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Figure 1: (a) A gear that was fabricated with an FDM 3D
printer and (b) the gcode file that was used to prepare the
fabrication of the gear. The imprecision of FDM printers on
smaller, detailed parts can be observed.

ABSTRACT
Consumer-grade 3D printers have made it easier to fabricate aes-
thetic objects and static assemblies, opening the door to automated
design of such objects. However, while static designs are easily pro-
duced with 3D printing, functional designs with moving parts are
more difficult to generate: The search space is too high-dimensional,
the resolution of the 3D-printed parts is not adequate, and it is
difficult to predict the physical behavior of imperfect 3D-printed
mechanisms. An example challenge is to produce a diverse set of
reliable and effective gear mechanisms that could be used after pro-
duction without extensive post-processing. To meet this challenge,
an indirect encoding based on a Recurrent Neural Network (RNN)
is created and evolved using novelty search. The elite solutions of
each generation are 3D printed to evaluate their functional perfor-
mance on a physical test platform. The system is able to discover
sequential design rules that are difficult to discover with other meth-
ods. Compared to direct encoding evolved with Genetic Algorithms
(GAs), its designs are geometrically more diverse and functionally
more effective. It therefore forms a promising foundation for the
generative design of 3D-printed, functional mechanisms.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Genetic al-
gorithms; Shape analysis; • Applied computing → Computer-
aided design;
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1 INTRODUCTION
Fused Deposition Modeling (FDM) or commonly known as the pro-
cess of 3D Printing, is a practical prototyping technique in which a
3D digital model of a design is sliced via dedicated software into thin
layers and fabricated by fusing these layers on top of each other to
form the final product. Its low cost and ease of use made it the stan-
dard technology for consumer-grade printers, and its wide adoption
enabled fabrication of a variety of creative and aesthetic objects
as well as static assemblies easier than ever. However, despite the
availability of such open source designs in popular repositories
for makers [1, 2], generation of designs with moving parts is still
challenging, i.e., extensive postprocessing [5, 13] or re-printing of
the parts is needed. High dimensional search space for the control
parameters in design (e.g., shape analysis of individual parts, their
assembly for a particular functional performance, etc.) and print
process (e.g., temperature and speed settings for various 3D printer
parts) is one of the principal reasons. Second, slicing software in-
herently limits the resolution of the digital design while preparing
the printing instructions as seen in Fig. 1b, where a digital gear
model is discretized and discontinuities formed. Additional losses
due to the nature of the printing hardware is also inevitable (see
Fig. 1a) [11]. Third, it is difficult to predict the physical behavior of
imperfect 3D-printed mechanisms by using computer aided simula-
tions due to numerous unknowns, i.e., material properties, stiffness
and damping of parts, surface properties of the interacting parts
such as friction coefficient, etc.

Design of functional mechanisms has mostly been relying on
the use of pre-existing design rules, analytical equations, or user
input, thus has lack of automation and emergence of creativity.
There are some studies exploring the ability of cognitive models
to create functional mechanisms such as wind-up toys and robots
that are able to accomplish some desired tasks, such as moving in a
certain direction or propelling objects. In [4], researchers proposed
a semi-automated method to let the non-expert users to iteratively
create animated mechanical characters. The match between the
sketch of the motion curve of each part and 3D printed designs
were analyzed. Another interactive design method was developed
in [14] which enables users to rearrange an existing mechanism
to fit within a desired space and fabricate them, but it requires
some experience in design. In [10], a computational system was
developed to construct a compact internal mechanism for wind-up
toys to realize user-requested part motions utilizing a database of
known mechanism elements and their corresponding motion trans-
fer. Some recent studies focused on the design and optimization of
gear mechanisms in particular. For example, multiobjective genetic
algorithms were used together with a set of analytical equations to
simultaneously maximize the efficiency and minimize the volume
of a design having a pair of gears in [8]. A similar approach was
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performed by [3] for a larger system of gears. Gologlu and Zeyveli
[6] automated the preliminary stages of designing a gear system
using GAs to evolve a set of possible gear mechanisms as a means
of support in decision-making process, wheras Savsani et.al. [9]
applied particle swarm optimization algorithm to achieve a similar
goal. Despite such attempts, these approaches in common utilize
known analytical or emprical equations and design constraints,
thus limiting less intuitive and novel mechanisms.

On the other hand, recent advances in generative models, mostly
utilizing unsupervised deep-learning models but not limited to,
learn the common features in vast amount of data, i.e., 2D images
or 3D digital geometry files. For example, electromechanical robots,
comprised of elementary building blocks (rods and joints), were au-
tonomously designed and optimized in a study performed by Lipson
and Pollack [7]. This autonomous design method was successful in
generating a diverse set of robot mechanisms traversing a target
distance. Additionally, a Generative Adversarial Network (GAN)
model was implemented to learn an efficient representation from
a dataset of 3D shapes such as furnitures, chairs, etc., eventually
to generate novel designs that are not existing in the training set.
Although these designs were not physically fabricated, the 3D-GAN
was successful in generating high-resolution 3D representations of
new designs. Despite such interesting applications, the use of gen-
erative models has been limited to static designs. Recently, Tutum
et.al. [12], integrated a Variational Autoencoder with a surrogate-
based optimization method to generate new 3D printable springs
for a car launcher mechanism with desired functionality. In this
paper, an example challenge is to produce a diverse set of reliable
and effective gear mechanisms that could be used after production
without extensive post-processing. To meet this challenge, an in-
direct encoding based on a Recurrent Neural Network (RNN) is
created and evolved using novelty search. The elite solutions of
each generation are 3D printed and assigned a distance score based
on a physical test platform.

The organization of the paper is as follows: First, the methodol-
ogy is introduced followed by the details about the implementation
of evolution with novelty search criterion. Next, the physical evalu-
ation setup for mechanism testing is described. Finally, quantitative
results of gear mechanisms generated by RNNs are given and com-
pared with those produced by a baseline GA, followed by a brief
discussion of the outcomes of this methodology and possible future
work.

2 METHODOLOGY
Overall methodology (see Fig.2) involves a Recurrent Neural Net-
work (RNN), a novelty search algorithm, and a 3D printer to fabri-
cate mechanism designs for functional testing (see Sec. 2.6). Evo-
lution begins with a population of 150 randomly initialized RNNs,
each of which encodes a single gear mechanism, and continues
for 40 generations. Evolution is driven by novelty search, which
assigns high fitness to RNNs that produce unique mechanisms. The
generative RNN model used in this experiment designs gear mech-
anisms by sequentially adding gears into an empty system until
a full mechanism is produced. The mechanisms with the highest
novelty score in each generation are fabricated with a 3D printer
and placed into an archive of elite solutions. Each mechanism that

Figure 2: Overall methodology for evolving RNNs that indi-
rectly encode gear mechanisms. Evolution is driven by nov-
elty search. The mechanism with highest novelty score is
fabricated for physical evaluation during each generation.

is fabricated is evaluated with a physical experiment (see Sec. 2.6)
and assigned a distance score to better understand its functional
capabilities.

Additionally, direct encodings of gear mechanisms are evolved
for comparison with the evolution of generative RNN models. All
aspects of the two experiments, aside from the way in which mech-
anisms are represented, are identical.
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Figure 3: RNNmay choose to place one of these six different
sizes of gears into the system at every time step.

2.1 Constraint Handling for Mechanisms
In order to generate valid gearmechanisms, some design constraints
must be satisfied, such as limiting the size of the mechanism and
avoiding collisions of gears within the mechanism. During evolu-
tion, the fitness of infeasible solutions (i.e., those that violate con-
straints) is assigned to be worse than all feasible solutions and is
further penalized by the severity of the constraint violation. There-
fore, the evolutionary process favors not only unique mechanisms,
but also feasible mechanisms that can be fabricated.

2.2 Method-I: Generative RNN Model
This section outlines the architecture of the generative RNN model
used for the encoding of gear mechanisms, which is illustrated
in Fig. 4. The RNN used for this study has one-hidden-layer and
two weight matrices (including bias), which connect the input and
hidden layers to the hidden layer and hidden layer to the output
layer. The input, hidden, and output layers each consist of 8 nodes.

Algorithm 1 Evolution of RNNs

1: procedure evolve(rnn_pop)
2: pop_size := 150
3: nдen := 40
4: archive := ∅
5: pop := random_init_RNN_pop(pop_size) STEP1
6: дeneration := 0
7: while дeneration < nдen do
8: vectors := ∅
9: for i from 0 to pop_size do
10: output = RNN . f orward(pop[i]) STEP2
11: vectors .append(дet_vector (output)) STEP3
12: best_individual := null
13: best_novelty := 0
14: for i from 0 to pop_size do
15: f itness := distance(vectors[i],archive) STEP4
16: pop[i]. f itness := f itness
17: if f itness > best_novelty then
18: best_individual := pop[i]
19: best_novelty := f itness

20: archive .append(best_individual)
21: pop := select_tourn(pop)
22: pop :=mutation_and_crossover (pop) STEP5
23: дeneration := дeneration + 1

Figure 4: The RNN model encodes a gear mechanism by
sequentially placing gears into an empty design area. Red
output nodes have high activation values, while grey nodes
have low activation values. Labels 1-6 represent gear size,
L/C represents linear vs. coaxial placement and A/S repre-
sents continue adding gears vs. stop adding gears.

Within the network, the hidden layer contains a recursive con-
nection, which allows the RNN to be activated over multiple time
steps. During each time step, the previous output layer is used as
input to the RNN. The hidden layer is obtained by concatenating the
input layer with the previous hidden layer and passing this vector
through a weight matrix. This hidden layer is then activated with
an element-wise hyperbolic tangent activation function and passed
through another weight matrix to yield the output. During the first
time step, the previous hidden and output layers are initialized to
vectors of ones because there is no previous hidden or output state
to be used.

The RNN is executed recursively to individually place each gear
into a mechanism until the mechanism is fully constructed, as can
be seen in Fig. 4. At each time step of the RNN, a single gear is
added into the mechanism. This gear may be placed linear (i.e.,
side-by-side) or coaxial (i.e., along the same center of axis) with
respect to the previous gear. A mechanism can contain a maximum
of six gears and no fewer than two gears.

At each time step, the first six RNN output nodes are activated
with a softmax activation function and represent the size of the
gear to be placed in the mechanism. There are a total of six different
gear sizes that can be added into a mechanism, as seen in Fig. 3.
The same gear can be added into a mechanism multiple times. The
other two output nodes are activated with a hyperbolic tangent
activation function. These final two outputs determine how to place
the current gear into the mechanism with respect to the previous
gear (linear vs. coaxial) and whether RNN should continue adding
gears into the mechanism, respectively. All output nodes, eight in
total, are used as input for the following time step.

The equations for the activation of the generative RNN model
are as follows:

ht = α(Wxt + Rht−1 + bw )

ot = α(Zht + bz )
⋃

σ (Yht + by )
(1)

where x is the input vector at time t, h is the hidden layer at
time t, b is the bias vector,W is the input to hidden layer weight
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Figure 5: Demonstrates how a novelty vector is created from
a gear mechanism.

matrix, R is the hidden layer to hidden layer weight matrix, Z and
Y are the hidden layer to output layer weight matrix (separated
to illustrate two different output activation functions), α is the
element-wise hyperbolic tangent activation function, and σ is the
softmax activation function.

The generative RNN models are evolved for 40 generations us-
ing GA and novelty search objective. The details of evolution are
outlined in section 2.5.

2.3 Method II: Direct Representation
In order to have a baseline model to compare with generative RNNs,
a direct representation of gear mechanisms was created and evolved.
This representation is comprised of an ordered list of gears for each
mechanism combined with a list of placements for each gears with
respect to the previous gear. A gear and placement list together
encode a single mechanism, which contains between two and six
total gears. Similar to RNN evolution, these direct representations
were evolved for 40 generations using GA and novelty search. Aside
from the way in which mechanisms are represented and created,
the evolutionary process for each of these methods is identical.

2.4 Novelty Search
Novelty search is chosen as the objective function: i) to allow evolu-
tion to perform well in deceptive domains, ii) to handle the limited
number of fitness evaluations due to the expense of fabricating each
mechanism design. The number of feasible solutions that satisfy
various design constraints is low. Therefore, searching for an effec-
tive gear mechanism would be more difficult if a specific objective
was chosen (i.e., maximizing distance the car is pulled along the
track). Novelty search discovers innovative designs by aiming to
maximize diversity of mechanisms in the population and minimize
the violation of constraints, allowing a more productive region of
the large search space to be explored.

In order to assess novelty, a distance metric was created between
mechanisms. For every mechanism, a vector, called the novelty
vector, can be created that describes its structural properties. The
values within this novelty vector include various characteristics of

themechanism, such as the ratios between gears (i.e., the quotient of
radii between two adjacent gears). The vector for each mechanism
includes the following values:

• variance(X): Variance of x-positions of the gears (gears are
placed from the front to the back of the gear box),

• mean(ratios): Mean of gear ratios (quotient of adjacent gear
radii),

• variance(ratios): Variance in ratios (quotient of adjacent gear
radii),

• mean(radii): Mean in radii of gears put into the mechanism,
• variance(radii): Variance in radii of gears put into the mech-
anism,

• Total Number of Gears
The process of creating a novelty vector is illustrated in Fig.

5. Using this vector, novelty can be calculated by finding the Eu-
clidean distance between novelty vectors for different mechanisms.
This way of assigning fitness allowed for fitness to be determined
without fabricating and testing every possible solution. Instead,
only the individual with maximum novelty score after each genera-
tion fabricated for more detailed physical evaluation, thus allowing
innovative, high-performing designs to be discovered without sig-
nificant testing overhead.

2.5 Evolution Process
The evolution process for generative RNNs is illustrated in Fig. 2
and outlined in more detail in Algorithm 1. Evolution begins by
randomly initializing a population of 150 generative RNNs, each of
which encodes a single mechanism. During every generation, the
mechanism encoded by each RNN is generated. For every mecha-
nism, the novelty vector is found and used to determine the mecha-
nism’s novelty score, which is assigned as the mechanism’s fitness.
After fitness is assigned, selection, mutation and crossover are ap-
plied to the population to create the next generation of offspring.
The evolution process continues for 40 generations.

The novelty score for each mechanism, which is used to assign
fitness, is calculated by finding the minimum euclidean distance
between a candidate mechanism’s novelty vector and all novelty
vectors within an archive of elite solutions from previous gener-
ations. This archive includes the mechanisms with the highest
novelty score from every generation. Moreover, each mechanism in
the archive is fabricated and evaluated using the experimental setup
(see Sec. 2.6) to determine its distance score. It should be noted,
however, that this distance score is unrelated to evolution and is
rather used to evaluate the functional effectiveness of mechanisms
produced during evolution.

The process for evolving direct mechanism representations was
identical to the evolution of RNNs, aside from the way in which
mechanisms were represented and created.

2.6 Evaluation Setup
The overall test setup can be seen in Fig. 6. The rail tracks, car being
pulled and gear box are 3D printed. A rope, which wraps around
the car, is connected to the output axle of the gear mechanism,
located inside of the gear box. Torque is applied to the input axle of
the gear mechanism by a rubber band that is twisted once around
the axle. The axle is then released and spun by the rubber band,
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Figure 6: (a) A top-view of the setup for physical experi-
ments. The small car is pulled towards the gear box by the
rope attached to the output axle and the traveled distance
is recorded. (b) A closer visualization of the pulling mecha-
nism.

Figure 7: Visualization of the pulling mechanism. The in-
serts (red parts, used to hold gears in place) are modified
and re-printed for every design that is physically tested. All
other components (gears, axles, and main body) are reused
for each design.

which causes the rest of the mechanism to be set in motion. The
rotation of the output axle then wraps the rope around the pulleys
on both ends of the output axle and pulls the car. The rail track is
35 inches long. The distance that the car travels along the track is
recorded for each archived mechanism by the ruler located next to
the rail track. The sail that is attached to the car is used to keep the
rope out of the track so that it does affect the car’s movement. On
the other end of the track, a gear box is taped to the surface. This
gear box, seen in Fig. 6, was designed to be modular, such that the
box and gears do not have to be 3D printed with each evaluation.
Instead, only the inserts that hold the gear axles in place need to be
printed (see Fig. 7). The location of the holes within the inserts to
hold axles in place are computed for each archive solution to allow
the gears to mesh perfectly. This modular design greatly reduced
the time required for testing each novel candidate mechanism.

Designing mechanisms that perform well in this environment is
a difficult task. While a certain mechanism may have high output
speed, its torque may not be enough to pull the car along the track
because theweight of the car is not negligible. Because of the inverse
correlation between the output speed and torque, each mechanism
must find an effective balance between these two objectives to pull

Figure 8: Combined distance score results for all archived
mechanisms generated by RNN and Direct Representation
experiments. The error bars represent the maximum and
minimum distances for the three tests that were performed
for each mechanism, while the actual value reflects the av-
erage of the three trials.

the car longer distances. In fact, many mechanisms having a high
output speed and low torque, or vice versa, are only able to pull
the car a few inches along the track. Because of such challenges,
designing a gear mechanism to properly accomplish this task is not
trivial.

3 RESULTS
In this section, results for the evolution of RNN and direct repre-
sentation models are presented. Two different experiments were
performed to test the ability of the proposed generative RNN model
and direct encodings to produce a diverse and functionally effective
set of resulting mechanisms. The direct representation experiment
is used as a baseline to determine the effectiveness of the genera-
tive RNN model. At each generation of evolution, the mechanism
with the highest novelty was fabricated and tested to determine its
distance score. Each mechanism was tested three times to ensure
consistency and the distance score results were collected separately
for RNN and direct representation experiments. Results for both
methods are shown in Fig. 8 and discussed in detail in the next two
subsections.

3.1 Results of RNN Evolution
As seen in Fig. 8, the generative RNN model managed to generate
a diverse set of mechanisms that pulled the car varying distances.
Among all mechanisms generated by RNN, the standard deviation
of distance scores was 6.14 inches. In the final set, the three highest-
performing mechanisms, each of which utilized a complex coaxial
structure, pulled the car 27.5, 25.2, and 23.3 inches (mechanisms
18, 1, and 22, respectively). Their design patterns can be seen in
Fig. 9. Out of 40 archived mechanisms, eight of them contained
coaxial structure. Typically, such coaxial designs are difficult to
create because they require a larger number of gears, which in-
creases the probability of violating constraints. However, the RNN
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Figure 9: Mechanism 1 (a), 18 (b), and 22 (c) produced by evo-
lution of RNNs. Gears of the same color exist within the
same plane and are connected linearly, while gears of differ-
ent colors are coaxial. The numbers on each gear represent
the gear type.

methodology was able to efficiently place gears into the system by
utilizing repeating, coaxial design patterns that avoided collisions
and minimized the size of the mechanism.

When examining the design patterns in Fig. 9, it is clear that the
generated mechanisms follow sequential, repetitive design patterns.
For example, in mechanism (a), the pattern of placing a small gear
adjacent to a large gear is repeated several times in the mecha-
nism’s structure. Such patterns are quite common in the resulting
mechanisms from the evolution of RNNs. In Fig. 10, the composi-
tion of the RNN network that encodes mechanism (a) from Fig. 9 is
displayed. In this figure, the RNN’s hidden state follows a distinct
pattern while outputting gears at each time step. When a smaller
gear is placed into the system, the hidden layer values contain a
pattern that causes the next outputted gear to be large. Similarly,
when a larger gear is placed into the system, the hidden layer values
contain a pattern that causes the next outputted gear the be small.
This pattern is repeated in every time step of the RNN’s activa-
tion, thus revealing that the RNN utilizes the history of previously
chosen gears to design the mechanism. In this case, it is clear that
the RNN, through evolution, has learned a design rule for creating
complex mechanisms, which causes it to always pair large gears
with small gears. By following this design rule, the RNN creates an
output mechanism that has a repeating, coaxial structure, which
allows the mechanism, despite being complex, to be packed into a
smaller area. Such patterns were common to many of the RNNs that
created complex structures, thus revealing RNN’s ability to learn
successful design patterns and use the history of previous gears to
produce complex mechanisms without violating constraints. Such
an ability to learn useful design techniques allowed RNN to focus
evolution on a more efficient region of the search space. Because
RNN is able produce unique mechanisms within the constraints of
the design space, such mechanisms achieve relatively high novelty
scores, allowing them to be explored, evolved, and physically tested.

3.2 Results of Direct Representation Evolution
The evolution of direct representations also produced a set of feasi-
ble mechanisms. The overall standard deviation of distance scores is
4.6 inches. The three highest-performing mechanisms pulled the car
19.8, 19.5 and 19.3 inches (mechanisms 32, 12, and 31, respectively).
These mechanisms are shown in Fig. 11. Out of all 40 archived mech-
anisms, only three of them utilized coaxial gears. None of these

coaxial mechanisms performed nearly as well as those discovered
by generative RNN models, which indicates that the evolution of
direct representations was unsuccessful in finding effective coaxial
design patterns. The rest of the mechanisms contained no coaxial
gears in their structure.

The infeasible mechanisms generated in this experiment can
be examined to better understand the difficulties with evolving
complex and effective mechanisms, such as those discovered in
the generative RNN experiment. As can be seen in Fig. 12, coaxial
design patterns found by the evolution of direct representations are
comprised of random sets of gears, having no distinct design pat-
terns. If these gears are not packed efficiently into the system, they
cannot fit into the available design space andwill violate constraints.
Therefore, complex mechanisms evolve less efficiently due to the
lack of feasible designs. Because the direct representation does not
utilize history of previously selected gears in the mechanism, the
model must find efficiently-packed design patterns through random
search. Therefore, it is less efficient in learning the feasible design
space for coaxial mechanisms.

4 DISCUSSION AND FUTUREWORK
The proposed generative RNN model is shown to be effective in
evolving complex and feasible gear mechanisms despite the limited
number of evaluations. Application of various genetic operators
(selection, crossover and mutation) enabled RNNs to find a balance
between complexity and lack of constraint violation, thus creating
mechanisms that aremore diverse and effective than those produced
by the direct encoding. Despite the success of the proposed method-
ology, there are a couple of promising improvements to consider.
First of all, automating the generative procedure with a realistic
physics simulator would enable more detailed sampling and search
in the design space. However, the use of sliced model (the object
model used for fabrication in 3D printing) in such physics simula-
tors is very limited due to the need for computational resources.
The complexity of capturing the correct behavior of interacting
parts (frictional surfaces, nonlinear material properties) is another
limiting factor. Additionally, the generation of gears with contin-
uous design parameters (i.e., the radius of the gear, the size and
shape of gear teeth, etc.) with RNN could be explored.

5 CONCLUSIONS
This paper proposes a novel RNN model for generating a variety
of functional 3D-printed gear mechanisms. The methodology con-
sists of two main components: First, an RNN to represent gear
mechanisms using indirect encoding. Second, novelty search to
evolve more diverse and feasible designs that can be 3D printed and
reliably work. When compared to a direct encoding of such gear
mechanisms, the RNNmodel managed to produce more structurally
diverse set of functional designs given a limited number of design
evaluations. Lastly, the RNN was able to learn sequential design
rules and was proved to consistently utilize such design rules to
create more efficient mechanism structures.
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Figure 10: Visualization for design patterns found in the network structure for mechanism 1 from RNN evolution. The RNN
memorizes the use of previous gears in the system to create sequential patterns in the output mechanism.

Figure 11: Mechanisms 32 (a), 31 (b), and 10 (c) generated by
evolution of direct representations. Gears of the same color
are connected linearly.

Figure 12: Example of infeasible coaxial mechanisms gener-
ated by evolution of direct representations. The randomness
and inefficiency of the designs can be observed. The num-
bers on each gear represent the gear type.
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