficulty, and how
these interventions directly translate into changes in the clustering
performance of established algorithms.

1 INTRODUCTION
The literature on evolutionary computation and machine learning
offers a varied choice of algorithms. As the no free lunch theorems
for optimization and learning suggest that no single algorithm
will be superior for every task [27, 28], the practical choice of an
effective algorithm for a given instance needs to be informed by an
understanding of problem properties as well as the suitability of any
particular algorithm with respect to those properties. Benchmark
sets play an instrumental role in providing this kind of insight, as
they facilitate thorough empirical comparison that can help reveal
particular algorithms’ areas of strength and weakness.

There is a long tradition of using real-world benchmark sets to as-
sist algorithm comparison in the machine learning and optimization
communities. Unfortunately, for some problems, publicly available
data can be scarce and is often poorly understood. However, with-
out a sound understanding of problem properties that are of interest,
it can be challenging to compile a collection of real-world datasets
that provide a comprehensive and suitably challenging coverage of
the problem space. Analysis by Macià and Bernadó-Mansilla [12]
found a surprising similarity in complexity across the datasets in
the UCI Machine Learning Repository [3], which underlines the dif-
ficulty of identifying a diverse set of problem instances without an
explicit effort to represent particular aspects of problem structure.
To create useful benchmarks and empirically test algorithms in an
insightful way, an understanding of the core factors that contribute
to difficulty is paramount [9, 23].

Given the above, synthetic benchmarks are often preferred over
real-world benchmarks as they offer an opportunity to explicitly

model problem properties of interest and exercise direct control
over these properties [22]. This is the case in both the machine
learning and optimization communities. In-depth understanding
of the construction and properties of such synthetic benchmarks
can be particularly helpful in interpreting algorithm results and in
pinpointing systematic variations in algorithm performance (where
these arise as a result of the controllable problem properties).

One of the core criticisms leveled against synthetic benchmarks
is that they may not be sufficiently complex to capture the prop-
erties of real-world data. There is a concern that results on such
simplified synthetic benchmarks risk being empirically misleading
and may limit practical applicability of algorithms whose devel-
opment overly relies on such data [9]. As a result, it is generally
considered good practice to take a dual approach to algorithm de-
velopment involving evaluation on both synthetic and real-world
benchmarks, leveraging the strengths of both approaches. Arguably,
as explored in the work of Smith-Miles [22], the ability of synthetic
generators to support the exploration and understanding of the
available instance space can, indirectly, also support appropriate
design of the composition of real-world benchmark sets.

Compiling meaningful benchmark sets is particularly challeng-
ing for the task of cluster analysis, due to the unsupervised nature
of the problem. For real-world data, the generating mechanism is
typically unknown and the accuracy of class labels (where avail-
able) may be disputed. In the absence of knowledge regarding the
optimal clustering solution, assessing performance relies on the
evaluation of internal measures of cluster validity. These measures
use information intrinsic to the data to assess the prominence of
cluster structure. Previous work [7] has argued that such measures
(known as cluster validity indices) broadly consider a combination
of measures relating to compactness, spatial separation and (to a
lesser extent), connectedness of the clusters.

As most clustering algorithms work by considering these same
aspects of cluster structure (usually focusing on one of the above
categories only), this type of internal assessment easily introduces
a bias towards particular algorithms. In particular, it may severely
impact the assessment of an algorithm’s performance when the
assumptions of the validation index are inconsistent with the algo-
rithm’s assumptions [17]. This issue can be reduced but not fully
addressed through the use of a set of carefully selected (comple-
mentary) internal validity measures.

For this reason, synthetic data plays a prominent role in the eval-
uation of clustering performance. These datasets offer knowledge
of the generation mechanism, allowing the use of external indices,
which require knowledge of the correct cluster labels but provide
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an unbiased assessment of clustering performance. Understanding
the generating mechanisms of the data also means that interac-
tions between generating mechanism, clustering algorithms, and
internal validity indices can be explicitly taken into account and
explored. Despite these advantages of synthetic clustering bench-
marks, there have been few attempts to develop cluster generators
that can systematically vary aspects of problem difficulty. Here,
we take inspiration from previous work demonstrating the use of
evolutionary computation to generate benchmark problems that
provide flexibility, permitting the tuning of parameters to generate
a diverse range of problem instances [11]. Such generators have
been described for a range of applications, ranging from software
testing [5] to combinatorial optimization [25] to genetics [8].

Our paper introduces a synthetic data generator, HAWKS, that
uses an evolutionary algorithm (EA) to evolve a population of
datasets, optimizing to a specified value of the silhouette width (an
internal cluster validity index). We describe in Section 3 the design
choices for the underlying EA, and show how some of our gener-
ator’s key parameters interact to influence the complexity of the
resulting dataset. The capability of the generator is demonstrated
in Section 4 by highlighting observable changes in the performance
of clustering methods across an increasingly complex suite of data
sets, and by contrasting this to the clustering performance observed
for datasets from other generators. As the tool is designed to be
easy-to-use, we hope that it is useful for anything from quick, sim-
ple data generation to a creation of a more comprehensive test
suite for thorough empirical comparison. Finally, we conclude and
suggest future work in Section 5.

2 RELATEDWORK
The use of genetic algorithms to evolve datasets has been explored
extensively in the works of Smith-Miles, building upon a framework
proposed by Rice [14, 18, 21, 22]. The central idea is the creation of
an “instance space”—a set of properties that sufficiently describe a
dataset such that the datasets themselves can be visualised in this
space. This facilitates both the identification of sub-spaces in which
a particular algorithm performs well, as well as areas in this space
where current benchmarks/suites do not provide any datasets.

Generating a meaningful instance space using cluster validity
indices presents an interesting challenge, as a set of non-correlating
indices that sufficiently capture the possible properties of a set of
clusters would need to be identified. The difficulty with this is
highlighted by the extensive comparison of cluster validity indices
performed by Arbelaitz et al. [1], which systematically compared 30
indices and found that, although some indicators were redundant,
many were suitable to particular situations and thereby added value
in their own right. Creating a comprehensive instance space for
clustering (using many different cluster validity indices) will be of
interest for maximizing the diversity of instances obtainable with
our tool (and rigorously assessing the diversity of other collections
of clustering benchmarks). Here we limit ourselves to a proof-of-
principle, showing how HAWKS can create a simple instance space
using a few straightforward features and how this can already start
to shed light on the diversity of benchmark data through tangible
changes in the performance of clustering algorithms.

(a) scikit-learn ‘circles’ (b) scikit-learn ‘blobs’

(c) HK’s ‘gaussian’ [6] (d) HK’s ‘ellipsoidal’ (projected
from 50 dimensions)

(e) Qui & Joe [16] (f) HAWKS

Figure 1: Representative example datasets produced by dif-
ferent cluster generators. As shown in (f), HAWKS can pro-
duce datasets with clusters of very different eccentricities.

Existing data generators for clustering are either naïve, without
much consideration of creating an interesting cluster structure, or
rely on extensive hand-crafting of certain data properties. Figure 1
illustrates this with some examples of data generators from scikit-
learn, a popular Python machine learning framework [15], the
popular generator from Handl & Knowles (henceforth HK) [6], and
Qui & Joe’s generator (henceforth QJ) [16].

The generators in scikit-learn are useful for quick random genera-
tion of structured data, but are either overly contrived (see Figure 1a)
or do not provide enough control (Figure 1b) to create benchmarks
that are sufficiently challenging to tease out systematic differences
between clustering methods.

HK’s generator has been used extensively in the literature, and
consists of two separate components: ‘gaussian’ and ‘ellipsoidal’.
The first of these uses a simple trial-and-error approach to place
clusters in a pre-defined multi-dimensional space, while rejecting
clusters that would result in overlap — an example data set is shown
in Figure 1c. The ellipsoidal generator uses a genetic algorithm to
shift cluster positions but does not consider systematic adjustment
of cluster shape, nor does it consider a standardized measure of
cluster validity (i.e. dimensionless, and thereby interpretable in its
own right) as it simply aims to reduce a measure of compactness
while penalizing overlap. An example of a resulting dataset is shown
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in Figure 1d. Given the above, and (additionally) the hard-coding of
a large number of design choices, both parts of HK’s generator are
limited in their ability to produce instances with a specified level
of difficulty and, therefore, in their ability to generate benchmarks
that systematically test the performance of clustering methods with
respect to particular aspects of problem difficulty.

The generator described in [16] uses a geometric framework for
cluster placement, which is designed to consider a single aspect
of cluster quality (the degree of separation between the closest
neighbouring clusters), and does not generalize to other clustering
criteria. Furthermore, it does not account for any interaction be-
tween this particular measure and any additional aspects of problem
difficulty, such as cluster eccentricity.

In [13], datasets of a defined difficulty are evolved for supervised
classification problems. Apart from the emphasis on supervised
learning (where, arguably, measures of problem difficulty are more
easily derived), a key difference to our work is the method of data
generation. Instead of using a generative model, Macià et al. use a
sampling approach where an individual corresponds to a subset of a
pre-existing dataset, where these subsets are then evolved towards
a desired level of problem difficulty. While this approach elegantly
avoids the bias introduced through the use of a specific generative
model, it may be limited in its ability to generate data sets covering
previously unseen portions of the instance space.

In the following, we describe an evolutionary cluster generator
designed to overcome these limitations. Our generation of valid co-
variance matrices closely follows the approach described in [16] and
the corresponding R package.1 However, different from previous
work we embed this mechanism into an EA to directly optimize this
(and all other aspects) of our generating model. Furthermore, we
propose using an established internal validity index as a dimension-
less measure of problem difficulty. The adoption of an evolutionary
framework allows for easy modifications and future extensions,
particularly with design choices such as different (or multiple) mea-
sures of problem difficulty or the generating mechanism.

A practical guide to using the tool can be found with the (Python)
code online2; in this paper, we will discuss how the generator works,
compare it to existing generators, and show the effect of trading
off different aspects of problem difficulty.

3 EVOLVING CLUSTERS
We treat the task of evolving clusters as a constrained optimization
problem, where the constraints can be controlled to introduce ad-
ditional elements of cluster difficulty into the generated datasets.
Essentially, the objective function and all constraints can each be
interpreted as a specific measure of problem difficulty, with an un-
derstanding that the complexity of a particular dataset is, ultimately,
algorithm-specific and established by the performance of different
clustering algorithms. An EA is used to tackle this problem, the
details of which will follow.

3.1 Representation
Each individual in the population represents a single dataset of
dimensionality D, and (at present) each cluster is described by a

1https://cran.r-project.org/web/packages/clusterGeneration/index.html
2Available at: https://github.com/sea-shunned/hawks

multivariate Gaussian. For simplicity of illustration, we view each
Gaussian as being defined by two (sets of) decision variables: aD×1
vector describing its mean, µ, and the associated D × D covariance
matrix, Σ. As the number of clusters, K , is a parameter to the tool,
the length of the genotype is thus 2K (sets). Evidently, the size of
the individual sets varies with the dimensionality of the data. A 2D
example of this representation and the clusters that it encodes can
be seen in Figure 2. Here we can see both one eccentric and one
more spherical cluster with their corresponding covariances.

−15 −10 −5 0 5 10 15

−10

−5

0

5

10
Cluster 1
Cluster 2

[
−6 0

] [
3 5
5 10

] [
7 2

] [
5 0
0 2

]
µ1 Σ1 µ2 Σ2

Figure 2: Example representation of a two-cluster problem.

3.2 Objective
The choice of objective function is one of the most delicate aspects
of designing a generator for synthetic clustering benchmarks.While
an optimization process is required to address the limitations of
trial-and-error placement of cluster structures, and to nudge cluster
parameters towards challenging features, it is clear that the choice
of any particular cluster criterion will bias the dataset towards algo-
rithms based on similar criteria. Additionally, any dataset derived
by optimizing a single cluster quality index will become trivial to
partition for many algorithms, as top scores for such measures are
easily obtained for data sets with isolated spherical clusters.

Our approach to addressing this dilemma is three-fold:

• To use an internal validity index that provides a dimension-
less and well-defined measure of problem difficulty, so that
a target difficulty value can be defined to optimize.

• To directly consider the trade-off betweenmultiple criteria of
problem difficulty using the principle of stochastic ranking.

• To adopt an optimization approach that is flexible with re-
spect to the optimization criterion considered (which can
later allow for the generation of a diverse benchmark with
known, but diverse, biases).

The cluster validity index adopted in the present paper is the
silhouette width [19], which obtains values in a well-defined range.
Unlike some other indices, it attempts to provide a straightforward
“absolute” interpretation of the amount of structure detected that
is roughly comparable across data sets of similar dimensionality.
Conceptually, the silhouette width considers aspects of intra-cluster
compactness and inter-cluster separability in its calculation. Con-
crete details of its calculation are as follows:

https://cran.r-project.org/web/packages/clusterGeneration/index.html
https://github.com/sea-shunned/hawks
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The silhouette width for a single data point i is defined as:

s(i) =
b(i) − a(i)

max{a(i),b(i)}
(1)

where

a(i) =

∑
j ∈Ck σ (i, j)

|Ck |
; i , j; i ∈ Ck (2)

b(i) = min∀k ∈C

∑
j ∈Ck σ (i, j)

|Ck |
; i < Ck (3)

and where C is the set of all clusters, Ck is the kth cluster with
|Ck | as its cardinality, and σ (i, j) is the distance between points i
and j. Here, a(i) represents the average intra-cluster distance for
data point i and is the average distance from i to all other points
in the cluster. The second term, b(i), represents the inter-cluster
distance; for data point i this is defined as the minimum of the
average distances to all points in every other cluster.

The average silhouette width can then be calculated for a whole
individual (i.e. dataset):

sall =
1
N

N∑
i=1

s(i) (4)

where N is the number of data points. This provides a value in the
range [−1, 1], where the maximum represents very compact and
well-separated clusters. A negative silhouette width value indicates
that points in different clusters are not well-separated (and their
membership should be changed).

One issue with the silhouette width is its complexity O(DN 2),
where D is the number of dimensions, which has made its use as an
optimization objective problematic [26]. As the points in a dataset
only change when one of the genetic operators perturbs the mean
or covariance of a cluster, this facilitates partial evaluation of the
silhouette width. As such, this complexity is worst-case, which
occurs only when every cluster in the individual has been changed.

To better obtain solutions of a desired silhouette width, we spec-
ify a target silhouette width (st ), and our objective (fitness) is to
minimize the absolute difference between st and sall :

min f (µ1, Σ1, . . . , µK , ΣK ) = |st − sall | (5)

where K is the total number of clusters.

3.3 Initialization
Each individual is initialized with a random mean and covariance.
The mean is sampled uniformly over the half-open interval [0, 1).
The variances of the covariance matrix are sampled uniformly over
the interval

[
0, 12

)
to encourage overlap (discussed below). To create

the covariances, a random orthogonal matrix is drawn from the
Haar distribution [24], i.e. a random rotation matrix is created and
transforms the cluster to a random orientation.

Although our generator provides the ability to define the number
of data points in each cluster (both precisely and by density), in
this paper we randomly assign the size of each cluster such that
they sum to a pre-defined size N . The sizes are then fixed for the re-
mainder of the run. This parameter could be added as an additional
decision variable in future work.

Initializing with separated clusters can result in the optimizer
exploiting particularities of the objective function, e.g. for the sil-
houette width a moderate reduction can be achieved by adjusting
the positioning of individual pairs alone, without consideration
of the overall structure of the data set.3 By initializing with over-
lapping clusters, we reduce the likelihood of encountering local
optima corresponding to such peculiarities.

3.4 Variation operators
3.4.1 Crossover. A standard uniform crossover scheme is utilized,
and is illustrated in Figure 3. Each µ and Σ decision variable (set)
is swapped independently. Treating both variables as a single unit
(i.e. only allowing them to be swapped together) can result in a
lack of diversity, particularly when small K values are used. The
probability that two individuals undergo crossover is 0.7.

µ1 Σ1 µ2 Σ2 µ3 Σ3 µ4 Σ4 µ5 Σ5

µ1 Σ1 µ2 Σ2 µ3 Σ3 µ4 Σ4 µ5 Σ5

µ1 Σ1 µ2 Σ2 µ3 Σ3 µ4 Σ4 µ5 Σ5

µ1 Σ1 µ2 Σ2 µ3 Σ3 µ4 Σ4 µ5 Σ5

Figure 3: Uniform crossover of individual decision variables

3.4.2 Mutation. In designing a mutation operator, we needed to en-
sure that the perturbation was both geometrically meaningful and
provided a significant random adjustment to the cluster structure.
To provide a meaningful mutation, the mean and covariance parts
of the genotype are handled separately. Mutation rates for both
types of decision variables are set separately, so that on average one
mean and one covariance mutation occurs per individual mutation
(i.e. the mean and covariance have a 1

K chance of mutation).
To mutate the mean, the new mean (µnewk ) is sampled from a

Gaussian around the current mean, i.e. µnewk ∼ N(µcurrk , s), where
s is the width (variance) of the Gaussian. This effectively shifts the
cluster in a random direction.

As the decision variable µk is described by a D-dimensional
vector, it effectively corresponds to D individual decision variables.
To avoid over-inflated mutation rates, the probability of shifting the
mean in a particular dimension is 1

D . As the dimensionality of a data
set increases, there are, on average, more directions (mutations)
that move a cluster centroid away from the other clusters than
towards them. In future work, we may consider explicit ways of
mitigating this effect, which can result in unintended drift towards
high values of the validity index.

Mutating the covariance involves the creation of a transforma-
tion matrix, comprised of a scaling and rotation matrix. Performing
an eigendecompostion on the covariance matrix, we can view the

3As an example, a moderate silhouette width can be achieved by simultaneously having
a pair of clusters on top of each other while remaining well-separated from other pairs.
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scaling matrix as randomly modifying the eigenvalues (eccentricity)
and the rotation matrix as modifying the eigenvectors (orientation).

For the creation of the scaling matrix, the use of an additive con-
stant or randomly sampled multiplicative scalar leads to a biased
distortion over time (creating only highly eccentric clusters). To
avoid this, the scaling matrix modifies the variances but maintains
the overall determinant of the covariance matrix, preserving the
volume of the (hyper)ellipsoid. The rotation matrix is created in
the same way as the initial cluster orientation, but raised to a frac-
tional power to ensure the rotation is a perturbation, maintaining
similarity to the previous orientation.

3.5 Constraints
Two constraints are currently included to introduce additional as-
pects of problem difficulty, providing additional control of the com-
plexity of cluster structures and the direct modulation of potential
trade-offs. While our objective function (using an internal valid-
ity index) is designed to provide direct and quantifiable control
regarding the overall (global) difficulty of a dataset, the proposed
constraints help consider additional local aspects of cluster struc-
ture that can drive difficulty. In view of the representation and
generating model currently adopted in our tool, we have identified
cluster overlap and cluster shape as primary candidates for these
constraint measures. Future work may consider additional aspects
such as the balance of cluster sizes or other cluster shapes.

3.5.1 Eccentricity constraint. As the rotation matrix and (diagonal)
covariance matrix are kept separate, the variances/eigenvalues of
the covariance matrix directly specify the eccentricity of the cluster.
To control the extent of this eccentricity, we calculate the eigenvalue
(λ) ratio between the smallest and largest variance. For a given
individual, this is calculated as:

λratio = max∀k ∈{1, ...,K }

max∀i ∈{1, ...,D } Σkii

min∀i ∈{1, ...,D } Σkii
. (6)

Controlling the amount of eccentricity that leads to an infeasible
solution can allow for the creation of elongated clusters, which can
introduce challenges for both the silhouette width and clustering
algorithms that optimise compactness (e.g. K-Means).

3.5.2 Overlap constraint. Noisy real-world data can have clusters
that overlap, which affects clustering performance. Robustness to
overlap, however, varies significantly between algorithms. By con-
straining (or enforcing) an amount of overlap in the datasets a wider
diversity of cluster structures can be created with an additional
layer of complexity to the cluster structure defined by the st .

The calculation of the overlap itself can also result in a bias.
For example, in [4] the authors determine that a point overlaps if
its own centroid is further away than a point in another cluster.
Such a constraint may potentially prevent the generation of highly
eccentric clusters, even where these are spatially well-separated.

We use a nearest neighbour method to calculate overlap, defined
as the percentage of data points whose nearest neighbour is a mem-
ber of a different cluster. This value is in the range [0, 1], though
for two Gaussians with identical µ, Σ, and sampling density, the ex-
pected overlap is 0.5. Values higher than this can be achieved when
there are multiple overlapping clusters, and clusters of different

densities. The overlap is defined formally as:

overlap = 1 −
1
N

N∑
i=1

1C i (inn) (7)

whereCi is the cluster that data point i belongs to, inn is i’s nearest
neighbour, and 1 is the indicator function defined as:

1C i (inn) :=

{
1, inn ∈ Ci

0, inn < C
i

As these constraints are conflicting and can be impossible to
completely satisfy, many infeasible (but useful) solutions are created
during a run of our EA. Stochastic ranking [20] is used to trade-off
selecting for fitness and level of feasibility. This is achieved using the
parameter Pf , which is the probability that the objective function
rather than the constraint penalties will be used for comparisons
between infeasible individuals. This parameter influences whether
the search favours feasibility or optimality. In accordance with [20],
the actual penalties for the individuals are calculated using the
quadratic loss function.

3.6 Evolutionary algorithm
A low population size (of 10) is used, and the EA is run for 100
generations. Although this has not been tuned, preliminary experi-
ments showed these values to be sufficient. Figure 4 illustrates how
a typical run of the generator (using 60 generations) looks in terms
of the actual dataset that is produced. A simple, well-separated
dataset is generated using st = 0.9. As previously mentioned, the
clusters are initialized with significant overlap – even after 10 gen-
erations the clusters still look almost completely on top of each
other. The fitness drops over time, slowly separating the clusters as
shown at generation 30, and then even more after 50 generations.

0 10 20 30 40 50 60

Generations
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Figure 4: The line shows the median fitness (where st = 0.9)
of the population. The data points and respective Gaussian
(with width 3σ ) of the best individuals at generations 10, 30,
and 50 are also shown.

A standard binary tournament is used to select the parents for
crossover and mutation. Stochastic ranking is used to sort the com-
bined pool of the current population and the offspring, from which
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the best 20% of individuals are selected for the next generation. The
remainder are selected randomly from the combined pool.

4 EXPERIMENTS & RESULTS
In this section we illustrate how our generator can be used to gen-
erate datasets trading off aspects of problem difficulty and how
these adjustments impact the performance of standard clustering
techniques. To do this, we first report an experiment designed to
identify relevant values of target difficulty for different dimension-
alities. We then show how controlled variation of the stochastic
ranking parameter allows us to generate datasets associated with
different trade-offs between the silhouette width and cluster overlap
to produce datasets with pronounced differences in difficulty.

We further provide a comparison of the datasets generated in
these experiments to those produced by existing generators. We
do this both by considering the location of individual benchmarks
within a simple instance space, and by contrasting diversity in
performance of clustering algorithms across different benchmark
sets. Unless stated otherwise, all experiments use 20 independent
runs of the generator, and the best (i.e. closest to the target st )
individual from each run is selected for analysis.

To consider clustering performance on the benchmark data, the
following algorithms are used: K-Means++ [2], single- and average-
linkage, and Gaussian mixture models (GMM), as available in scikit-
learn [15] with default parameters. Each algorithm is given the true
number of clusters. As hierarchical clustering algorithms (partic-
ularly single-linkage) are prone to identifying singleton clusters
and sometimes fare better with a higher number of clusters, these
algorithms were also run with an inflated number of clusters (2K ).

To measure performance, we use the Adjusted Rand Index (ARI)
[10], an external cluster validity index that uses the true cluster
membership. The ARI is bound in the range [0, 1], where 1 repre-
sents a perfect assignment of labels to the data points, and 0 equates
to random assignment.

4.1 Defining target difficulty
Compared to alternative validity indices, the silhouette width has
a straightforward interpretation as it abstracts from the scale of
a particular data set. Nevertheless, as mentioned previously, the
measure is not entirely insensitive to changes in the dimensionality
of a data set due to the curse of dimensionality. At high dimensions,
distances between points become increasingly similar, deflating the
values typically associated with well-separated cluster structures.

Our first experiment was therefore concerned with identifying a
silhouette width range of interest for a given dimensionality. Specif-
ically, for desired dimensionalityD, we aim to identify which values
of the silhouette width are associated with non-trivial datasets, i.e.
datasets that are sufficiently complex for a trade-off between differ-
ent aspects of cluster quality to exist. Here, we use the silhouette
width and our overlap constraint in making this assessment.

To illustrate this, we generate two clusters at both a low (2D)
and high (20D) dimensionality. The two clusters start with the same
mean, and are perfectly hyperspherical (i.e. Σ = ID ), which with
their equal density should result in overlap ≈ 0.5. The clusters are
gradually separated by moving the cluster means in an equal and
opposite direction along a single axis.
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Figure 5: Interaction between sall and overlap for two drift-
ing Gaussians at low (2D) and high (20D) dimensions.

As may be expected, Figure 5 shows that both the silhouette
width and the overlap decrease as the clusters move apart. However,
in 20D, the overlap decreases rapidly for a small increase in the
silhouette width. Conversely, in 2D, the rate of change for the
silhouette width and overlap is more similar. It is clear that, in
higher dimensions, even well separated clusters (with no actual
overlap) may not be associated with a silhouette width of 0.35 or
higher. This behaviour is important to consider when selecting
appropriate (and challenging) values for these parameters at the
desired dimensionality.

4.2 Exploring the instance space
We use the stochastic ranking parameter Pf to explicitly explore
specific areas of interest in the instance space defined by the sil-
houette width and our measure of overlap. To do so, our overlap
constraint is set to an upper bound of 0 (i.e. overlap ≤ 0), penalizing
any overlap. Based on the results from the previous section, we
chose our silhouette width target to be st = 0.2 in 20D and st = 0.6
in 2D. We then select Pf values of {0.1, 0.5, 0.9}, representing a
favouring of the constraints (pushing towards no overlap), no bias,
and favouring the objective respectively.

In Figure 6a, the actual silhouette widths and overlap obtained
in 20D are shown for the three Pf values. There is a clear trade-off
between the silhouette width and the overlap, the search of which
is controlled by the Pf value. In such a conflicting scenario, the
overlap constraint acts as a second objective, weighted by Pf , and
variation of Pf allows the generation of datasets in different regions
of the instance space.

Figure 6b shows the associated variation of clustering perfor-
mance for these setups. There are pronounced differences in the
absolute and relative performance of traditional clustering algo-
rithms. Most notably, average-linkage emerges as a serious con-
testant for the benchmarks with limited overlap (Pf = 0.1), but its
performance declines severely as the extent of the overlap increases
(progressively from Pf = 0.5 to Pf = 0.9).
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Figure 6: The scatter plot in (a) shows how the trade-off between the silhouette width and overlap can be managed by the Pf
parameter. In (b), we see how this is reflected in a difference in performance of clustering algorithms, where the hierarchical
clustering methods favour a bias towards minimizing overlap.

4.3 Comparing generators
To get an idea of the diversity of performance of algorithms on
our benchmarks, we generated a small batch of datasets using the
parameters highlighted in Table 1. While this represents a narrow
range of the capabilities for our generator, it is realistic to desire
minimal overlap and not consider eccentricity.

Taking the best from each of 20 runs, across 12 unique com-
binations of parameters, 240 datasets were generated in total. To
isolate the effect of optimizing the silhouette width by itself, the
λratio is unconstrained and overlap is discouraged (i.e. constrained
as overlap ≤ 0), and the search is unbiased between the objectives
and constraints (Pf = 0.5).

Table 1: Generator Parameters

Parameter Symbol Value(s)

# datapoints N 2000
# clusters K {5, 30}
# dimensions D {2, 20}
Stochastic ranking parameter Pf 0.5
Fitness f () {0.2, 0.5, 0.8}
Eigenvalue ratio λratio ≥ 1
Overlap overlap ≤ 0

These datasets were compared against the clustering benchmarks
of HK used in [6] (160 datasets), and QJ used in [16] (243 datasets).
HK’s datasets consist of 80 from the ‘gaussian’ generator with D ∈

{2, 10} and K ∈ {4, 10, 20, 40}, and 80 datasets from the ‘ellipsoid’
generator with D ∈ {50, 100} and K ∈ {4, 10, 20, 40}, covering a
range of settings.

The datasets produced by Qui & Joe define three levels of separa-
tion: ‘close structure’, ‘separated’, and ‘well-separated’. A range of
dimensionality is used, from 5 to 24 dimensions, and K ∈ {3, 6, 9}.

They specify differing levels of noisy variables to add further com-
plexity. Further details of these datasets can be found in their respec-
tive papers. The results of running the aforementioned clustering
algorithms on these datasets can be seen in Figure 7.
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Figure 7: Comparison of the HK [6], HAWKS, and QJ [16]
generators. A greater variance in performances indicates a
wider diversity of datasets, and a lower median indicates a
higher difficulty across the datasets for that algorithm.

A wide spectrum of performance is obtained by all generators,
showing that (at least for some algorithms) a diverse set of cluster
structures is generated. Note that aggregating across this many
diverse datasets is unhelpful for empirically comparing algorithmic
performance, but it is useful for evaluating the diversity (of the
clustering challenge) that the generator can create.

A broad spectrum of performance is obtained by HK’s generator
for all algorithms aside from single-linkage. The noticeably lower
medians for our generator indicate a higher degree of difficulty, and
larger variance indicate a more diverse spread of datasets. Despite
this advantage, the benchmarks considered in this experiment do
not include datasets favouring the single link algorithm. We believe
that this is due to the limitation of using a single setting (Pf = 0.5)
for the stochastic ranking parameter only, and can be overcome by
including a lower choice in our experiments. As evident from Figure
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6, this is required to push for clusters with minimal overlap. Our
datasets do contain clusters with highly eccentric shapes (λratio ≥

1000), and this, in combination with little overlap, should produce
benchmarks that favour the single link algorithm.

For QJ’s generator, performance for average- and single-linkage
is evenworse, and there is a bias in performance towards K-Means++
and GMM. This indicates that there is a lack of eccentricity in the
clusters, favouring these compactness-based clustering methods. It
should be noted here though that their generator can produce more
eccentric clusters, but in the suite specified in [16] eccentricity was
limited to an equivalent maximum of λratio = 10. It should further
be noted that even their most challenging datasets (‘close structure’)
did not degrade performance as significantly as datasets obtained
from the optimization to a low silhouette width.

To illustrate the generators in a similar way to the ‘instance
space’ work of Smith-Miles [22], Figure 8 shows a plot of the gen-
erators according to the silhouette width, overlap measure, and
dimensionality. To visualize the data, PCA has been applied to re-
duce the space to 2D. Both our generator and QJ’s cover a range of
the space, whereas HK’s generator favours low overlap and higher
silhouette widths, with the separation across the second principal
component largely due to the higher dimensionality of their data.
Although this a simple instance space, there is a clear difference
in coverage between the generators, which is encouraging for our
approach.

−2 −1 0 1 2 3 4

PC 1

−1

0

1

2

3

P
C

2

HAWKS

HK

QJ

Figure 8: Comparison of the generators in a simple instance
space. Greater coverage of the space indicates a wider diver-
sity of datasets. PCA is used to reduce the silhouette width,
overlap, and number of dimensions in the datasets to 2D.

5 CONCLUSION AND FUTUREWORK
Synthetic data generators play an important role in creating bench-
mark datasets that can help assess the performance of new algo-
rithms, and meaningfully compare different techniques. A solid
understanding of the properties and complexity of synthetic data
facilitates the design of robust evaluations of algorithms, providing
insights into their specific strengths and weaknesses.

We have created HAWKS to try and generate datasets of a de-
fined level of difficulty for the problem of cluster analysis. Our

experiments demonstrate that, even for a simple setup (involving
three aspects of problem difficulty), we are able to generate datasets
that exceed the diversity of existing benchmarks, triggering signifi-
cant changes in the performance of standard clustering methods.
In future work, by using state-of-the-art clustering algorithms we
can better assess the nuanced difficulty of our generated datasets. A
core advantage of our generator is the use of an evolutionary com-
putation framework, which allows for the easy future replacement
of individual components of our tool. The sole use of Gaussian clus-
ters is an obvious limitation of the current prototype; the creation
of non-convex clusters in a similarly parameterized way would
further facilitate empirical comparisons between algorithms.

Our current method uses the mechanism of stochastic ranking
to illustrate the trade-off between different aspects of problem diffi-
culty. The consideration of multi-objective optimization techniques,
to support this exploration, seems like an obvious extension. Fur-
thermore, our experiments are currently limited to the use of a
single validity index. As discussed in earlier sections of the paper,
a fair evaluation of clustering algorithms will require the definition
of an instance space (and benchmark set) obtained through the con-
sideration of a much larger number of complementary validation
techniques. Future work will also need to look at the scalability of
this generator, particularly when extending to multiple objectives.
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