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ABSTRACT

We contribute to the theoretical understanding of randomized

search heuristics for dynamic problems. We consider the classical

graph coloring problem and investigate the dynamic se�ing where

edges are added to the current graph. We then analyze the expected

time for randomized search heuristics to recompute high quality

solutions. �is includes the (1+1) EA and RLS in a se�ing where the

number of colors is bounded and we are minimizing the number

of conflicts as well as iterated local search algorithms that use an

unbounded color pale�e and aim to use the smallest colors and –

as a consequence – the smallest number of colors.

We identify classes of bipartite graphs where reoptimization is as

hard as or even harder than optimization from scratch, i. e. starting

with a random initialization. Even adding a single edge can lead

to hard symmetry problems. However, graph classes that are hard

for one algorithm turn out to be easy for others. In most cases our

bounds show that reoptimization is faster than optimizing from

scratch. Furthermore, we show how to speed up computations

by using problem specific operators concentrating on parts of the

graph where changes have occurred.

KEYWORDS

Evolutionary algorithms, dynamic optimization, running time anal-

ysis, theory.

1 INTRODUCTION

Evolutionary algorithms and other bio-inspired computing tech-

niques have been used for a wide range of complex optimization

problems [1, 7]. �ey are easy to apply to a newly given problem

and are able to adapt to changing environments. �is makes them

well suited for dealing with dynamic problems where components

of the given problem change over time [22].

We contribute to the theoretical understanding of evolutionary

algorithms in dynamically changing environments. Providing a

sound theoretical basis on the behaviour of these algorithms in

changing environments helps to develop be�er performing algo-

rithms through a deeper understanding of their working principles.

Dynamic problems have been studied in the area of runtime

analysis for simple algorithms such as randomized local search

(RLS) and the classical (1+1) EA. An overview on rigorous run-

time results for bio-inspired computing techniques in stochastic

and dynamic environments can be found in [26]. Early work fo-

cused on artificial problems like a dynamic OneMax problem [9],

the function Balance [23] where rapid changes can be beneficial,

the functionMAZE that features an oscillating behavior [15] and

problems involving moving Hamming balls [6].

In terms of classical combinatorial optimization problems, promi-

nent problems such as single-source-shortest-paths [16], makespan

scheduling [18], and the vertex cover problem [19, 20, 27] have

been investigated in a dynamic se�ing. Furthermore, the behaviour

of evolutionary algorithms on linear functions with dynamic con-

straints has been analyzed in [28] and experimental investigations

for the knapsack problem with a dynamically changing constraint

bound have been carried out in [24]. �ese studies have been ex-

tended in [25] to a broad class of problems and the performance

of an evolutionary multi-objective algorithm has been analyzed in

terms of its approximation behaviour dependent on the submodu-

larity ratio of the considered problem.

We consider graph coloring, a classical NP-hard optimization

problem. In the context of problem specific algorithms, algorithms

have been designed to update solutions a�er a dynamic change has

happened. Dynamic algorithms have been proposed to maintain

proper coloring for graphs with maximum degree at most ∆1, with

the goal of using as few colors as possible while keeping the (amor-

tized) update time small [4, 5]. �ere exist algorithms that aim to

perform as few (amortized) vertex recolorings as possible in order to

maintain a proper coloring in a dynamic graph [3, 29]. �ere have

also been studies of k-list coloring in a dynamic graph such that

each update corresponds to adding one vertex (together with the

incident edges) to the graph (e.g. [11]). �e related problem of main-

taining a coloring with minimal total colors in a temporal graph

has recently been studied [17]. From a practical perspective, incre-

mental algorithms or heuristics have been proposed that update

the graph coloring by exploring a small number of vertices [21, 32].

Graph coloring has been studied for specific local search and

evolutionary algorithms in [10, 30, 31]. Fischer and Wegener [10]

studied a problem inspired by the Ising model in physics that on

bipartite graphs is equivalent to the vertex coloring problem. �ey

showed that on cycle graphs the (1+1) EA and RLS find optimal

colorings in expected time O(n3). �is bound is tight under a sen-

sible assumption. �ey also showed that crossover can speed up

the optimization time by a factor of n. Sudholt [30] showed that

on complete binary trees the (1+1) EA needs exponential expected

time, whereas a Genetic Algorithm with crossover and fitness shar-

ing finds a global optimum in O(n3) expected time. Sudholt and

1In such graphs, there always exist a proper (∆ + 1)-vertex coloring. Furthermore,
such a proper coloring can be found in linear time.



Zarges [31] considered a different representation with unbounded-

size pale�es, where the goal is to use small color values as much as

possible. �ey considered iterated local search (ILS) algorithms with

operators based on so-called Kempe chains that are able to recolor

large connected parts of the graph, while maintaining feasibility.

�is approach was shown to be efficient on paths and for coloring

planar graphs of bounded degree (∆ ≤ 6)with 5 colors. �e authors

also gave a worst-case graph, a tree, where Kempe chains fail, but a

new operator called color elimination that performs Kempe chains

in parallel, succeeds in 2-coloring all bipartite graphs efficiently.

Table 1 (top row) gives an overview over previous results.

We revisit these algorithms and graph classes for a dynamic

version of the graph coloring problem. We assume that the graph

is altered by adding T edges to it. �is may create new conflicts

that need to be resolved. Note that deleting edges from the graph

can never worsen the current coloring, hence we focus on adding

edges only2. Our goal is to estimate the expected reoptimization

time, that is, the time to rediscover a proper coloring a�er T edges

have been added, and how this time depends on T and the size of

the graph, n. Our results are summarized in Table 1 (center row).

We start by considering bipartite graphs in Section 3. We find

that even adding a single edge can create a hard symmetry problem

for RLS and the (1+1) EA: expected reoptimization times for paths

and binary trees are as bad as, or even slightly worse, than the

corresponding bounds for optimizing from scratch. In contrast, ILS

with Kempe chains or color elimination reoptimizes these instances

efficiently. While ILS with color eliminations reoptimizes every

bipartite graph in expected time O(
√
Tn logn) or be�er, ILS with

Kempe chains needs expected time Θ(2n/2) even when connecting

a tree with an isolated edge. �is instance is easy for all other

algorithms as they all have reoptimization timeO(n log+T ) (where
log+T = max{1, logT } is used to avoid expressions involving a

factor of logT becoming 0 when T = 1).

In Section 4 we show that ILS with either operator is also able to

efficiently rediscover a 5-coloring for planar graphs with maximum

degree ∆ ≤ 6 in expected time O(n log+T ).
Finally, in Section 5 we design mutation operators that focus

on the areas in the graph where a dynamic change has happened.

We show that such conflict-aware approaches can reoptimize most

graph classes in time O(1) a�er inserting one edge, however they
cannot prevent exponential times in cases where the algorithm is

inefficient. All our results are shown in Table 1 (bo�om row).

2 PRELIMINARIES

Let G = (V ,E) denote an undirected graph with vertices V and

edges E. We denote by n := |V | the number of vertices in G. A

vertex coloring of G is an assignment c : V → {1, . . . ,n} of color
values to the vertices of G. Let deg(v) be the degree of a vertex v
and c(v) be its color in the current coloring. Every edge (u,v) ∈ E

where c(v) = c(u) is called a conflict. A color is called free for a

vertexv ∈ V if it is not assigned to any neighbor ofv . �e chromatic

number χ (G) is the minimum number of colors that allows for a

2In general, the chromatic number of a graph can decrease when removing edges. We
focus on graphs that can be colored with 2 or 5 colors, respectively. For 2-colorable
graphs the chromatic number can only decrease if the graph becomes empty. For our
results on 5-coloring graphs the real chromatic number will be irrelevant.

conflict-free coloring. A coloring is called proper is there is no

conflicting edge.

2.1 Algorithms with Bounded-Size Palette

In this representation, the total number of colors is fixed, i.e., the

color pale�e has fixed size k ≤ n. �e search space is {1, . . . ,k}n
and the objective function is to minimize the number of conflicts.

We assume that in the static se�ing all algorithms are initialized

uniformly at random. In a dynamic se�ing we assume that a proper

k-coloringx has been found. �en the graph is changed dynamically

and x becomes an initial solution for the considered algorithms.

We define the dynamic (1+1) EA for this space as follows. As-

sume that the current solution is x . We consider all algorithms

as infinite processes as we are mainly interested in the expected

number of iterations until good solutions are found or rediscovered.

Algorithm 1 (1+1) EA (x )

1: while optimum not found do

2: Generate y by deciding to mutate each component xi with

probability 1/n: if yes, choose a new value yi ∈ {1, . . . ,k} \
{xi } uniformly at random.

3: If y has no more conflicts than x , let x := y.

We also define randomized local search (RLS) as a variant of the

(1+1) EA where exactly one component is mutated.

Algorithm 2 RLS (x )

1: while optimum not found do

2: Generate y by choosing an index i ∈ {1, . . . ,n} uniformly

at random, choosing a new value yi ∈ {1, . . . ,k} \ {xi }
uniformly at random and se�ing yj = x j for all j , i .

3: If y has no more conflicts than x , let x := y.

2.2 Algorithms with Unbounded-Size Palette

In this representation, the color pale�e size is sufficiently large (say

has size n). Our goal is to maintain a proper vertex coloring (i.e.,

without any conflicting edge) such that the color-occurrence vector

is as close to optimum as possible (see Definition 2.1 from [31]).

Definition 2.1. [[31]] For x ,y we say that x is be�er than y and

write x � y iff
• x has fewer conflicting edges than y or

• x andy have an equal number of conflicting edges and their

color frequencies are lexicographically ordered as follows.

Let ni (x) be the number of i-colored vertices in x , then

ni (x) < ni (y) for the largest index i with ni (x) , ni (y).

As remarked in [31], decreasing the number of vertices with the

currently highest color (and not introducing yet a higher color)

yields an improvement. If this number decreases to 0, the number

of colors has decreased.

2



Bounded-size palette Unbounded-size palette: ILS with. . .

Setting Graph class (1+1) EA RLS Kempe Chains Color Eliminations

Static

paths O(n3) [10] O(n3) [10] O(n) [31] O(n logn) [�m 3.5]

binary trees exp(Ω(n)) [30] ∞ O(n logn) [�m 3.3] O(n logn) [�m 3.3]

depth-2 star O(n logn) [�m 3.8] O(n logn) [�m 3.8] exp(Ω(n)) [31] O(n2 logn) [31]
any bipartite exp(Ω(n)) [30] ∞ exp(Ω(n)) [31] O(n2 logn) [31]
planar, ∆ ≤ 6 O(n logn) [31] O(n logn) [�m 4.1]

Adding T edges

(conflict-unaware

algorithms)

paths Θ(n3) [�m 3.1] Θ(n3) [�m 3.1] O(n) [31] O(n log+T ) [�m 3.5]

binary trees Ω(n(n−3)/4) [�m 3.2] ∞ O(n logn) [�m 3.3] O(n logn) [�m 3.4]

depth-2 star O(n log+T ) [�m 3.8] O(n log+T ) [�m 3.8] Θ(2n/2) [�m 3.6] O(n log+T ) [�m 3.7]

any bipartite Ω(n(n−3)/4) [�m 3.2] ∞ Ω(2n/2) [�m 3.6] O(min{
√
T , Γ}n logn) [�m 3.4]

planar, ∆ ≤ 6 O(n log+T ) [�m 4.1] O(n log+T ) [�m 4.1]

Adding one edge

(conflict-aware

algorithms)

paths Θ(n2) [�m 5.1] Θ(n2) [�m 5.1] O(1) [�m 5.2] O(1) [�m 5.3]

binary trees Ω(n(n−7)/4) [�m 5.6] ∞ O(1) [�m 5.2] O(1) [�m 5.3]

depth-2 star O(1) [�m 5.5] O(1) [�m 5.5] Θ(2n/2) [�m 5.7] O(1) [�m 5.3]

any bipartite Ω(n(n−7)/4) [�m 5.6] ∞ Ω(2n/2) [�m 5.7] O(1) [�m 5.3]

planar, ∆ ≤ 6 O(1) [�m 5.4] O(1) [�m 5.4]

Table 1: Worst-case expected times for (re-)discovering proper 2-colorings for bipartite graphs and proper 5-colorings for

planar graphs in different settings. We use the notation log+T = max{1, logT }.

Grundy local search. We use the same local search operator as

in [31] called Grundy local search (Algorithm 3). A vertex v is

called a Grundy vertex if v has the smallest color value not taken

by any of its neighbors, formally c(v) = min{i ∈ {1, . . . ,n} |
∀w ∈ N(v) : c(w) , i}, whereN(v) denotes the neighborhood of v .
A coloring is called a Grundy coloring if all vertices are Grundy

vertices [33]. Note that a Grundy coloring is always proper.

Algorithm 3 Grundy local search [12]

1: while the current coloring is not a Grundy coloring do

2: Choose a non-Grundy vertex v .

3: Set c(v) := min{i ∈ {1, . . . ,n} | ∀w ∈ N(v) : c(w) , i}.

�e analysis in [12] reveals that one step of the Grundy local

search can only increase the color of a vertex if there is a conflict;

otherwise the color of vertices can only decrease. Sudholt and

Zarges [31] point out that the application of Grundy local search

can never worsen a coloring. If y is the outcome of Grundy local

search applied to x then y � x . If x contains a non-Grundy node

then y is strictly be�er, i. e., y � x and x � y.

We also introduce the Grundy number Γ(G) of a graph G (also

called first-fit chromatic number [2]) as the maximum number of

colors used in any Grundy coloring. Every application of Grundy

local search produces a proper coloring with color values at most Γ.

We consider the Kempe chain mutation operator defined in [31],

which is based on so-called Kempe chain [13] moves. �is mutation

exchanges two colors in a connected subgraph. By Hi j we denote

the set of all vertices colored i or j inG . �enHj (v) is the connected
component of the subgraph induced by Hc(v)j that contains v .

�e Kempe chain operator (Algorithm 4) is applied to a vertex v

and it exchanges the color of v (say i) with a color j. We restrict

the choice of j to the set {1, . . . , deg(v) + 1} since larger colors will
be replaced in the following Grundy local search. In the connected

Algorithm 4 Kempe chain [31]

1: Choosev ∈ V and j ∈ {1, . . . , deg(v)+ 1} uniformly at random.

2: Let i := c(v)
3: for all u ∈ Hj (v) do
4: if c(u) = i then c(u) := j else c(u) := i .

component Hj (v) the colors i and j of all vertices are exchanged.

As no conflict within Hj (v) is created and Hj (v) is not neighbored
to any vertex colored i or j, Kempe chains preserve feasibility.

An important point to note is that, when the current largest

color is cmax, Kempe chains are o�en most usefully applied to

the neighborhood of a cmax-colored vertex v . �is can lead to a

color in v’s neighborhood becoming a free color, and then the

following Grundy local search will decrease the color of v . In

contrast, applying a Kempe chain to v directly will spread color

cmax to other parts of the graph, which might not be helpful.

Sudholt and Zarges [31] introduced a mutation operator called a

color elimination (Algorithm 5): it tries to eliminate a smaller color i

in the neighborhood of a vertex v in one shot by trying to recolor

all these vertices with another color j using parallel Kempe chains.

Algorithm 5 Color elimination [31]

1: Choose v ∈ V uniformly at random.

2: if c(v) ≥ 3 then

3: Choose i, j ∈ {1, . . . , c(v) − 1}, i , j , uniformly at random.

4: Let v1, . . . ,vℓ enumerate all i-colored neighbors of v .

5: for all u ∈ Hj (v1) ∪ · · · ∪ Hj (vℓ) do
6: if c(u) = i then c(u) := j else c(u) := i .

Iterated local search (ILS, Algorithm 6) repeatedly uses mutation

followed by Grundy local search. �e mutation operator is not

3



specified yet, but regarded as a black box. In the initialization every

vertex v receives a uniform random color from {1, . . . , deg(v) + 1}.

Algorithm 6 Iterated local search (ILS) (x )

1: Replace x by the result of Grundy local search applied to x .

2: repeat forever

3: Let y be the result of a mutation operator applied to x .

4: Let z be the outcome of Grundy Local Search applied to y.

5: If z � x then x := z.

2.3 Reoptimization Times

We consider the batch-update model for dynamic graph coloring.

�at is, given a graph G ′
= (V ,E ′) and its proper coloring, we

would like to find a proper coloring ofG = (V ,E) which is obtained

a�er a batch of T edge insertions to G ′. We are interested in the

reoptimization time, i.e., the number of iterations it takes to find a

proper coloring of the current graph G, given a proper coloring of

G ′. How does the expected reoptimization time depend on n andT ?

More precisely, we consider the worst case reoptimization time to

be the reoptimization time when considering the worst possible

way of inserting T edges into the graph.

Note that a bound for the reoptimization time can also yield a

bound on the optimization time in the static se�ing for a graph

G = (V ,E). �is is because the static se�ing can be considered as a

dynamic se�ing where we start with n isolated vertices and then

add all T = |E | edges to the graph. �e only small difference is that

with unbounded-size pale�es, all vertices will have the smallest

color 1 when edges are inserted. In cases where we derive static

time bounds from dynamic ones, this difference is irrelevant.

3 REOPTIMIZATION TIMES ON BIPARTITE
GRAPHS

We start off by considering bipartite graphs, i. e. 2-colorable graphs.

For the bounded-size pale�e, we assume that only 2 colors are being

used, i. e. k = 2. We also consider unbounded-size pale�es where

the aim is to eliminate all colors larger than 2 from the graph.

3.1 Paths and Binary Trees

We first show that even adding a single edge can result in difficult

symmetry problems. �is can happen if two subgraphs are con-

nected by a new edge, and then the coloring in one subgraph has to

be inverted to find the optimum. Two examples for this are paths

and binary trees.

Theorem 3.1. If adding an edge completes an n-vertex path, the

worst-case expected time for the (1+1) EA and RLS to rediscover a

proper 2-coloring is Θ(n3).

Proof. �e claim essentially follows from to the proofs of �e-

orems 3 and 5 in [10] where the authors investigate an equivalent

problem on cycle graphs. Hence, we just sketch the idea here. Imag-

ine we link two properly colored paths of length n/2 each with an

edge (u,v) which introduces a single conflict. �e conflict splits

the path into two paths that are properly colored and joined by

a conflicting edge. Consider the length of the shortest properly

colored path. As argued in [10], both RLS and (1+1) EA can either

increase or decrease this length in fitness-neutral operations like

recoloring one of the vertices involved in the conflict. If it has

decreased to 1, the conflict has been propagated down to a leaf

node where a single bit flip can get rid of it. Fischer and Wegener

calculate bounds for the expected number of steps until this number

reaches its minimum 1. �is is achieved by estimating the number

of so-called relevant steps, which either increase or decrease the

length of the shortest properly colored path. �e probability for

a relevant step is Θ(1/n). �e expected number of relevant steps

is Θ(n2) since we have a fair random walk on states up to n/2. In
summary, this results in a runtime bound of Θ(n3). �

Theorem 3.2. If adding an edge completes an n-vertex complete

binary tree, the worst-case expected time for the (1+1) EA to rediscover

a proper 2-coloring isΩ
(

n(n−3)/4
)

. RLS is unable to rediscover a proper

2-coloring in the worst case.

Proof. �e proof follows arguments from [30]. Let e = {r ,v}
be the added edge with r being the root of the n-vertex complete

binary tree. If c(r ) , c(v) we are done and the coloring is already

a proper 2-coloring. Hence, we assume that c(r ) = c(v) and there

is exactly one conflict. �is situation is a worst-case situation in

vertex-coloring of complete binary trees, since many vertices must

be recolored in the same mutation to produce an accepted candidate

solution. LetW be the set of all worst-case colorings (there are

exactly 4 such colorings). Further, let A1 be the set of colorings

having exactly one conflict and A0 be the set of proper colorings.

Note that |A0 | = O(1) and |A1 | = O(n) since there are
(n−1

1

)

= n− 1

edges whose incident edges may be in conflict and there are exactly

two possible conflicting color assignments for the incident nodes.

�us, there are only O(n) search points which may be accepted

if we start with x ∈ W as in the given dynamic scenario. �e

Hamming distance from a worst-case coloring to another coloring

in (A1∪A0)\W is at least (n+1)/4 (we need to recolor a whole sub-
tree with root v). We use this fact to upper bound the probability

of the (1+1) EA to leaveW byO
(

n−(n+1)/4+1
)

. Hence, the expected

number of mutations is at least Ω
(

n(n−3)/4
)

.

It is obvious from the above that RLS is unable to leaveW . �

In the above two examples, the reoptimization time is at least as

large as the optimization time from scratch. In fact, our dynamic

se�ing even allows us to create a worst-case initial coloring that

might not typically occur with random initialization. �eorem 3.1

gives a rigorous lower bound of order n3 as a�er adding an edge

connecting two paths of n/2 vertices each, we start the last “fitness
level” with a worst-case initial setup. Fischer and Wegener [10]

were only able to show a lower bound under additional assumptions.

Also in [30] the probability of reaching the worst-case situation

described in �eorem 3.2 was very crudely bounded from below

by Ω(2−n ). Our lower bounds for dynamic se�ings are hence a bit

tighter and/or more rigorous than those for the static se�ing.

�e reason for the large reoptimization times in the above cases

is because for the (1+1) EA and RLS mutations occur locally, and

they struggle in solving symmetry problems where large parts of

the graph need to be recolored. Mutation operators in ILS like

Kempe chains and color eliminations operate more globally, and

can easily deal with the above se�ings.

4



Theorem 3.3. Consider a dynamic graph that is a path or a binary

tree a�er a batch of T edge insertions. �e expected time for ILS with

Kempe chains to rediscover a proper 2-coloring on paths is O(n).
On binary trees, the expected time for ILS with either Kempe chains

or color eliminations to rediscover a proper 2-coloring or to find a

proper 2-coloring in the static se�ing is O(n logn).

Proof. �e statement about paths follows from [31, �eorem 1]

as the expected time to 2-color a path is O(n) in the static se�ing.

(It is easy to see that the proof holds for arbitrary initial colorings.)

�e Grundy number of binary trees is at most Γ ≤ ∆ + 1 ≤ 4. By

design of our selection operator, the number of 4-colored vertices is

non-increasing over time. For every 4-colored vertex v there must

be a Kempe chain operation recoloring a neighboring vertex whose

color only appears once in the neighborhood of v . If there are i

4-colored vertices, the probability of reducing this number is Ω(i/n)
and the expected time for color 4 to disappear is O(n) · ∑n

i=1 1/i =
O(n logn). A�erwards, the same arguments apply to the number

of 3-colored vertices, leading to another O(n logn) term. �

3.2 Results for General Bipartite Graphs

Sudholt and Zarges [31] showed that ILS with color eliminations

can color every bipartite graph efficiently, in expected O(n2 logn)
iterations [31, �eorem 3]. �e main idea behind this analysis was

to show that the algorithm can eliminate the highest color from

the graph by applying color eliminations to all such vertices. �e

expected time to eliminate the highest color is O(n logn), and we

only have to eliminate at mostO(n) colors. In fact, the last argument

can be improved by considering that in every Grundy coloring of

a graph G the largest color is at most Γ(G). �is yields an upper

bound of O(Γ(G)n logn) for both static and dynamic se�ings.

�e following result gives an additional bound of O(
√
Tn logn),

showing that the number T of added edges can have a sublinear

impact on the expected reoptimization time.

Theorem 3.4. Consider a dynamic graph that is bipartite a�er

a batch of T edge insertions. Let Γ be the Grundy number of the

resulting graph. �en ILS with color eliminations re-discovers a proper

2-coloring in expected O(min{
√
T , Γ}n logn) iterations.

If only one conflicting edge is added, the expected time is Θ(n).

Proof. Consider the connected components of the original

graph. If an edge is added that runs within one connected com-

ponent, it cannot create a conflict. �is is because the connected

component is properly 2-colored, with all vertices of the same color

belonging to the same set of the bipartition. Since the graph is

bipartite a�er edge insertions, the new edge must connect two

vertices of different colors. Hence added edges can only create a

conflict if they connect two different connected components that

are colored inversely to each other.

Consider the subgraph induced by the added edges that are

conflicting, and pick a connected component C in this subgraph.

Note that all vertices in C have the same color c ∈ {1, 2} before
Grundy local search is applied. Now Grundy local search will

fix these conflicts by increasing the colors of vertices in C . We

bound the value of the largest color cmax used. For Grundy lo-

cal search to assign a color cmax to a vertex v ∈ C , all colors

1, . . . , cmax − 1 must occur in the neighborhood of v in the new

2

1 2

1 2

1 2

1 2

1 2

2 1

3

1 2

1 2

1 2

1 2

1 2

2 1

Figure 1: Depth-2 star with n = 13 vertices. �e dashed line

indicates the added edge. Le�: coloring with a bounded-size

palette, right: coloring a�er Grundy local search with an

unbounded-size palette.

graph. In particular, C must contain vertices v3,v4, . . . ,vcmax−1
respectively colored 3, . . . , cmax − 1 that are neighbored to v . �is

implies that cmax − 3 edges incident to v , connecting v to a smaller

color, must have been added during the dynamic change. Applying

the same argument to v3,v4, . . . ,vcmax−1 yields that there must be

at least
∑cmax−3
j=1 j = (cmax−3)(cmax−2)/2 inserted edges inC . �us

(cmax − 3)(cmax − 2)/2 ≤ T , which implies (cmax − 3)2 ≤ 2T ⇐⇒
cmax ≤

√
2T +3. Also cmax ≤ Γ by definition of the Grundy number.

Now we can argue as in [31, �eorem 3]: the largest color can

be eliminated from any bipartite graph in expected time O(n logn).
(Note that these color eliminations can increase the number of

vertices colored with large colors, so long as the number of the

vertices with the largest color decreases.) Since at most cmax − 2

colors have to be eliminated, a bound of O(cmaxn logn) follows.
Plugging in cmax = O(min{

√
T , Γ}) completes the proof.

Finally, if only one conflicting edge is inserted (T = 1) then there

will be one 3-colored vertex v a�er Grundy local search, and a

proper 2-coloring is obtained by applying a color elimination to v .

�e expected waiting time for choosing vertex v is Θ(n). �

In the case of graphs with Grundy number Γ ≤ 3, the factor of

logn can be replaced by log+T . �e considered graph class includes

graphs of maximum degree ∆ ≤ 2 (e. g. paths and cycles).

Theorem 3.5. Consider a dynamic graph that is bipartite and has

maximum degree ∆ ≤ 2 or Grundy number Γ ≤ 3 a�er a batch of T

edge insertions. �en ILS with color eliminations rediscovers a proper

2-coloring in expected time O(n log+T ).

Proof. Note that ∆ ≤ 2 implies Γ ≤ ∆ + 1 ≤ 3. By definition

of Γ, a�er Grundy local search the largest possible color is 3. Every

added edge leads to at most one conflict, and each conflict leads to

at most one vertex being colored 3 in the Grundy local search.

Following [31, �eorem 3], while there are i vertices colored 3, a

color elimination choosing such a vertex will lead to a smaller free

color, reducing the number of 3-colored vertices. �e expected time

for this to happen is at most n/i , hence the total expected time to

eliminate all color-3 vertices is at most
∑T
i=1 n/i = O(n log

+T ). �

3.3 A Worst-Case Graph for Kempe Chains

While ILS with color eliminations efficiently reoptimizes all bipar-

tite graphs, for ILS with Kempe chains there are bipartite graphs

where even adding a single edge connecting a tree with an isolated

edge can lead to exponential times.
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Theorem 3.6. For every n ≡ 1 mod 4 there is a forest Tn with n

vertices such that for every feasible 2-coloring the ILS with Kempe

chains needs Θ(2n/2) generations in expectation to re-discover a fea-

sible 2-coloring a�er adding an edge.

Proof. ChooseTn as the union of an isolated edge {u,v} where
c(u) = 2 and c(v) = 1 and a tree where the root r has N − 1 :=

(n − 3)/2 children and every child has exactly one leaf (cf. Figure 1).

�is graph was also used in [31] as an example where ILS with

Kempe chains fail in a static se�ing. Since n ≡ 1 mod 4, N is an

even number. Every feasible 2-coloring will color the root and the

leaves in the same color and the root’s children in the remaining

color. Assume the root and leaves are colored 2 as the other case

is symmetric. Now add an edge {r ,u} to the graph. �is creates a

star of depth 2 (termed the depth-2 star in the following) where the

root is the center and the root now has N children.

�is creates a conflict at {r ,u} that is being resolved by recoloring
one of these vertices to color 3 in the next Grundy local search.

With probability 1/2, this is the root r .
From this situation, any Kempe chain affecting any vertex in

V \ {r } can swap the colors on an edge incident to a leaf. Let

X0,X1, . . . denote the random number of leaves colored 1, starting

with X0 = 1. We only consider steps in which this number is

changed; note that the probability of such a change is Θ(1) as
every Kempe chain on any vertex except for the root changes Xt
if an appropriate color value is chosen. �ere are N := (n − 1)/2
leaves and the number of 1-colored leaves performs a random walk

biased towards N /2: Pr (Xt+1 = Xt + 1 | Xt ) = (N − Xt )/N and

Pr (Xt+1 = Xt − 1 | Xt ) = Xt /N . �is is the Ehrenfest urn model3.

When Xt ∈ {0,N } then a proper 2-coloring has been found. As

long as Xt ∈ {2, . . . ,N − 2}, all Kempe chain moves involving the

root will be rejected as the number of 3-colored vertices would

increase. WhileXt ∈ {1,N −1} a Kempe chain move recoloring the

root with the minority color will be accepted. �is has probability

1/n · 1/(N − 1) = Θ(1/N 2) (as the color is chosen uniformly from

{1, . . . , deg(r )+1}) and then the following Grundy local search will

produce a proper 2-coloring. Also considering possible transitions

to neighbouring states 0 or N , whileXt ∈ {1,N −1} the conditional
probability that a proper 2-coloring is found before moving to a

state Xt ∈ {2,N − 2} is Θ(1/N ).
For the Ehrenfest model it is known that the expected time to

return to an initial state of 1 is 1!(N − 1)!/N ! · 2N = 2N /N [14,

equation (66)]. It is easy to show that this time remains inΘ(2N /N )
when considering N − 1 as a symmetric target state, and when

conditioning on traversing states {2, . . . ,N − 2}.
Along with the above arguments, this means that such a return

in expectation happens Θ(N ) times before a proper 2-coloring is

found. �is yields a total expectation of Θ(2N ) = Θ(2n/2). �

Notably, this instance is easy for all other considered algorithms.

Theorem 3.7. On a graph where adding T edges completes a

depth-2 star, ILS with color eliminations rediscovers a proper 2-coloring

in expected time O(n log+T ).
3�is simple model was originally proposed to describe the process of substance
exchange between two bordering containers of equal size which are separated by a
permeable membrane. Consider N particles spread across the containers and denote
by X (t ) the number of particles in the le� container w. l. o. g. at time t . In each step
one particle is chosen uniformly at random and swaps sides.

Proof. We argue that the graph’s Grundy number is Γ = 3 as

then the claim follows from �eorem 3.5. Since all vertices but the

root have degree at most 2, their colors must be at most 3. Assume

for a contradiction that the root has a color larger than 3. �en

there must be a child v of color 3. But then v has a free color in

{1, 2}, contradicting a Grundy coloring. Hence also the root must

have color at most 3, completing the proof that Γ = 3. �

Theorem 3.8. On the depth-2 star RLS and (1+1) EA both have ex-

pected optimization timeO(n logn) in the static se�ing andO(n log+T )
to rediscover a proper 2-coloring a�er adding T edges.

Proof. First note that any conflict can be resolved by one or

two mutations. �e la�er is necessary in the unfavourable situation

of {r ,u}, {u,v} ∈ E, r being the root, with c(r ) = 2 = c(u) and
c(v) = 1. �en both u and v need to be recolored simultaneously or

in sequence. We show that every conflict has a constant probability

of being resolved within the next n steps. LetXt denote the number

of conflicts at time t ∈ N0. IfXt > 0, the probability of improvement

within n steps is at least

p ≥ 1

2
·
(

n

2

)

·
(

1

n

)2

·
(

(

1 − 1

n

)n−1)2
·
(

1 − 2

n

)n−2
≥ (n − 1)

4ne4
= Ω(1).

Here, the term 1/2 ·
(n
2

)

describes all combinations of two relevant

mutations concerning nodes u and v in sequence. �e next two

factors indicate that in the selected steps both u andv are recolored

and all remaining nodes are le� apart. Finally, the last factor is the

probability of not mutating both vertices in the remaining n − 2

steps. Note that for RLS the penultimate factor disappears. Hence,

the expected number of conflicts a�er n steps is

E(Xt+n |Xt ) ≤ Xt − Xtp ≤ Xt − Xt ·
(n − 1)
4ne4

= Xt ·
(

1 − (n − 1)
4ne4

)

and we obtain an expected multiplicative dri� of

E(Xt − Xt+n |Xt ) ≥ Xt − Xt ·
(

1 − (n − 1)
4ne4

)

= Xt
(n − 1)
4ne4

.

Applying the multiplicative dri� theorem [8] yields an upper bound

of E(T ) ≤ 8e2

1+1/n log(1 + xmax) = O(log+ xmax) for the expected

number of phases. Here, xmax ≤ n in the static se�ing and xmax ≤ T

in the dynamic se�ing denotes the maximum number of conflicts.

Hence, the runtime bounds are O(n logn) and O(n log+T ) in the

static and dynamic se�ings, respectively, for RLS and (1+1) EA. �

�e conclusion from the above is that reoptimization times

strongly depend on the instance and the algorithms considered.

4 REOPTIMIZATION TIMES ON PLANAR
GRAPHS

We also consider planar graphs with degree bound ∆ ≤ 6. It is

well-known that all planar graphs can be colored with 4 colors,

but the proof is famously non-trivial. Coloring planar graphs with

5 colors has a much simpler proof, and this se�ing was studied

in [31]. �e reason for the degree bound ∆ ≤ 6 is that in [31] it was

shown that for every natural number c there exist tree-like graphs

and a coloring where the “root” is c-colored, and no Kempe chain

or color elimination can improve this coloring. In the following
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we only consider the unbounded pale�e as no results for general

planar graphs are known for bounded pale�e sizes.

Theorem 4.1. Consider adding T edges to a 5-colored graph such

that the resulting graph is planar with maximum degree ∆ ≤ 6.

�en the worst-case expected time for ILS with Kempe chains or color

eliminations to rediscover a proper 5-coloring is O(n log+T ).

Proof. Every edge can create at most one conflict, and every

conflict can lead to one vertex receiving a higher color than before

during Grundy local search. Hence a�er inserting T edges, there

will be at most T vertices colored 6 or 7.

In [31] it was shown that for each vertex v colored 6 or 7, there

is a Kempe chain operation affecting a neighbour of v such that

a color at v becomes a free color and v receives a color at most 5

a�er the next Grundy local search. If there are i nodes colored 6 or

7, the probability of a Kempe chain move reducing the number of

vertices colored with the highest color is at least i/(7n).
Let n6 and n7 denote the number of 6- and 7-colored vertices,

respectively. It is obvious that n7 is non-increasing. However,

during an operation reducing n7, n6 may increase. We need to

argue that n6 does not increase too much.

Note that n6 can only increase if n7 decreases. Consider a vertex

v whose color is being decreased from 7 to some color c < 7 in

one iteration. Since the previous iteration’s coloring was a Grundy

coloring, all colors {1, . . . , 6} must have been present exactly once

in the neighborhood of v . If c = 6 then v and its 6-colored neigh-

bour u swap colors. Since u must have all colors {1, . . . , 5} in its

neighborhood and u has degree at most 6 (which means that its

degree must be exactly 6), u cannot have other 7-colored neighbors

and the Kempe chain does not change n6 and n7.

Now assume that c < 6. �en there must have been a Kempe

chain move that has recolored the c-colored neighbour of v to a

new color c ′ < 7. If c ′ , 6, n6 is unchanged. Hence assume c ′ = 6.

Let u1 be the unique c-colored neighbour of v . Each 6-colored

neighbour of u1 can only have at most two c-colored neighbours

itself, one of which is u1, as all colors {1, . . . , 5} must appear in

the neighbourhood of u1. Hence each 6-colored node leads on to

at most one new c-colored node. (But every c-colored node can

lead on to one or more 6-colored nodes.) So in total the number of

6-colored nodes is by at most 1 larger than the number of c-colored

nodes. �is shows that, if n7 decreases, n6 can increase by at most 1.

�ere are at most T 7-colored nodes initially, and the expected

time to recolor them is O(n log+T ). �en there are at most T

6-colored nodes, and the same arguments yield another term of

O(n log+T ). �

5 THE BENEFITS OF USING
CONFLICT-AWARE ALGORITHMS

Finally, we consider the performance of the original algorithms, but

enhancing them with tailored operators that focus on the region of

the graph that has been changed. �e assumption here is that only

one edge is added at a time, and the algorithms are aware of the

vertices involved in the edge addition. Since many of the previous

results indicated that algorithm spendmost of their time just finding

the right vertex to apply mutation to, we expect the reoptimization

times to decrease when using conflict-aware operators.

We first define conflict-aware algorithms for bounded-size pale�es.

�e (1+1) EA and RLS are modified so that they take a conflict edge

{u,v} as additional input and they mutate the end points of said

edge with constant probability. �ey further follow the conflict: if a

mutation moves the conflict to another edge {u ′,v ′}, the algorithm
continues with {u ′,v ′}.

Algorithm 7 Conflict-aware (1+1) EA (x , (u,v))
1: while optimum not found do

2: Generate y by deciding to mutate each xw with probability

1/2 forw ∈ {u,v} and with probability 1/n forw < {u,v}:
if yes, choose a new valueyw ∈ {1, . . . ,k}\{xw } uniformly

at random. Forw < {u,v}, let yw = xw .

3: If y has no more conflicts than x , let x := y. If y also has a

conflict edge, let (u,v) denote the new conflict edge.

Algorithm 8 Conflict-aware RLS (x , (u,v))
1: while optimum not found do

2: Generate y by choosing a vertexw as follows. With proba-

bility 1/2 choosew uniformly at random from {u,v}, oth-
erwise choose w uniformly at random from all vertices.

Choose a new value yw ∈ {1, . . . ,k} \ {xw } uniformly at

random and set yj = x j for all j , w .

3: If y has no more conflicts than x , let x := y. If y also has a

conflict edge, let (u,v) denote the new conflict edge.

For unbounded-size pale�es a new edge can lead to a higher color

emerging in exactly one vertex, as Grundy local search will increase

the color of a vertex involved in a conflict, resolving the conflict.

�e conflict-aware ILS algorithm applies mutation to this unique

vertex v as follows. Color eliminations are applied to v directly.

Kempe chains are most usefully applied in the neighborhood of v ,

hence a neighbor of v is chosen uniformly at random. �is is

repeated until the largest color has been eliminated from the graph.

Algorithm 9 Conflict-aware ILS (x , (u,v)) with color eliminations

(resp. Kempe chains)

1: Let c be the largest color currently used.

2: Apply Grundy local search to x .

3: Letw ∈ {u,v} be the vertex with the largest color.

4: while c(w) = c + 1 do
5: Apply a color elimination tow (resp. apply a Kempe chain

to a vertex chosen uniformly at random from the neighbors

ofw) to generate a coloring y.

6: Let z be the outcome of Grundy Local Search applied to y.

7: if z � x then

8: x := z.

9: If there are no (c + 1)-colored vertices, stop. Otherwise

letw be the unique vertex with color c + 1.

Intuitively, the conflict-aware dynamic algorithms can save at

least a factor of n in the expected time compared with their conflict-

unaware counterparts since the la�er need Θ(n) iterations to dis-
cover the conflict vertices u,v and then make progress from there.
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�is is the case for paths; inspecting the proof of �eorem 3.1

confirms the following result.

Theorem 5.1. If adding an edge completes an n-vertex path, the

worst-case expected time for the conflict-aware (1+1) EA and conflict-

aware RLS to rediscover a proper 2-coloring is Θ(n2).

Theorem 5.2. Consider a dynamic graph that is a path or binary

tree a�er one edge insertion. �e expected time for conflict-aware ILS

with Kempe chains to rediscover a proper 2-coloring is O(1).

Proof. Let v denote the unique 3-colored vertex a�er Grundy

local search. For both paths and trees there is a Kempe chain

operation applied to a neighbor ofv that will create a free color forv ,

such that color 3 will disappear from the graph. �is was mentioned

in the proof of �eorem 3.3 for trees and it is easy to see for paths:

every Kempe chain recoloring a neighbor u with the unique color

from {1, 2} \ {c(u)} leaves c(u) as a free color. In both scenarios, an

improving Kempe chain occurs with probability Ω(1). �

Theorem 5.3. Consider a dynamic graph that is bipartite a�er

one edge insertion. Conflict-aware iterated local search with color

eliminations re-discovers a 2-coloring in 1 iteration.

Proof. �eproof follows from the proof of�eorem 3.4 and that

a color elimination is applied to the unique 3-colored vertex. �

Theorem 5.4. Consider adding one edge to a 5-colored graph such

that the resulting graph is planar with maximum degree ∆ ≤ 6. �en

the worst-case expected time for conflict-aware ILS with Kempe chains

or color eliminations to rediscover a proper 5-coloring is O(1).

Proof. Suppose that there will be a conflict a�er insertion and

letv be the vertex with degree 6 a�er local Grundy search. Since the

algorithm is aware of the v that is colored 6, it performs a Kempe

chain on a randomly sampled neighbor. We know from [31] and

the proof of �eorem 4.1 that there is a Kempe chain and a color

elimination that eliminates the color 6. �e probability of applying

such a Kempe chain is Ω(1) as there are only O(1) neighbors and
O(1) possible colors. Color eliminations are always applied atv and

eliminate color 6 if the right color parameters are chosen. Since two

different colors are chosen uniformly at random from {1, . . . , 5},
the probability of a successful color elimination is Ω(1) as well. �

Theorem 5.5. On the depth-2 star from �eorem 3.6, conflict-

aware RLS and (1+1) EA both have expected optimization time O(1)
to rediscover a proper 2-coloring a�er adding one edge.

Proof. Any conflict can be resolved by one or two mutations

and each conflict has a constant probability of being resolved inO(1)
steps. �e proof then follows from the proof of �eorem 3.8. �

However, conflict-aware operators cannot prevent exponential

times as shown for binary trees and depth-2 stars.

Theorem 5.6. If adding an edge completes ann-vertex complete bi-

nary tree, the worst-case expected time for the conflict-aware (1+1) EA

to rediscover a proper 2-coloring is Ω
(

n(n−7)/4
)

. Conflict-aware RLS

is unable to rediscover a proper 2-coloring in the worst case.

Proof. �e proof is similar to proof of �eorem 3.2. �e Ham-

ming distance between the worst-case coloring to any acceptable

coloring is still at least n+1
4 . We can save a factor of n as the algo-

rithm will mutate each of the endpoints of the conflict edge (u,v)
with 1/2 probability, rather than with probability 1/n as before. �

Theorem 5.7. On the depth-2 star from �eorem 3.6, conflict-

aware ILS with Kempe chains needs Θ(2n/2) generations in expecta-

tion to rediscover a proper 2-coloring.

Proof. Conflict-aware ILS with Kempe chains applies a Kempe

chain to uniformly chosen neighbors of the root. �e transition

probabilities still follow an Ehrenfest urn model; the only difference

is that no Kempe chain can originate from the root itself. �is does

not affect the proof of �eorem 3.6, and the same result applies. �

6 CONCLUSIONS

We have studied dynamic graph coloring in a se�ing whereT edges

are added to a properly colored graph. Our results in Table 1 show

that reoptimization can be much more efficient than optimizing

from scratch: inmany upper bounds a factor of logn can be replaced

by log+T and we showed tighter general bound for bipartite graphs

of O(min{
√
T , Γ}n logn) as opposed to O(n2 logn) [31]. However,

this heavily depends on the graph class and algorithms. For instance,

depth-2 stars led to exponential times for Kempe chains and times

of O(n log+T ) for all other algorithms. Reoptimization can also be

more difficult as we can create difficult initial colorings. On paths

and binary trees the dynamic se�ing allows for negative results

that are stronger than those previously published [10, 30].

Conflict-aware repair operators can reduce the efficient run-

times by a factor of n, even down to O(1), but they cannot prevent

inefficient runtimes in the considered se�ings.
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