
Modeling User Selection inQuality Diversity
Alexander Hagg

Bonn-Rhein-Sieg University of
Applied Sciences
Bonn, Germany

alexander.hagg@h-brs.de

Alexander Asteroth
Bonn-Rhein-Sieg University of

Applied Sciences
Bonn, Germany

alexander.asteroth@h-brs.de

Thomas Bäck
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

t.h.w.baeck@liacs.leidenuniv.nl

ABSTRACT
The initial phase in real world engineering optimization and design
is a process of discovery in which not all requirements can be made
in advance, or are hard to formalize. Quality diversity algorithms,
which produce a variety of high performing solutions, provide a
unique chance to support engineers and designers in the search
for what is possible and high performing. In this work we begin
to answer the question how a user can interact with quality diver-
sity and turn it into an interactive innovation aid. By modeling
a user’s selection it can be determined whether the optimization
is drifting away from the user’s preferences. The optimization is
then constrained by adding a penalty to the objective function. We
present an interactive quality diversity algorithm that can take into
account the user’s selection. The approach is evaluated in a new
multimodal optimization benchmark that allows various optimiza-
tion tasks to be performed. The user selection drift of the approach
is compared to a state of the art alternative on both a planning
and a neuroevolution control task, thereby showing its limits and
possibilities.

CCS CONCEPTS
•Computingmethodologies→Dimensionality reduction and
manifold learning; Genetic algorithms; Gaussian processes;

KEYWORDS
quality diversity, interactive evolution, selection, niching

ACM Reference Format:
Alexander Hagg, Alexander Asteroth, and Thomas Bäck. 2019. Modeling
User Selection in Quality Diversity. InGenetic and Evolutionary Computation
Conference (GECCO ’19), July 13–17, 2019, Prague, Czech Republic. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3321707.3321823

1 INTRODUCTION
The discovery of new and innovative solutions is a driving force
and a guiding principle behind evolutionary optimization. From
the design of an unintuitive antenna [10] and fooling of deep neu-
ral networks [14] as prime examples of the power of evolutionary
search to the development of novelty discovery [11] algorithms,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6111-8/19/07. . . $15.00
https://doi.org/10.1145/3321707.3321823

evolutionary design has been on the forefront of discovering that
which is new and of high quality. Bradner [3] showed that often-
times engineers use optimization algorithms to get a first intuition
of what is possible. This reinvigorates the search for new algorithms
that optimize for both innovation as well as quality.

Designers and engineers are not always interested in finding the
best but rather have many good options to choose from. Architects
generally do not search for the best solution, but rather want to
find good solutions that adhere to changing objectives during the
design process. Robotics engineers often work in a trial-and-error
fashion by continuously readjusting objectives after they discover
what is possible and optimal. During this process of discovery, the
user wants to be able to influence an optimization algorithm, but
rather to have full control.

Quality diversity (QD) algorithms, which combine optimization
and novelty discovery by keeping track of solutions in an archive
that is defined by feature based or behavioral diversity measures,
are right at that forefront of current research in divergent optimiza-
tion. QD searches for diversity in terms of a solution’s expressed
behavior [5] or features describing the expressed genome [8]. This
makes QD an excellent search algorithm for design processes.

In order to use QD as an innovative design procedure, the user
needs to be able to interact with it. One way of interacting is de-
scribed in the “design by shopping” paradigm [1], where the user
selects from generated designs. Yet the stochastic nature of muta-
tion in an evolutionary algorithm may cause it to drift away from
a selection of solutions that is preferred by the user. This user selec-
tion drift needs to be controlled if QD is to be integrated into a real
world design process. In this work the user’s selection of preferred
solutions is modeled, thereby allowing adjustments to the objective
function based on a simple penalty measure.

QD algorithms perform multimodal optimization (MMO), in the
sense that they search for many solutions, or local optima, of a
problem. In [17] the author describes finding all basins of attrac-
tion, regions in the search space where a local search algorithm
converges, as one of the tasks in MMO. In QD diversity is mea-
sured not in genotypic space but rather in behavior space. The idea
that the representations used in architecture and engineering have
to be abstracted towards a representation that is optimizable [3]
seems to be counterintuitive to the engineer, yet a necessity for
computer aided design. In this work, selection will therefore take
place on the basis of behavioral aspects, while optimization is based
on genotypic parameters. The feasibility of modeling this selection
is evaluated for two types of genotype to phenotype to behavior
translations.

The design and optimization process is one of both understand-
ing requirements and finding optimal solutions to those require-
ments. Computer aided ideation has the potential to reduce the

ar
X

iv
:1

90
7.

06
91

2v
1

 [
cs

.N
E

]
 1

6
Ju

l 2
01

9

https://doi.org/10.1145/3321707.3321823
https://doi.org/10.1145/3321707.3321823

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Hagg et al.

number of iterations in a design process by automated generation
of design candidates [3]. In principle, QD was shown to be usable
in the design by shopping paradigm [9].

In this paper the question is answered whether a user’s selec-
tion can be modeled to properly constrain QD according to that
selection. This is a necessary step to turn QD into an innovation
aid in a human-computer interacting optimization loop, assisting
the designer in decomposing both the problem of understanding
requirements while simultaneously finding solutions.

The remainder of this paper is organized as follows: after a
short introduction into QD, current challenges are highlighted,
how to integrate QD into real world design processes through
user selection. A model that captures a user’s decision to select
preferred solutions is then introduced and formalized, and evaluated
in a new multimodal benchmark that allows performing various
tasks in the same domain. The multimodal benchmark consists
of a planning and a control task, highlighting the differences in
genotype to phenotype and phenotype to behavior mapping. By
using different representations in the tasks, the quality of capturing
the user decision is compared to that of a related method, showing
that the robustness of this new approach is improved.

2 BACKGROUND
QD distinguishes itself from other optimization algorithms by main-
taining a diverse archive of high performing solutions, measuring
diversity in terms of behavior in what is called a behavior or feature
space. Originally the idea behind Novelty Search [11] is to main-
tain a permanent archive of individuals that shows behavior that is
novel at the time of discovery. Adding local competition allowed the
algorithm to perform in settings where the novelty measure is used
on the genotype, as there is no guarantee a solution is functional.
Novelty Search with Local Competition (NSLC) [12] firstly com-
bined quality and diversity, and a few years later Multidimensional
Archive of Phenotypic Elites (MAP-Elites) [5] was introduced. The
main differences between the methods are the way they define
an archive and how they select the next population of solutions.
In NSLC the archive is unstructured and consists of a historical
trace of best, diverse individuals. The most novel and locally high
performing individuals in the population, which is kept separate
from the archive itself, are selected for the next generation. Niches
in the archive are slowly built up over the duration of the algorithm.
In MAP-Elites the archive is a predefined and fixed discretization
of a user defined descriptor space, represented as a lattice, where
every lattice point is an n-dimensional object (Fig. 1b). The next
generation is randomly selected from the archive with the intend
to fill it over time.

QD algorithms in general follow the pattern described in [6, 18]
and reiterated in Alg. 1. After initializing a population of solutions
and setting an evaluation budget, parents are selected based on
a scoring scheme, which could be a novelty, competition or cu-
riosity measure or a combination thereof, and offspring is created.
After initializing the population, the performance of the offspring is
evaluated and their descriptors calculated. Depending on the type
of archiving, the individuals can be added to existing cells in the
archive, or new cells can be created. Finally, the scores are updated.
QD was applied in a Bayesian optimization context for the first

Algorithm 1 Quality diversity (QD)

Initialize population
for iter = 1→ generations budget do

Select parents to form offspring based on scoring scheme
Evaluate performance and descriptor of offspring
Add individuals (potentially) to archive A
Update novelty, competition or curiosity scores

end for

time in [8]. Surrogate-assisted illumination (SAIL), based on the
MAP-Elites algorithm by [5], finds many optimal designs while
using only a small number of real objective evaluations, increasing
the efficiency of MAP-Elites by three orders of magnitude. Diversity
is defined in terms of shape features rather than behaviors, and
SAIL was applied on shape design optimization.

The integration of QD into real world design processes is a recent
development, although evolutionary algorithms have been devel-
oped with this integration in mind. In [16], an interactive strategy
is developed for innovative conceptual design in real world design
processes. The authors identify requirements for such a design
process, such as the ability to efficiently sample the design space,
the ability to change constraints and objectives, identification of
high performance regions, and capturing specific design knowledge
through interaction with a designer. The authors introduce cluster
oriented genetic algorithms to identify high performance regions,
and decompose the optimization problem.

In [9] the initial intuition of the design space produced byQDwas
analyzed by clustering QD’s resulting genomes in an unsupervised
manner, forming design classes and prototypical representatives.
The discovery that the behavior based niches in the QD archive
contain a relatively small set of design classes is in line with the
analysis in [24]. That work showed that the elite hypervolume, the
part of the genotype space that contains the archive’s elites, is often
less spread out than the elites are in behavior space. The concise
representation in [9] lets a user select interesting classes without
being overwhelmed by the large number of solutions produced by
QD. To influence the continuation of the QD algorithm, the authors
reseeded its archive with the selected results, similar to [25], thereby
forcing QD to start searching around the selection. This way, QD
can be used in a design by shopping loop [1].

The approach takes into account the problems with measuring
distances in high-dimensional space [2]. Solutions can be clus-
tered into classes around local optima by introducing a similarity
space, calculated by projecting the solutions in the archive with t-
distributed stochastic neighborhood embedding (t-SNE) [23], which
retains global and local structure well for high-dimensional objects.
Although QD now starts its search around selected solutions, the
unconstrained objective function still allows QD to find solutions
within non-selected regions. As a design process consists of many
design decisions, it is unclear how the seeding approach would be
successful in that case. The subspace that contains solutions fulfill-
ing all of the user’s decisions becomes smaller and more complex
as more design decisions are added, but QD is divergent and will
discover solutions outside of the selection. QD has to be constrained
by modeling the user’s selection decisions.

Modeling User Selection inQuality Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

?

p
h

en
o

ty
p

ic
 f

ea
tu

re
 2

phenotypic feature 1

selected

fill archive with QD

candidate solution

solutions QD found

1. projection (t-SNE)
2. train model

a. low-dimensional phenotypic archive b. high-dimensional genotypic space c. low-dimensional similarity space

S

S

user partition

deselected
L2 norm

Figure 1: QD searches through genotypic space Rn (b) to fill an archive A of diverse, high-performing phenotypes (a) in a
low-dimensional phenotypic (or behavior) space. The genotypic dimensionality n can be very high. By projecting the archive’s
members onto a low-dimensional similarity space (c), the user’s selection can be modeled. The projection model T̂ allows
making comparisons of candidate solutions to the user selection S on the hypersurface by using an L2 norm.

The genotype based selection process from [9] is subject to an-
other problem. When a non-linear genotype to phenotype mapping
is used or the phenotype’s behavior is reactive, e.g. when evolv-
ing neural network controllers or producing shapes from neural
representations [4], small changes in the genotype can lead to
large changes in the phenotype/behavior. For a designer this would
be unexpected, as they assume that once solutions are selected,
the continuation of the design process will produce similar solu-
tions. Because similarity is measured in genotype space, such a
non-linear mapping causes unexpected behaviors to be discovered,
which would be counterintuitive to the designer.

In the following section a model of the user’s selection is intro-
duced, which allows comparing candidate solutions to the selected
ones.

3 USER DECISION HYPERSURFACE MODEL
A user’s selection needs to be modeled to properly and continuously
constrain the optimization process. QD fills its niching archive
based on the behavior or phenotype of solutions (Fig. 1a), but the
search itself still takes place on the level of the genotype (Fig. 1b).
All search constraints need to be defined on the genotype. However,
the genotype often has many parameters, causing distance metrics
like Euclidean distance to become meaningless, which can happen
for as few as 10-15 dimensions [2]. [9, 21] showed that when the
dimensionality of genotypic space is reduced with t-SNE [23], more
structure in the objective landscape can be discovered by clustering
techniques that are based on the notion of distance. This provides
evidence that distances measured in the similarity space resulting
from t-SNE are more effective in describing genotypic similarity
than those measured in the original genotypic space.

The user’s decision is modeled in the similarity space, which is
created based on a t-SNE mapping applied to solutions that have
been placed in the QD archive at the time the user makes their
decision. The archive members form a lattice, which can be seen as a
representative of a hypersurface that unfolds inRn as new solutions
are added to empty cells and moves through Rn as solutions in cells
are exchanged. Every cell in the archive can exclusively contain
points of a subspace of Rn , but a particular instance of an archive
can be mapped into a lower dimensional space that retains the
structure of the archive, while allowing to measure distances on
this approximation of the decision hypersurface.

The user decision hypersurface model (UDHM) is formalized as
follows:

A = {x1, . . . , xm }, x ∈ Rn : QD archive withm points
H = span(A) : decision hypersurface

T : A → A ′ ⊆ Rd : projection into similarity space

T̂ : H ⊆ Rn →H ′ ⊆ Rd : projection model

δ : Rd → R : distance measure, e.g. L2 norm

S,S : selected/deselected solutions.

P = {S,S} : binary selection partition.

M = (T̂ ,δ ,P) : user decision hypersurface model

The span of the points in the archive A defines the decision hy-
persurfaceH that is projected into similarity space Rd using t-SNE
T . A dimensionality of d = 2 is chosen for visualization purposes
and because the projection method, t-SNE, has been robustly tested
for this case.

t-SNE itself does not provide a model, but merely maps high-
dimensional points onto a lower-dimensional space. It is sensitive
to local optima of its cost function, and therefore is not guaranteed
to produce the same result in multiple runs [23]. Due to this sensi-
tivity and the performance cost of the calculation, t-SNE’s mapping
is modeled using d separate Gaussian Process (GP) regression mod-
els [20] for each of the d similarity space coordinates, resulting
in the projection model T̂ . The GP models are trained using the
archive members based on which a decision is made, and thus fully
describes the knowledge that was present at that point in time. The
models’ isotropic Matérn kernel is applied on the coordinates of the
model’s training samples in Rd . The length scale priors to training
are set to the mean Euclidean distance between the samples in Rd .
The projection model T̂ , consisting of the two GP models, prevents
any unexpected drift that can be caused by changes that would
arise due to recalculation of the t-SNE mapping.

The user decides which solutions they would like to further
investigate, represented by the binary selection partition P (Fig. 1c).
The UDHMM, which contains the projection model T̂ , a metric δ
and the user’s selection P allows us to compare candidate solutions
to the user’s selection based on their genotypes, in similarity space.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Hagg et al.

A decision metric can now be defined that determines whether a
candidate solution is closer to S or to S.

3.1 User Selection Drift
In order to measure how close a solution is to the user selection,
a metric called user selection drift dM is introduced. It determines
the distance between a candidate solution xc and the selection S:

δS =min(δ (T (xc),S)) : min. distance to selected

δS =min(δ (T (xc),S)) : min. distance to deselected

dM (xc) =
δS

(δS + δS)
, 0 ≤ d ≤ 1 : normalized user selection drift

dM measures the distance between xc and the closest point inS, δS ,
and between it and the closest point inS,δS (Fig. 2). The normalized
user selection drift equals 0 when it exactly matches a selected
point and equals 1 when the candidate has the same coordinates
as a deselected point. The UDHM and user selection drift can be
used to augment the objective function with, for example, a penalty
metric.

selected not selected

= 0.5
= 0.8

= 0.2

not selected

Figure 2: User selection drift dM is based on the distance to
the closest selected point δS and the distance to the closest
deselected point δS .

3.2 User Driven Quality Diversity
To make use of the UDHM, QD is extended by including the UDHM
to the user-seeded version of MAP-Elites [9]. This user driven
quality diversity (UDQD) algorithm is interactive, although it is
evaluated based on predefined rules that represent the user’s deci-
sion.

UDQD is formalized in Algorithm 2, with the adjustments to
Algorithm 1 in black. A design iterations budget is introduced,
although this could be an open loop as well. After an archive is
created in the inner QD loop, the similarity coordinates are deter-
mined using t-SNE, and the projection model T̂ can be trained
using the pairs from (A,A ′). The user can now determine which
individuals are of interest (S) and which are not (S). This decision
is then turned into a penalty function and the objective function is
adjusted accordingly:

dM (x),wp : drift penalty, penalty weight
f ′(x) = f (x) · (1 −wp · dM (x)) : adjusted objective (maximization)

The penalty, a value between 0 and 1, is used to penalize a solution’s
fitness. The UDHM determines how far a solution might be mutated
away from a known selected solution by measuring the distance

Algorithm 2 User driven quality diversity (UDQD)

Initialize population
for design iter = 1→ design iterations budget do

for iter = 1→ generations budget do
Select parents to form offspring based on scoring scheme
Evaluate performance and descriptor of offspring
Add individuals (potentially) to archive A
Update novelty, competition or curiosity scores

end for
Project archive A onto A ′ with t-SNE.
Train projection model T̂ with training pairs (A,A ′)
Determine partition P by the user with selection repre-

sented by S
Adjust objective function with penalty p ▷ Use UDHM
Assign A ← S ▷ Seed QD archive

end for

to solutions from the state of the archive at the time the decision
was made. The measurement is taken in similarity space, in our
case created by t-SNE. As t-SNE compresses the parameters into
a lower dimensional space, the space is not homogeneous and
measurements in that space cannot be translated to a Euclidean
measurement in parameter space. Neither a simple threshold can
be used to determine whether a candidate is closer to one solution
or the other, nor can it be assumed that there is a universal penalty
function that works in all domains and in all t-SNE projections.
Therefore, a simple linear penalty function is used, which is 0 at
points inS and equals weightwp at a known point inS, to influence
the objective function. The penalty is used to scale the objective
function. It is dependent on the range of the fitness function values
aswell as the structure of the hyperspace. For this reason the penalty
has to be parameterized for each domain and task. A solution’s
fitness is penalized when it is unlikely to belong to S, but it will
still be accepted when there is no alternative solution, because in
the conceptual phase of an engineering task it is better to show
alternatives in a niche than showing no solutions at all. By showing
the user selection drift per niche, the user can be informed about
its supposed distance to the selection.

In the following Section, the model is evaluated for a linear
genotype to phenotype mapping as well as a nonlinear, reactive
case. Both representations’ behaviors are measured in a similar
behavior space.

4 EVALUATION
The main hypothesis is that QD using an objective function that is
adjusted with a penalty based on UDHM shows less user selection
drift than when seeding it with selected solutions. Evaluation takes
place in two tasks that are both defined in the same domain using
the same selection criteria, objective function and diversity mea-
sure. Because design decisions are based on the way a solution is
expressed in the problem domain, which can be a shape or a behav-
ior, the selection process that is introduced is based on the behavior
of solutions. Evaluation takes place for two tasks that can be more
easily quantified than a design optimization task, but is an analogy
to compare directly and indirectly encoded representations.

Modeling User Selection inQuality Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

4.1 Experimental Setup
The multimodal maze presented here is an alternative to the QD
gauntlet introduced in [19]. The maze contains three rings, each
containing three exits (Fig. 3a). In this domain, solutions are ex-
pressed as paths through the maze. The maze is symmetric and has
multiple possible, similarly shaped paths through all exits. These
paths represent multiple basins of attraction.

Initially, a systems designer might not be able to fully describe
the objective or constraints of the controllers. This is simulated by
using a more generalized objective function to find a wide variety
of efficient solutions. The objective function, or quality measure,
that is to be minimized is defined as the length of the path to the
final position in a path and does not explicitly model the objective
to escape the maze (Fig. 3b). This represents the fact that solutions
are designed within the space of optimal solutions, but the final
objective is not known or formalizable in advance. A grid of cells
in the maze is used as a diversity measure (Fig. 3c). The diversity
archive is aligned to the environment for simplicity. After filling
the archive with an initial set of solutions, the user will select the
solutions that escape the inner ring of the maze through a particular
exit (Fig. 3d).

a. environment

start
exit 1

exit 2exit 3

final position
b. quality measure c. diversity measure

high fitness low fitness

selected non-selected

d. selection criterion

range finder
home orientation

start
(x ,y)1 1

(x ,y)i i

e. path planning f. robot control

Figure 3: The multimodal maze (a) has a starting location in
the center and multiple exits. Due to the symmetry of the
problem, no mode, a path that exits the maze is preferred.
The quality measure is defined by the shortest path to the
end position of the path taken (b), so escaping themaze is not
explicitlymodeled. Solution diversity is induced by aligning
the archivewith themaze itself (c). Theuser selects the paths
that exit the inner ring (d). When a path reenters the inner
ring and exits through another gate, the path is deselected.
The two tasks are shown in (e) and (f).

The first task is a path planning problem in which the genotype
to phenotype mapping is very simple. A path planning solution is
encoded by a sequence of seven (x,y) nodes that, when connected,
form a path (Fig. 3e). The range of the node coordinates is lim-
ited between -200 and 200. Diversity is aligned to the maze and
the encoding ensures that solutions showing the same phenotypic
behavior, e.g. take similar paths, are also similar in terms of their
genotypes. For this task phenotypes and behavior are the same.

Because a small change in the genotype causes a small change in
the phenotype, behavioral similarity matches genotypic similarity
and the UDHM should perform well.

In the second task, optimization of neural robot controllers, small
changes can lead to large changes in the phenotype due to the non-
linearities in and reactivity of the neural controller. Solutions are
evaluated in the same maze as the path planning task, using the
simulation that was created in [13]. A robot is equipped with three
range finders that are able to detect the distance to the nearest walls,
and a home beacon that detects the quadrant in which the direction
to the start position of the robot lies (Fig. 3f). It is controlled by a
derivation of a recurrent Elman [7] network which controls two
outputs: forward/backward and rotational movement. The network
contains five hidden neurons and five context neurons, whereby
the weights to the context layer are evolved as well, for a total of 92
weights. The weights’ range lies between -3 and 3. The simulation
is run for 1000 time steps.

The paths taken by the robots are not directly encoded in the
genome, but result from the interaction of the phenotype, the neural
network, with the environment. Therefore, similar controllers could
display different behavior, which should make the comparison of
solutions by their genotypes less effective. The task is therefore
useful to show limits of the comparison in similarity space when
using a non-linearly coupled genotype, phenotype and behavior.
With this final task the limits of the approach are tested. The fol-
lowing introduces the maze domain, and then separately describes
the two tasks and the configuration of the UDQD algorithm.

The MAP-Elites archive is set to contain 900 (30 x 30) elites to
ensure that the original t-SNE implementation is able to converge
within a relatively short time. For larger archives it is recommended
to use Barnes-Hut t-SNE [22] which is able to deal with much
larger data sets. MAP-Elites is initialized with 2000 (planner) or 200
(controller) solutions. Each configuration is repeated six times for all
three exits to account for stochastic effects. The initial orientation
of the robot is changed by 60° steps starting at 30° between runs of
the algorithm. In the path planning task the population is initialized
using a normal distribution with a small σ to ensure that most initial
paths are within the center area of the maze to prevent many invalid
solutions. In the control task the controller weights are chosen from
a space filling Sobol sequence [15]. Each initial archive created with
a MAP-Elites run takes 8192 generations in the path planning task,
and 2048 in the control task. In every generation, 32 children are
created through normally distributed mutation with σ = 5% for the
planning and σ = 1% for the control task. Parent selection is done
by randomly choosing solutions from the archive.

The hyperspace GP models for both coordinates use an isotropic
Matérn kernel. The length scale hyperparameter prior [20] is set to
the mean Euclidean distance between the points in the archive in
Rn . The length scale prior can make or break the model’s ability to
correctly compare solutions, as the training of the GP models will
not converge. When the length scale is too short, the penalty will
be too high for candidate solutions close to S. When the length
scale is too long, the penalty will be too low for those close to S.
After training and constituting the UDHM model, MAP-Elites is
run for 4096 generations in the second constrained iteration based
on the user selection.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Hagg et al.

4.2 Selection on Hypersurface
Here are some examples from the results from both tasks in more
detail. User selection is based on which exit in the inner ring is used
by a solution. Fig. 4 shows example paths that are found by QD in
the first iteration without user selection in the path planning task
(top row). Solutions that do not get out are marked in grey. The user
selects the solutions that take the preferred exit in the inner ring
of the maze, in this case the lower left exit, marked in red/green.
The hypersurface, or similarity space [9], shows that solutions that
are close together tend to take the same exit.

archivemaze hypersurface
before
selection

after
selection

no exit
selected
deselect

Figure 4: Path planning task before (top) and after (bot-
tom) selection of the 3rd exit. Left: example paths (every
5th). Center: QD archive with color assigned depending on
whether exit was selected. Right: points projected onto the
decision hypersurface.

An example archive that is produced by UDQD after selection
of the lower left exit and continuing MAP-Elites for another 4096
generations is shown in the bottom row of Fig. 4. MAP-Elites uses
the adjusted objective function (Section 3.2), resulting in an archive
that is mostly filled by paths that take the selected exit. The most
right column of Fig. 4 shows the archive’s contents projected onto
the hypersurface before and after MAP-Elites has been adjusted for
selection. Solutions in the archive are well separated according to
their behavior, the exit they took in the inner ring, which is to be
expected with a direct genotype to phenotype mapping.

The solutions in the robot neurocontrol task are not as well
separated on the hypersurface (right column of Fig. 5). The paths
the robots take look qualitatively different from the ones in the
path planning task and the archive does not fill up in the same
way. Yet the user selection is still effective, as can be seen by the
archive being filled up by almost entirely by solutions that take the
preferred exit.

4.3 Influence of Penalty Weight on Drift
The penalty weight’s efficacy is evaluated using UDQD with a mu-
tation distance of 5% of the range of the genes for 4096 generations.
The percentage point improvement of selected and deselected so-
lutions that are found with UDQD against baseline runs with the
weight set to zero is measured. Fig. 6 shows those runs for the
planner and control tasks, with six replicates per penalty weight
setting.

archivemaze hypersurface

no exit
selected
deselect

before
selection

after
selection

Figure 5: Neurocontrol task before (top) and after (bottom)
selection of the 1st exit. Left: example paths (every 5th). Cen-
ter: QD archive with color assigned depending on whether
exit was selected. Right: points projected onto the decision
hypersurface.

The penalty derived from the UDHM behaves in a similar fashion
for both tasks, although the optimal weight is higher in the control
task. Because the fitness function range is the same for both tasks,
the difference has to be fully explained by the structure of the
hypersurface. As was already visible in Fig. 5, the solutions are not
as well separated in the case of the control task. The linear penalty
function therefore has to be set to a more conservative, higher value,
in order for it to be effective. The optimal weight setting for this
domain is equal to 10 for the planning task and 200 for the control
task.

10 0 10 1 10 2

penalty weight

0

10

20

30

40

50

co
rr

ec
t [

%]

results
median
mean

10 0 10 1 10 2

penalty weight

-50

-40

-30

-20

-10

0

10

in
co

rr
ec

t [
%]

10 0 10 1 10 2

penalty weight

2

4

6

8

us
er

 se
le

ct
io

n
dr

ift

10-4

0

10

20

30

40

50

-50
-40
-30
-20
-10

0
10
20

1

2

3

4

5

6 10-4

10 0 10 2 10 0 10 2 10 0 10 2

Figure 6: Influence of penalty weight derived from UDHM
drift on percentage of selected and deselected exits for the
path planning (top) and neurocontrol task (bottom). Left:
percentage point increase of correct paths usingUDHMcom-
pared to running QD without selection. Center: percentage
point decrease of number of paths taking wrong exit (com-
pared to QDwithout selection). Right: decrease in user selec-
tion drift when penalty weight is increased.

Modeling User Selection inQuality Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

4.4 User Selection Drift in Seeding and UDHM
In this Section, UDHM is compared against the QD seeding ap-
proach that was introduced in [9]. It is expected to have less user
selection drift, as it constrains QD to find solutions closer to those
that were originally deselected by the user. The amount of user
selection drift should be correlated to the mutation distance used
in QD. Higher mutation distances should lead to more drift in the
unconstrained seeding approach as they will allow solutions to be
mutated to such a degree that they can jump over to the next basin
of attraction. Because solutions are not removed from the archive
when only using an UDHM adjusted objective function, the random
sampling in MAP-Elites will lead to discovering new valid solutions
less often than when seeding, as deselected solutions will still be
picked for mutation as often as selected solutions.

The user selection drift of the seeding and UDHM approaches
and their combination is evaluated by varying the QD mutation
distance and evaluating the user selection drift that was defined in
Section 3.1. The higher the mutation distance, the larger the drift is
expected to be, especially when not using the UDHM to constrain
QD. Neither UDHM nor seeding can fully prevent discovering novel
solutions that do not fulfill the selection criterion, so drift should
occur in both approaches, but drift should be lower for the UDHM
model.

0

20

40

60

80

100

co
rr

ec
t [

%]

0

20

40

60

80

100

in
co

rr
ec

t [
%]

0.5 1.0 1.5 2.0 5.0 8.0
rel. mutation distance [%]

10-3

10-2

10-1

100

us
er

 se
le

ct
io

n
dr

ift

path planning task neurocontroller task

0.001 0.01 0.1 1.0 5.0 20.0
rel. mutation distance [%]

UDHM seeding combined no selection

p<0.05
p<0.005**

*

** ** ** ** ** ** ** **

** * * *

** * * *

Figure 7: Median percentage of correct and incorrect solu-
tions and median user selection drift in both tasks using
UDHM, the seeding method and a combination of the two.
The baseline (dotted gray lines) is uses no selection. 25%/75%
percentile are shown as triangles. Significance results from
a two-sample Kolmogorov-Smirnov test are shown with as-
terisks.

4.4.1 Path Planning Task. As becomes clear from the results of
the planning task on the left of Fig. 7, UDHM is able to suppress

user selection drift. Since UDHM starts its search at all locations
in S and S, the higher the mutation distance is, the more often a
deselected solution can mutate towards S. A large selection drift
can be seen for small mutation distances when only using the
UDHM, because without seeding, and with only a limited number of
generations, UDQD can not mutate solutions far enough away from
the deselected set. In the seeding approach QD always starts exactly
at the selection S. The approach shows less drift for very small
mutation distances because it simply does not get the opportunity
to mutate away far enough to generate solutions that use a different
exit. It however does not find many new solutions, as it on average
ends up at about the same number of correct solutions compared
to not using selection at all (33%), which is the expected value in a
non-biased maze with three exits in the inner ring. With increasing
mutation distance, the seeding approach drifts away from the user
selection. The combination of the two approaches performs best,
as the search starts at the selected locations and is suppressed from
moving too far away.

none UDHM Seeding Combined
Path planning

correct % 33 58 65 72
incorrect % 66 39 18 7
drift dM - 0.01 0.17 0.00
Control
correct % 33 60 44 60
incorrect % 66 39 52 36
drift dM - 0.03 0.48 0.02

Table 1: Median correct, incorrect exits taken, and drift.
Baseline results without selection under "none".

The median values are shown in Table 1. 72% of the solutions
found take the correct exit, while only 7% of the solutions take the
wrong exit. A two-sample Kolmogorov-Smirnov test was performed
to show the mutation distances at which the combined approach
produces significantly different results than the seeding approach.

4.4.2 Control Task. The results for the non-linear and reactive
control task show a qualitatively different behavior. In this case
small mutation distances are beneficial to all three user selection
variants. It is not hard to see why this can happen. If the weights
to the output neuron that is controlling rotational movement are a
bit higher, the robot will rotate more in the beginning of trajectory
and might select another exit. A small change in a neural controller
might lead to the robot selecting a very different path. With increas-
ing mutation distance, the controllers move further away from the
initial archive. The UDHM is able to hold the selection much longer
(up to a mutation distance of 0.1%) but at some point it gives away to
the pressure exerted by mutation. The combined approach benefits
only from the UDHM as it shows the same behavior.

The mean values are shown in Table 1. The low mutation dis-
tances in this case still allow jumping the gap between basins of
attraction because of the non-linear mapping of genotype to phe-
notype and behavior. This explains why all approaches perform
worse than in the planning task. The combined approach performs
best but very similar to the UDHM alone.

GECCO ’19, July 13–17, 2019, Prague, Czech Republic A. Hagg et al.

4.5 Discussion
The objective in the experiments does not contain any information
on what exit in the inner ring should be taken. Instead, the user
can select the preferred solutions. A combination of seeding and
the UDHM leads to a robust selection model within UDQD. By
capturing the user’s selection in a model, as opposed to the seed-
ing method that was proposed in [9], the UDHM adds continuous
control over the QD search and less user selection drift takes place.
The genotype to phenotype mapping seems to influence whether a
small or large mutation distance should be used in QD. In general,
the mutation distance for an unaligned genotype-to-phenotype
mapping has to be lower, as similar genotypes are more likely to
produce dissimilar phenotypes. Taking influence on QD search,
constraining it by adjusting the objective function allows QD to
find new solutions that adhere to a user’s selection.

5 CONCLUSIONS
User selection drift is detrimental to the expected behavior of an
interactive optimization algorithm. In this work UDHMs are in-
troduced that allow modeling the state of a QD algorithm at the
time the user selects from the QD archive. The user selection drift,
a comparison of the distance of a candidate solution to the set of
selected and to the set of deselected genotypes, is used to penalize
solutions that are too close to solutions that were explicitly not
selected. A user driven QD algorithm is formalized that uses the
penalty in its objective function. The UDHM is compared against
an approach that seeds the QD archive with the selected solutions.

Evaluation is done in a new multimodal benchmark domain that
allows comparison for two different representations in a planning
and control task. The tasks allow the comparison of effects of using
differently coupled representations that are hard to quantify in a
pure design task, but results can be transferred back to a design case,
as was shown in [9]. Both tasks show that QD can be influenced
towards a user’s selection. The structure of the decision hyperspace
created using t-SNE is shown to be permissive to compare solutions
of various dimensionality. UDHM is most effective when combined
with seeding. Depending on the representation and the genotype
to behavior/phenotype mapping, the mutation distances can be
high or should be more conservative. UDHM, especially when
combined with the seeding approach, is able to influence QD to
discover new solutions that adhere to the user’s decision. Of course
the occasional misclassification by the user will cause unexpected
behavior, and multiple selection rounds might have to be applied.
The introduced models open up the possibility of using QD in an
interactive optimization process; QD can be used within the design
by shopping paradigm [1].

The limits of the approach for highly nonlinear and reactive
problems might introduce the necessity to measure similarity in a
different way, not based on the genotype but rather on the pheno-
type or behavior itself. Importantly, an interactive design process
consists of more than one decision or selection. The models and the
drift penalty that is introduced allow a concatenation of decision
models, yet the limits of the efficacy for multiple decisions have not
been evaluated. The retraction of user decisions should be possible
by removing the UDHM instance from the objective function, but
the effect of such an act on QD search is unknown. Further research

should also be done to consider the effect of user constraints on the
divergent behavior of QD. Finally, a multiobjective approach could
disentangle the penalty from the fitness function, and removing
the penalty weight that has to be parameterized for each domain.

Interactive control of divergent evolutionary optimization can
provide intuition to engineers and designers while keeping the
human in control. This makes QD more useful for real world design
and engineering tasks, where understanding and solving a problem
are coupled. Multimodal optimization algorithms like QD allow
designers and engineers to not only discover what is possible and
optimal, but to explore their preferences in an interactive setting,
decomposing the twin goals of optimization and understanding.

ACKNOWLEDGMENTS
This work received funding from the German Federal Ministry of
Education and Research, and the Ministry for Culture and Science
of the state of Northrhine-Westfalia (research grants 03FH012PX5
and 13FH156IN6).

REFERENCES
[1] Richard Balling. 1999. Design by shopping: A new paradigm?. In Proceedings of the

Third World Congress of structural and multidisciplinary optimization (WCSMO-3),
Vol. 1. International Soc. for Structural and Multidisciplinary Optimization Berlin,
295–297.

[2] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1999.
When is "nearest neighbor" meaningful?. In International conference on database
theory. Springer, 217–235.

[3] Erin Bradner, Francesco Iorio, and Mark Davis. 2014. Parameters tell the design
story: Ideation and abstraction in design optimization. Simulation Series 46, 7
(2014), 172–197.

[4] Jeff Clune and Hod Lipson. 2004. Evolving Three-Dimensional Objects with a
Generative Encoding Inspired by Developmental Biology. Methods (2004).

[5] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.
Robots that can adapt like animals. Nature 521, 7553 (2015), 503–507.

[6] Antoine Cully and Yiannis Demiris. 2017. Quality and Diversity Optimization: A
Unifying Modular Framework. IEEE Transactions on Evolutionary Computation
(2017), 1–15.

[7] Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science 14, 1 990
(1990), 179–211.

[8] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2018. Data-Efficient
Design Exploration through Surrogate-Assisted Illumination. Evolutionary com-
putation (2018), 1–30.

[9] Alexander Hagg, Alexander Asteroth, and Thomas Bäck. 2018. Prototype Dis-
covery using Quality-Diversity. In Parallel Problem Solving From Nature (PPSN).

[10] Gregory S. Hornby, Al Globus, Derek S. Linden, and Jason D. Lohn. 2006. Auto-
mated antenna design with evolutionary algorithms. Proc. AIAA Space Conference
5 (2006), 1–8.

[11] Joel Lehman and Kenneth O. Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary Computation 19, 2 (2011),
189–222.

[12] Joel Lehman and Kenneth O. Stanley. 2011. Evolving a diversity of virtual
creatures through novelty search and local competition. Proceedings of the 13th
annual conference on Genetic and evolutionary computation - GECCO ’11 Gecco
(2011), 211.

[13] Jean-Baptiste Mouret. 2011. Encouraging Behavioral Diversity in Evolutionary
Robotics: An Empirical Study. Evolutionary computation x (2011).

[14] AnhNguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 427–436.

[15] Harald Niederreiter. 1988. Low-discrepancy and low-dispersion sequences. Jour-
nal of number theory 30, 1 (1988), 51–70.

[16] Ian C. Parmee and Christopher R Bonham. 2000. Towards the support of inno-
vative conceptual design through interactive designer/evolutionary computing
strategies. Ai Edam 14, 1 (2000), 3–16.

[17] Mike Preuss. 2015.Multimodal Optimization byMeans of Evolutionary Algorithms.
[18] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. 2016. Quality Diversity: A

New Frontier for Evolutionary Computation. Frontiers in Robotics and AI 3, July
(2016), 1–17.

[19] Justin K. Pugh, L. B. Soros, and Kenneth O. Stanley. 2016. Searching for quality
diversity when diversity is unaligned with quality. Lecture Notes in Computer

Modeling User Selection inQuality Diversity GECCO ’19, July 13–17, 2019, Prague, Czech Republic

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 9921 LNCS, Ppsn (2016), 880–889.

[20] Carl E. Rasmussen. 2004. Gaussian processes in machine learning. In Advanced
lectures on machine learning. Springer, 63–71.

[21] Uri Shaham and Stefan Steinerberger. 2017. Stochastic Neighbor Embedding
separates well-separated clusters. (2017), 1–8. arXiv:1702.02670

[22] Laurens van der Maaten. 2014. Accelerating t-SNE using Tree-Based Algorithms.
Journal of Machine Learning Research 15 (2014), 3221–3245.

[23] Laurens Van Der Maaten and Geoffrey Hinton. 2008. Visualizing high-
dimensional data using t-sne. Journal of Machine Learning Research 9 (2008),

2579–2605.
[24] Vassilis Vassiliades and Jean-Baptiste Mouret. 2018. Discovering the Elite Hyper-

volume by Leveraging Interspecies Correlation. (2018).
[25] B G Woolley and Kenneth O. Stanley. 2014. A Novel Human-Computer Collab-

oration: Combining Novelty Search with Interactive Evolution. Proceedings of
the 16th annual conference on Genetic and evolutionary computation, GECCO ’14
(2014), 233–240.

http://arxiv.org/abs/1702.02670

	Abstract
	1 Introduction
	2 Background
	3 User Decision Hypersurface Model
	3.1 User Selection Drift
	3.2 User Driven Quality Diversity

	4 Evaluation
	4.1 Experimental Setup
	4.2 Selection on Hypersurface
	4.3 Influence of Penalty Weight on Drift
	4.4 User Selection Drift in Seeding and UDHM
	4.5 Discussion

	5 Conclusions
	Acknowledgments
	References

