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ABSTRACT
This work deals with the so-called minimum capacitated dominat-

ing set (CAPMDS) problem, which is an NP-Hard combinatorial

optimization problem in graphs. In this paper we describe the ap-

plication of a recently introduced hybrid algorithm known as Con-

struct, Merge, Solve & Adapt (CMSA) to this problem. Moreover,

we evaluate the performance of a standalone ILP solver. The results

show that both CMSA and the ILP solver outperform current state-

of-the-art algorithms from the literature. Moreover, in contrast to

the ILP solver, the performance of CMSA does not degrade for the

largest problem instances. The experimental evaluation is based on

a benchmark dataset containing two different graph topologies and

considering graphs with variable and uniform node capacities.
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1 INTRODUCTION
Dominating set problems are hard combinatorial optimization prob-

lems from the family of set covering problems that have recently

become a subject of interest due to their application in both cluster-

ing and routing in wireless networks [11, 15, 18]. The best known

dominating set problem is theminimum dominating set (MDS) prob-

lem. Variants of the MDS problem include the minimum connected

dominating set (MCDS) problem and the minimum capacitated

dominating set (CAPMDS) problem. Generally, these problem vari-

ants may be solved in both unweighted and weighted graphs. In

this paper, we focus on the CAPMDS problem. Remember that,

given an undirected graph G with vertex set V (and |V | = n), any
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set D ⊆ V is called a dominating set iff each vertex v ∈ V is ei-

ther in D or has at least one neighbor that is a member of D. The
MDS problem requires to find a dominating set of minimum car-

dinality. In addition, the CAPMDS problem limits the number of

vertices that each vertex can dominate (a more detailed descrip-

tion will be given in the next section). Due to the importance of

the problem in the context of applications in wireless communi-

cation, several approaches have been proposed in the literature in

recent years. Even though the CAPMDS problem has been proven

to be NP-hard [4], some researchers have focused on the develop-

ment of exact approaches. Cygan et al. [3] presented an algorithm

based on maximum matching that runs in time O(1.89n ). The per-
formance of the algorithm was further improved by considering

dynamic programming over subsets [8] with a time complexity of

O(1.8463n ). A distributed approximation scheme has been devel-

oped in [5]. This algorithm achieves a O(log△)-approximation in

O(log3n+log(n)/ϵ) time, where n represents the number of vertices

and △ denotes their maximal degree. Finally, the CAPMDS problem

has been subject to a few research studies focused on heuristics

and metaheuristic approaches. Potluri and Singh [13] carried out a

performance comparison between three greedy heuristics, a main

one and two variations. These algorithms generate a solution step

by step, adding one vertex at a time. They showed that the best

heuristic is the one that selects, at each step, the vertex that maxi-

mizes the minimum between the vertex capacity and the number of

uncovered neighbors. The neighboring vertices dominated by this

vertex (in case the neighborhood is larger than the capacity of the

vertex) are chosen randomly. This greedy heuristic has been used

as the basis for the design of two metaheuristic approaches, one

based on ant colony optimization (named ACO) and the other one

based on genetic algorithms (named SGA) [14]. Recently, Li et al. [7]
developed an iterated local search approach labelled LS_PD with a

significantly better performance than ACO and SGA when applied

to general graphs with uniform and variable capacity. LS_PD adopts

a penalization strategy in the context of the vertex-scoring scheme.

Moreover, it makes use of a two-mode dominated vertex selection

strategy taking into account both random and greedy decisions for

the choice of the neighbors that a chosen vertex should dominate.

This is done for the purpose of achieving a balance between the

intensification and the diversification of the search process.

The aim of this study is to propose a new approach for the CAP-

MDS problem based on a recently proposed hybrid algorithm for

combinatorial optimization labelled Construct, Merge, Solve, &

Adapt (CMSA) [2]. This algorithm combines an exact solver with

heuristic concepts to accelerate the solution process in order to be
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able to deal with large-scale problem instances.

The remainder of the paper is organized as follows. Section 2 for-

mally describes the CAPMDS problem in more detail and presents

an integer linear programming (ILP) model for the considered prob-

lem. Section 3 presents the proposed algorithm. Section 4 is ded-

icated to the experimental results. Finally, section 5 summarizes

this work, draws conclusions, and outlines possible future work.

2 THE CAPMDS PROBLEM
Before describing the CAPMDS problem, let us briefly recall some

relevant definitions and notions. Let G = (V ,E) be an undirected

graph on a set of n vertices V = {v1,v2, · · · ,vn } and a set of

edges E. Moreover, we assume that the graph is simple, that is, it

neither contains loops nor multi-edges. Two vertices are neighbors

(adjacent to each other) if and only if there exists an edge between

them, that is, v ∈ V and u ∈ V are said to be neighbors if (v,u) ∈ E.
For a vertex v , let N (v) := {u ∈ V | (v,u) ∈ E} denotes the set of
neighbors, known as the open neighborhood, of v in G. Besides, the
closed neighborhood of a vertexv inG , denoted byN [v], contains the
vertices adjacent tov plus vertexv itself, that is,N [v] := N (v)∪{v}.
The degree deg(v) of v is the cardinality of the set of neighbors of

v , that is, deg(v) = |N (v)|. A dominating set is a subset S ⊆ V such

that each vertex v ∈ V \ S must be adjacent to at least one vertex

in S . Each vertex in S is called a dominator, otherwise it is called a

dominatee. A dominator dominates (covers) itself and (some of) its

neighbors.

A problem instance of the CAPMDS problem is a tuple (G,Cap)
that consists of an undirected (simple) graph G = (V ,E) and a

capacity function Cap : V → N that associates a positive number

Cap(v) to each vertex v ∈ V representing the maximum number of

adjacent vertices this vertex is allowed to dominate. A subset S ⊆ V
is said to be a capacitated dominating set if there exists a domination

mapping (also called dominating function) fS : V \S → S such that

the following holds:

(1) Each vertex u ∈ V \ S is mapped to one of its neighbors v
from S , that is fS (u) = v with v ∈ N (u) ∩ S .

(2) | f −1S (v)| ≤ Cap(v) for each vertex v ∈ S , where f −1S (v) :=
{u ∈ V \ S | fS (u) = v}. In other words, | f −1S (v)| denotes the
total number of vertices mapped by fS to a single vertex

v ∈ S . Obviously, | f −1S (v)| must not be greater than Cap(v),
the capacity of v .

Finally, a minimum capacitated dominating set is a capacitated

dominating set with minimum cardinality.

Figure 1 provides an illustrative example of the CAPMDS prob-

lem. While Figure 1a shows an example graph, Figure 1b shows

an optimal solution (black vertices) assuming a uniform capacity

of 2 for each vertex. Note that the assignments of the domination

mapping are shown in terms of bold edges. Vertices v5 and v9,
for example, are mapped to vertex v6, which forms part of the so-

lution. More specifically, S = {v2,v3,v6,v7,v12} and f −1S (v2) =
{v1,v4}, f −1S (v3) = {v8}, f

−1
S (v6) = {v5,v9}, f

−1
S (v7) = {v13,v14}

and f −1S (v12) = {v10,v11}.

2.1 An ILP Model for the CAPMDS Problem
To formulate the CAPMDS problem in terms of an ILP, two types

of binary variables are required. The original version of this ILP

was published in [7]. Here we show (a slightly improved) version of

the original ILP model with fewer binary variables. First, a binary

variable xi is associated to each vertexvi ∈ V indicating whether or

not vi is selected to be included in the solution. Secondly, for each

edge (vi ,vj ) ∈ E the model contains binary variables yi j and yji .
Hereby, variable yi j takes values one iff vertex vi dominates vertex

vj . In the same way, variable yji takes value one if vj dominates vi .
The CAPMDS problem can thus be formulated as follows:

minimize
∑
vi ∈V

xi (1)

subject to
∑

vj ∈N (vi )
yji ≥ 1 − xi ∀vi ∈ V (2)∑

vj ∈N (vi )
yi j ≤ Cap(vi ) ∀vi ∈ V (3)

yi j ≤ xi ∀vi ∈ V ,vj ∈ N (vi ) (4)

xi ,yi j ∈ {0, 1} (5)

In the above formulation, constraint (2) ensures that all vertices

that are not part of the solution have to be dominated by at least

one neighbor, whereas constraint (3) specifies that the total number

of vertices dominated by a given particular vertexvi , is bounded by
Cap(vi ). Consequently, vi can dominate at most Cap(vi ) vertices
from its (open) neighborhood.

3 THE CMSA FRAMEWORK
Construct, Merge, Solve & Adapt (CMSA) is an algorithmic frame-

work for solving combinatorial optimization problems [2]. The

primary and original goal of CMSA was to take profit from exact

solvers in the context of problem instances that are too large in

order to apply the exact solver directly. The application of this tech-

nique has shown excellent results, among others, for problems such

as unbalanced minimum common string partition [1], project sched-

uling [17], maximum happy vertices [6], and test case generation

for software checking [12].

A high-level description of our implementation of CMSA for

the CAPMDS problem is provided in Algorithm 1. The algorithm

maintains, at all times, an initially empty subset V ′ of the set of
vertices V of the input graph. This set is henceforth called the

sub-instance. Vertices are added to sub-instance V ′ by means of a

probabilistic solution construction process which is implemented

in function ProbabilisticSolutionGeneration(drate, lsize) (see line 8
of Algorithm 1). In particular, all vertices found in the solutions

generated by this function are added to V ′—if not already in V ′—
and their so-called age value age[] is initialized to zero (see lines 10

and 11 of Algorithm 1). Moreover, solving the sub-instance V ′

refers to the application of the ILP solver CPLEX in order to find—

if possible within the imposed time limit of t
solver

seconds—the

optimal solution to sub-instance V ′, that is, the optimal CAPMDS

solution in G that is limited to only contain vertices from V ′. This
is achieved by adding the following set of constraints to the ILP

model from the previous section:

xi = 0 ∀xi ∈ V \V ′ (6)
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v2v1 v3

v4 v8v5

v6 v11 v7 v14

v9 v10 v12 v13

(a) CAPMDS problem instance, assuming a uni-
form capacity Cap(v) = 2, ∀v ∈ V .

v2 v3v1

v4 v8v5

v6 v7

v12

v11 v14

v9 v10 v13

(b) Minimum capacitated dominating set S =

{v2, v3, v6, v7, v12 }.

Figure 1: An illustrative example of the CAPMDS problem. Note that the bold edges in (b) indicate the domination mapping.
Vertices v1 and v4, for example, are mapped to vertex v2 which forms part of the dominating set.

Algorithm 1 CMSA for the CAPMDS problem

1: input: a problem instance (G,Cap)
2: input: parameter values for age

max
, na, tsolver, lsize, drate

3: S
bsf

:= null

4: V ′ := ∅
5: age[v] := 0 for all v ∈ V
6: while CPU time limit not reached do
7: for i = 1, . . . ,na do
8: S := ProbabilisticSolutionGeneration(drate, lsize)
9: for all v ∈ S and v < V ′ do
10: age[v] := 0

11: V ′ ← V ′ ∪ {v}
12: end for
13: end for
14: S ′

opt
← ApplyExactSolver(V ′, t

solver
)

15: if f (S ′
opt
) < f (S

bsf
) then S

bsf
:= S ′

opt

16: Adapt(V ′, S ′
opt

, age
max

)

17: end while
18: output: S

bsf

The process of solving the sub-instance V ′ is done in function Ap-
plyExactSolver(V ′, t

solver
); see line 14 of Algorithm 1. The algorithm

takes as input the tackled problem instance (G,Cap), and values for
a set of five required parameters: (1) the maximum allowed age of a

vertex (age
max

), which establishes the number of iterations that a

vertex is allowed to form part of sub-instanceV ′ without appearing
(as a dominating vertex) in the optimal solution to V ′; (2) the pa-
rameter na, which defines the number of solutions generated in the

construction phase of the algorithm at each iteration, that is, the

number of calls to function ProbabilisticSolutionGeneration(drate,
lsize); (3) the time limit (in seconds) used for running the ILP solver

at each iteration (t
solver

); (4) parameters lsize and drate that are used
in function ProbabilisticSolutionGeneration(drate, lsize), which is

described in more detail in the following subsection.

CMSA is also equipped with a mechanism for discarding seem-

ingly useless solution components from the sub-instanceV ′ at each
iteration. In particular, first, the age values of all vertices in V ′

are incremented; second, the age values of all vertices in S ′
opt

are

re-initialized to zero; and third, the vertices with age values greater

than age
max

are erased from V ′. This mechanism is implemented

in function Adapt(V ′, S ′
opt

, age
max

); see line 15 of Algorithm 1. This

cleaning process has the aim of maintaining V ′ small enough in

order to be able to solve the sub-instance to optimality (most of the

times). If this is not possible, the output S ′
opt

of function Adapt(V ′,
S ′
opt

, age
max

) is simply the best solution found by CPLEX within

the allowed computation time.

The CMSA algorithm iterates while the CPU time limit is not

reached. Moreover, it provides the best solution found during the

search, S
bsf

, as output.

3.1 Probabilistic Solution Generation
The function used for generating solutions in a probabilistic way

(see line 8 of Algorithm 2) works as follows. It takes as input the

problem instance (G,Cap), as well as values for the parameters lsize
and drate. These two parameters are used for controlling the degree

of stochasticity of the solution construction process. The process

starts with an empty partial solution S := ∅. At each step, exactly

one vertex from a setW ⊆ V of vertices is added to S , untilW is

empty. Note thatW is initially set to V . The question is how to

choose a vertex v∗ fromW at each step of the procedure. First of

all, vertices fromW are evaluated by a dynamic greedy function h()
which depends on the current partial solution S . More specifically:

h(v) := min{Cap(v), degW (v)} ∀v ∈W (7)

Hereby, Cap(v) refers to the capacity of v (as outlined in Section 2)

and degW (v) := |N (v) ∩W |, that is, degW (v) is defined as the

degree of v not considering nodes that are not inW . The h()-value
of a vertex is henceforth called its heuristic value. The choice of

a vertex v∗ is then done as follows. First, a value δ ∈ [0, 1] is
chosen uniformly at random. In case δ ≤ drate, v

∗
is chosen as

the vertex that has the highest heuristic value among all vertices

inW . Otherwise, a candidate list L containing the min{lsize, |W |}
vertices fromW with the highest heuristic values is generated, and

v∗ is chosen from L uniformly at random. Thus, the greediness of

the solution construction procedure depends on the values of the

determinism rate (drate) and the candidate list size (lsize). Note that
when degW (v∗) is greater than Cap(v∗), we have to choose which

vertices from N (v∗) ∩W vertex v∗ is going to cover. In our current

implementation, the set of Cap(v∗) vertices is simply chosen from
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Algorithm 2 Function ProbabilisticSolutionGeneration(drate, lsize)

1: input: a problem instance (G,Cap)
2: input: parameter values for lsize, drate
3: S := ∅
4: W := V
5: whileW , ∅ do
6: Choose a random number δ ∈ [0, 1]
7: if δ ≤ drate then
8: Choose v∗ ∈ V such as hv∗ ≥ hv for all v ∈W
9: else
10: Let L ⊆ W contain the min{lsize, |W |} vertices fromW

with the highest heuristic values

11: Choose v∗ uniformly at random from L
12: end if
13: S := S ∪ {v∗}
14: W :=W \ (Cv∗ ∪ {v∗})
15: end while
16: output: S

N (v∗) ∩W uniformly at random and denoted by Cv∗ . Finally,W
is updated at the end of each step. For this purpose, the selected

vertex v∗, in addition to the vertices from Cv∗ , are removed from

W .

4 EXPERIMENTAL EVALUATION
The following three algorithmic approaches are compared on a

large variety of benchmark instances: (1) The ILP solver IBM ILOG

CPLEX v12.7 (henceforth simply called CPLEX) applied with de-

fault settings to the original problem instances, (2) the local search

approach labelled LS_PD from [7], and (3) our implementation of

CMSA for the CAPMDS problem. Remember that LS_PD is the

current state of the art approach. Surprisingly, the performance of

LS_PD has not yet been compared to the one of an ILP solver such

as CPLEX. CPLEX and CMSAwere implemented in ANSI C++ using

GCC 5.4.0 for compiling the software under Ubuntu Linux 18.04.

Moreover, both as a standalone solver and within CMSA, CPLEX

was executed in one-threaded mode. The time limit for CPLEX

and CMSA was 1000 seconds per run for all problem instances. All

the experiments concerning CPLEX and CMSA were performed

on machines with an Intel(R) Core(TM) i7-3770 processor with 3.4

GHz. The results of the experiments for LS_PD were taken from [7].

According to the authors, LS_PD was run on a machine with an

Intel(R) Xeon(R) CPU E7-4830 processor with 2.13 GHz. However,

the time limit applied to LS_PD was not stated in [7]. Instead they

simply provided the average time when the best solution of a run

was found.

4.1 Benchmark Instances
The performance of our CMSA algorithm was evaluated on all

benchmark instances previously used for testing the earlier ap-

proaches for the CAPMDS problem; see also [14] and [7]. The

corresponding benchmark set consists of two subsets. The first

one contains 120 unit disk graphs (UDGs) created using the topol-

ogy generator presented in [10]. In these instances, all vertices are

randomly distributed over a Euclidean square of size 1000 × 1000.

Moreover, the graphs are generated with two different range values:

150 and 200 units.
1
The second subset of instances consists of 180

general graphs taken from the set of so-called type I instances orig-

inally proposed by Shyu et al. [16]. The number of edges in these

graphs, which depends on the number of vertices, ranges from 100

to 10000 edges. In both subsets, the number of nodes of the graphs is

from {50, 100, 250, 500, 800, 1000}. Moreover, for each combination

of the number of nodes and the range value concerning UDGs and

for each combination of the number of nodes and the number of

edges concerning general graphs, the benchmark set consists of

10 randomly generated instances. In fact, the results are presented

in Section 4.3 in terms of averages over 10 instances. Finally, two

types of capacities, namely uniform capacities and variable capaci-

ties were considered. In the case of uniform capacity, three different

capacities of 2, 5 and α are tested, where α represents the average

degree of the corresponding graph. In the case of variable capacity,

the node capacities are randomly chosen from the following three

intervals: (2, 5), (α/5,α/2) and [1,α]. Note that the instance files
come with the capacities already explicitly assigned.

4.2 Tuning of CMSA
The CMSA algorithm requires well-working values for five param-

eters: age
max

, na, tsolver, lsize and drate. Please refer to Section 3 for

a description of their function. The scientific parameter tuning tool

irace [9] was used in order to determine the parameter values that

were finally used for the experimental evaluation of the algorithm.

For this purpose we split the instances into 36 groups, in the follow-

ing way. All graphs with 50 or 100 vertices are classified as small
(or S), all graphs with 250 or 500 vertices are classified as medium
(or M), and all graphs with 800 or 1000 vertices are classified as

large (or L). Moreover, a separate tuning process was performed for

each graph type, each capacity and each capacity type. This makes

a total of 36 tuning procedures. The parameter value domains for

all these tuning runs were chosen as follows:

• age
max
∈ {1, 2, 3, 4, 10, 1000}

• na ∈ {1, 2, 5, 10, 30, 50}
• t

solver
∈ {3, 5, 10, 50, 75, 100}

• lsize ∈ {3, 5, 10, 20, 50}
• drate ∈ {0.3, 0.5, 0.7, 0.9}

Finally, notice that for each of the 36 tuning runs we used four

instances generated for this purpose. The results of the tuning

procedure are provided in Table 1.

4.3 Results
The CMSA algorithm was applied exactly once to each problem

instance, with a computation time limit of 1000 seconds per run.

The numerical results are presented in Tables 2, 3, 4a, and 4b. In

particular, the results are presented in terms of averages over 10

problem instances in each table row. Each table provides the results

of the three approaches mentioned at the beginning of this section:

CPLEX, LS_PD, and CMSA. The first three table columns indicate

the number of vertices in the graph (#Vertices), the number of edges

(#Edges), respectively, the range value (Range) used to generate

the graphs, and the capacity scheme (Capacity). The table columns

1
Note that a higher range value results in more dense graphs.
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Table 1: CMSA parameter values obtained with irace.

(a) UDG instances, variable cap.

Size Cap. drate lsize age
max

na t
solver

(2, 5) 0,5 50 5 10 50

S (α/5,α/2) 0,5 20 3 50 10

[1,α] 0,9 10 10 5 50

(2, 5) 0,7 10 1000 50 50

M (α/5,α/2) 0,7 3 1 5 75

[1,α] 0,5 50 1 1 10

(2, 5) 0,5 50 2 10 75

L (α/5,α/2) 0,9 5 1 1 100

[1,α] 0,3 50 1 2 75

(b) General graphs, variable cap.

Size Cap. drate lsize age
max

na t
solver

(2, 5) 0,3 50 10 50 100

S (α/5,α/2) 0,5 3 5 2 75

[1,α] 0,5 20 1000 10 3

(2, 5) 0,5 10 5 50 100

M (α/5,α/2) 0,9 50 2 50 100

[1,α] 0,5 50 1 1 75

(2, 5) 0,3 50 1 2 100

L (α/5,α/2) 0,9 10 1 1 75

[1,α] 0,5 10 1 1 50

(c) UDG instances, uniform cap.

Size Cap. drate lsize age
max

na t
solver

2 0,3 50 5 10 50

S 5 0,3 10 5 1 5

α 0,7 10 5 2 75

2 0,7 5 5 1 3

M 5 0,7 10 3 1 100

α 0,7 3 3 1 3

2 0,5 20 1000 2 50

L 5 0,3 10 1000 1 50

α 0,5 5 3 2 50

(d) General graphs, uniform cap.

Size Cap. drate lsize age
max

na t
solver

2 0,3 10 1000 10 3

S 5 0,3 10 1000 10 3

α 0,7 50 3 5 100

2 0,5 3 10 5 10

M 5 0,3 5 1 1 75

α 0,9 10 1 1 75

2 0,9 50 3 2 5

L 5 0,9 10 2 1 75

α 0,7 10 1 1 50

4–6 present the information of CPLEX in terms of the average

solution quality, the average computation time at which the best

solutions were found, and the average optimality gap (in percent).

Columns 7–8 provide the information of LS_PD in terms of the

average solution quality and the average computation time at which

the best solutions were found. Finally, columns 9–10 provide the

same information for CMSA.

The experimental results allow to make the following observa-

tions:

• First of all, the good performance of CPLEX for the consid-

ered instances indicates that earlier papers on this problem

should have tested the application of ILP solvers. In particu-

lar, CPLEX can solve all 10 problem instances to optimality

in 44 out of 54 cases concerning general graphs with uniform

capacity, in 43 out of 54 cases concerning general graphs

with variable capacity, in 29 out of 36 cases concerning UDG

instances with uniform capacities, and in 25 out of 36 cases

concerning UDG instances with variable capacities. Problem

difficulty seems to increase for CPLEX with a growing vertex

capacity and with a growing graph size (in terms of the num-

ber of vertices). Moreover, variable capacity graphs seem to

be slightly (but consistently) more difficult for CPLEX.

• In particular, CPLEX clearly outperforms the current state-

of-the-art algorithm LS_PD. This is with the exception of

some of the cases concerning very large graphs. See, for ex-

ample, general graphs with uniform capacity on 100 vertices,

10000 edges, and a capacity of α . An even more notable ex-

ample concerns the case of the UDG graphs with variable

capacity (capacities from [1,α]) on 1000 vertices. The perfor-

mance of CPLEX degrades strongly in these cases (given the

computation time limit of 1000 seconds).

• The best-performing algorithm is CMSA. It generallymatches

the results of CPLEX in those cases where CPLEX performs

very well. Moreover, its performance does not degrade in

the case of the largest problem instances. In fact, in only 18

out of 180 cases, the performance of CMSA is slightly worse

than the one of the best-performing algorithm in these cases.

Concerning computation time, we can observe that CMSA

is generally very fast. However, in some cases the algorithm

requires much more computation time, which is an aspect

that must be studied in future work.

5 CONCLUSIONS AND FUTUREWORK
This paper has dealt with an NP-Hard optimization problem in

graphs, the so-called minimum capacitated dominating set (CAP-

MDS) problem. For solving this problem, we proposed an imple-

mentation of a hybrid algorithm known as Construct, Merge, Solve

& Adapt (CMSA). The results show that not only CMSA, but also

the standalone ILP solver CPLEX, are able to outperform the cur-

rent state-of-the-art algorithm from the literature. However, while

the performance of CPLEX starts to degrade in the context of the

largest problem instances, this is not the case for CMSA.

Concerning future work, we plan to investigate the performance

of CMSA for even larger problem instances. Moreover, we plan to

investigate the use of alternative greedy guiding functions for the

probabilistic construction of solutions. Finally, we aim to study why

CMSA takes much more computation time in some cases.
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Table 3: Results for general graphs with variable capacity.
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