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ABSTRACT
In Attribute-Based Access Control (ABAC), a user is permitted or
denied access to an object based on a set of rules (together called an
ABAC Policy) specified in terms of the values of attributes of various
types of entities, namely, user, object and environment. Efficient
evaluation of these rules is therefore essential for ensuring decision
making at on-line speedwhen an access request comes. Sequentially
evaluating all the rules in a policy is inherently time consuming and
does not scale with the size of the ABAC system or the frequency of
access requests. This problem, which is quite pertinent for practical
deployment of ABAC, surprisingly has not so far been addressed
in the literature. In this paper, we introduce two variants of a tree
data structure for representing ABAC policies, which we name as
PolTree. In the binary version (B-PolTree), at each node, a decision is
taken based on whether a particular attribute-value pair is satisfied
or not. The n-ary version (N-PolTree), on the other hand, grows as
many branches out of a given node as the total number of possible
values for the attribute being checked at that node. An extensive
experimental evaluation with diverse data sets shows the scalability
and effectiveness of the proposed approach.
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1 INTRODUCTION
Attribute-Based Access control (ABAC) is an access control model
where authorization rules are based on the notion of attributes,
which are the characteristics of users, objects and environmental
conditions. Every access request is associated with three compo-
nents, namely, the user making the request, the object being re-
quested, and the environmental condition in which the request is
made. While user is typically an active entity, object is commonly
considered to be a passive entity to be protected from unauthorized
access. Environment captures the operational condition of access
request including a variety of factors like location, time, server
load, etc. Inclusion of the notion of environment to the model al-
lows specification of dynamic access rules, which is one of the
unique characteristics of ABAC that sets it apart from traditional
access control models like DAC (Discretionary Access Control),
MAC (Mandatory Access Control) and RBAC (Role-Based Access
Control).

Attributes are (typically disjoint) characteristics of all the three
types of entities, i.e., user, object and environmental conditions.
Each entity type is associated with a set of well-defined attributes,
where each attribute takes one or more possible values. For example,
a user u1 can have the value professor for the user attribute designa-
tion and the value CSE for the user attribute department. Similarly,
both objects and environmental conditions are specified by means
of a set of attributes and a set of possible values associated with
those attributes. Once the users, objects, environmental conditions
and their attribute-value pairs have been assigned, an organization
needs to set up a desired set of rules together called the organiza-
tional ABAC policy. Each rule specifies what set of users can access
which set of objects in which environments, where each element
(the set of users, objects and environmental conditions) is specified
using a set of corresponding attribute-value pairs. Together, the
rules specify the set of accesses that should be authorized.

It is thus evident that successful deployment of ABAC not only
requires a well-defined ABAC policy, but also an efficient method
for evaluating the rules in the policy whenever an access request is
generated. Recent literature [8, 22, 23] shows a rich body of work
that tries to address the first problem, i.e., framing an appropriate
ABAC policy based on the required set of accesses. Commonly
referred to as the problem of policy mining, several innovative algo-
rithms have been developed for building the rule set from existing
accesses specified using the components of the traditional access

Session: Mechanisms and Structures SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

25

https://doi.org/10.1145/3322431.3325102
https://doi.org/10.1145/3322431.3325102
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3322431.3325102&domain=pdf&date_stamp=2019-05-28


SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada Ronit Nath, Saptarshi Das, Shamik Sural, Jaideep Vaidya, and Vijay Atluri

control models. It may be noted that, policy mining is typically an
offline step in using ABAC and that too required only during the
initial deployment phase. On the other hand, evaluation of the rules
is necessary each time an access request is made and hence has to
be carried out in an on-line environment. For a large organization,
not only would the ABAC policy size be large, the number of access
requests originating in a given time is also extremely high. In this
paper, we address precisely this problem and show how efficient
data structures can be designed to enable fast decision making even
for large organizations using ABAC. To the best of our knowledge,
there is no existing work in the literature addressing this important
problem.

In ABAC terminology, the Policy Decision Point [11] is respon-
sible for evaluating an access request against a policy and decide
whether the access is to be permitted or denied. Usually, for evalu-
ating a specific access request against a rule, the attributes of all
the entities involved in the access request are to be compared with
all the attributes in the rule. Likewise, all the rules in the policy are
to be evaluated till a rule is found that permits the desired access.
Else, if searching of the complete set of rules is completed with
no matching rule found, the access is denied. Thus, in the worst
case, all the attributes in the policy are to be compared with the
attributes involved in the access request. In organizations with nu-
merous rules, evaluating them sequentially against a specific access
request is time consuming. This adversely affects the performance
of ABAC in situations where several access requests have to be
resolved in a fairly short time frame. To address this problem, we
propose a policy tree data structure named PolTree and show its
two variants: a binary tree (called B-PolTree) and an n-ary tree
(called N-PolTree). These data structures not only store an ABAC
policy efficiently, they also ensure very fast resolution of access
requests. This is achieved through evaluation of a much lesser num-
ber of attribute-value pair matchings as compared to sequential
evaluation.

It may be argued that there is a straightforward way of handling
the requirement of efficient evaluation of access requests. This can
be done by statically constructing an Access Control Matrix (ACM)
from the rules and attribute value assignments, and from there (or
directly) derive the ACLs (Access Control Lists). However, this is
not a viable option for ABAC due to two reasons. Firstly, the ACL
would vary with the environmental condition, i.e., for each space
and time combination, for example, there will be a different ACL.
The total number of such ACLs could be inordinately large and
determining which ACL to use as time evolves or as the location
of origin of access request changes due to mobility, itself would
be time consuming. The second reason stems from the fact that
ABAC, unlike other access control models, can be used in situations
requiring support for ad hoc collaboration. A user, who may not
even exist in the organization a priori, may be required to be given
access based on her attribute-value pairs. Since this user itself does
not exist in the system, it would not be there in the ACL as well.
Hence, there is a real need for evaluation of rules on-the-fly when
an access request comes.

The rest of the paper is organized as follows. Section 2 discusses
the preliminaries and formal notations for an ABAC system. In
Section 3, we discuss two naive yet correct techniques for access
request evaluation. In Section 4, we propose two efficient tree-based

data structures which facilitate fast resolution of access requests.
We present results of experimental evaluation of the proposed
approaches in Section 5. Section 6 reviews related work in this field.
Finally, Section 7 concludes the paper and provides directions for
future research.

2 COMPONENTS OF AN ABAC SYSTEM
In this section, we precisely define the various components of ABAC
broadly following the NIST specifications [12].

• U = Set of users
• O = Set of objects
• E = Set of environmental conditions
• OP = Set of allowable operations on the objects
• UA = {au1 ,a

u
2 , .....,a

u
n } is an ordered list of user attributes,

where n = |UA|
• OA = {ao1 ,a

o
2 , .....,a

o
m } is an ordered list of object attributes,

where m = |OA|
• EA = {ae1 ,a

e
2 , .....,a

e
p } is an ordered list of environmental

attributes, where p = |EA|
• V x

i = {vxi1,v
x
i2, .....,v

x
ik } is the set of values that can be taken

up by the attribute axi , where x ∈ {u,o, e} and k = |V x
i |

axi denotes the ith user, object or environmental attribute
depending on the value of x.
• f xi : X→ V x

i ∪ {#} where x ∈ {u,o, e}, X ∈ {U ,O,E}.
f ui is a function from the set of users to the set of values that
can be taken up by the ith user attribute aui .
For example, f u1 (John) = student, denotes that the function
maps the user attribute ’designation’ to the value ’student’
for the user ’John’.
f oi is a function from the set of objects to the set of values
that can be taken up by the ith object attribute aoi .
For example, f o1 (File1) = assignment.
f ei is a function from the set of environmental conditions
to the set of values that can be taken up by the ith environ-
mental attribute aei .
For example, f e2 (E1) = Monday.
# denotes that the value of an attribute for a particular user,
object or an environmental condition is unknown.
• A policy P is a set of rules that governs the access to an
object depending on the values of the user and the object
attributes and the prevalent environmental conditions. A
policy is represented as:
P = {r1, r2, .....rl } where l = |P |.
• ri = ⟨cui , c

o
i , c

e
i ,opi ⟩

ri is the ith rule in the policy.
• rel_op = { == , != , < , > , ≤ , ≥ } is the set of relational
operators
• Each attribute value comparison is represented as axi rel v,
where rel ∈ rel_op, v ∈ V x

i ∪ {#,*}, where * means that any
value of axi will satisfy that attribute value comparison.

• cui =
|UA |∧
j=1

auj relj α j is the user condition for the ith rule,

where auj ∈ UA, α j ∈ V
u
j ∪ {#,*}.
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• coi =
|OA |∧
j=1

aoj relj βj is the object condition for the ith rule,

where aoj ∈ OA, βj ∈ V
o
j ∪ {#,*}.

• cei =
|EA |∧
j=1

aej relj γj is the environment condition for the ith

rule, where aej ∈ EA, γj ∈ V
e
j ∪ {#,*}.

As an example, consider the following organization having the
sets of users, objects, environmental conditions and allowable op-
erations as given below.

• U = {u1,u2,u3,u4}
• O = {o1,o2,o3,o4}
• E = {e1, e2}
• OP = {Read,Modi f y}
• UA = {Desiдnation,Department}
• OA = {Type,Conf identiality}
• EA = {Day}

• Vu
1 = {Pro f essor , Student}, the set of possible values for

the user attribute ’designation’.
Vu
2 = {CSE,ECE}, the set of possible values for the user

attribute ’department’.
V o
1 = {Assiдnment ,Question paper }, the set of possible val-

ues for the object attribute ’type’.
V o
2 = {Hiдh,Low}, the set of possible values for the object
attribute ’confidentiality’. V e

1 = {Weekday,Weekend}, the
set of possible values for the environmental attribute ’day’.

• Let the set of access rules for the organization in natural
language representation be specified as follows:
– r1: A professor of CSE department canmodify assignments
with high confidentiality on weekdays.

– r2: A professor of CSE department can modify question
paper with high confidentiality on weekdays.

– r3: A student of CSE department can read assignments
with high confidentiality on weekends.

– r4: A professor of ECE department canmodify assignments
with low confidentiality on weekends.

– r5: A professor of ECE department can modify question
paper with low confidentiality on weekdays.

– r6: A student of ECE department can read assignments
with low confidentiality on weekends.

• These rules can be represented in terms of the ABAC com-
ponents introduced earlier in this section as follows.
– r1: Desiдnation = Pro f essor ∧ Department = CSE ∧
Type = Assiдnment ∧ Conf identiality = Hiдh ∧ Day =
Weekday ∧ op = Modi f y

– r2: Desiдnation = Pro f essor ∧ Department = CSE ∧
Type = Question paper ∧ Conf identiality = Hiдh ∧
Day =Weekday ∧ op = Modi f y

– r3:Desiдnation = Student ∧Department = CSE ∧Type =
Assiдnment ∧Conf identiality = Hiдh ∧Day =Weekend
∧ op = Read

– r4: Desiдnation = Pro f essor ∧ Department = ECE ∧
Type = Assiдnment ∧ Conf identiality = Low ∧ Day =
Weekend ∧ op = Modi f y

User Desiдnation Department

u1 Student CSE
u2 Pro f essor CSE
u3 Student ECE
u4 Pro f essor ECE

Table 1: User attribute-value pair assignment

Object Type Conf identiality

o1 Assiдnment Hiдh
o2 Question paper Hiдh
o3 Assiдnment Low
o4 Question paper Low

Table 2: Object attribute-value pair assignment

Environmental state Day

e1 Weekday
e2 Weekend

Table 3: Environmental attribute-value pair assignment

– r5: Desiдnation = Pro f essor ∧ Department = ECE ∧
Type = Question paper ∧Conf identiality = Low ∧Day =
Weekday ∧ op = Modi f y

– r6:Desiдnation = Student ∧Department = ECE ∧Type =
Assiдnment ∧Conf identiality = Low ∧ Day =Weekend
∧ op = Read

Tables 1-3 show an example set of assignments of attribute values
to users, objects and environmental conditions, respectively.

With this background on the basic components of ABAC, we
proceed to describe two possible baseline approaches for evaluating
access requests in the next section.

3 BASELINE APPROACHES
After deployment of ABAC in an organization, it is imperative
that the access control system be capable of efficient resolution of
incoming access requests. The time required to resolve an access
request depends on the number of comparisons of attribute-value
pairs in the rules. Hence, for an access request, it is essential to min-
imize this number, which can be achieved if it is possible to discard
a rule by checking only some of its attribute-value pairs instead
of evaluating the complete rule. For instance, a user belonging to
the department of CSE cannot use a rule where the department
attribute is associated with the value ECE. In such a situation, one
can easily skip the remaining attribute-value pairs of the rules.

In this section, we first consider a naive approach in which an
access request is sequentially evaluated against all the rules in
the organizational policy. This serves as our Baseline 1. Next, we
describe an improved variation of this approach in which the rules
are re-arranged in a manner that potentially reduces the number of
comparisons necessary to resolve an access. This serves as Baseline
2. Both the approaches consider use of linear data structures.

Let us consider that, for a set of usersU ,UV is a set of attribute-
value pairs for all u ∈ U . Each element uvi ∈ UV in turn, is a set of
attribute-value pairs for the userui . The setsOV and EV are defined
similarly for the set of attribute-value pairs for all the objects and
the set of attribute-value pairs of all the environmental conditions,
respectively.
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3.1 Sequentially Searching the Rules in a Policy
In ABAC, an access request can be represented as a 4-tuple: ⟨u,o, e,op⟩,
where u ∈ U , o ∈ O , e ∈ E, op ∈ OP . In other words, a user u wants
to perform operation op on the object o in environmental condition
e . Whenever such an access request arrives, rules within the policy
are checked sequentially, so as to find a rule which will permit the
user u to perform the operation op on object o. The procedure for
sequentially searching all the rules in the policy is given in Algo-
rithm 1. We refer to this method as the sequential search approach
(interchangeably, the linear search approach).

Algorithm 1: Sequential Search Approach (P, AR)
Input: Policy P, Access request AR = ⟨u,o, e,op⟩
Output: 1 for allowed access request

0 : for denied access request

1 for i ← 1 to |P | do
2 if Ri grants access then
3 return 1

4 return 0

For instance, let ⟨u2,o2, e1,modi f y⟩ be a requested access (ar ).
Consulting Tables 1-3, one can find that

uv2 = {Desiдnation = Pro f essor ,Department = CSE}
ov2 = {Type = Question paper ,Conf identiality = Hiдh}
ev1 = {Day =Weekday}
op = {Modi f y}

Concatenating the contents of uv2, ov2, ev1 and op we get:
{Desiдnation = Pro f essor ,Department = CSE,Type = Question
paper , Conf identiality = Hiдh,Day =Weekday,op = Modi f y}

Now, the obtained attribute-value pairs are compared with the
attribute-value pairs of each of the rules. The attribute value com-
parisons done when the access request is sequentially evaluated
against the rules in the policy are as follows:
First, the access request ar is evaluated against r1 where it is seen
that the first two attribute-value pairs in r1 are also present in ar .
The third attribute-value pair of r1 and ar do not match. So, r1
cannot be used by u2 to perform the requested operation. Now, we
evaluate ar against the second rule. All the six attribute-value pairs
in r2 matches with ar . Thus, r2 permits the desired access. Since the
access decision is already obtained, it is not necessary to evaluate
ar against the remaining rules. The number of attribute-value pairs
compared for rules r1 and r2 are three and six, respectively. Thus,
the access request ar is resolved after a total of nine comparisons.

3.2 Rule Re-ordering for Improved Sequential
Search

Now, we present a modified version of the sequential search ap-
proach which is based on re-arranging the rules of the policy and
then re-shuffling the attribute-value pairs within each rule. This
two-way re-ordering ensures that resolving access requests incur a
lesser number of attribute-value pair comparisons as compared to
the naive sequential search approach. The re-arranging procedure

is given in Algorithm 2. It operates in 4 steps as discussed below.
Step 1. Prepare access data
This step (Lines 6-10 of Algorithm 2) prepares the list of all possible
access requests in the ABAC system. The total number of possible
access requests is |U | ×|O | ×|E | ×|OP |.

Algorithm 2: Rearrange Rules (U, O, E, OP, P, UV, OV, EV)
Input: Set of users U , objects O , environmental conditions E,

operations OP , user attributes UA, object attributes
OA, environmental condition attributes EA, set of
attribute-value pairs for users UV , objects OV ,
environmental conditions EV , policy P

Output: Rearranged policy P
1 access_data ← ϕ

2 rule_f req ← ϕ

3 comp_f req ← ϕ

4 total_attributes ← |UA| + |OA| + |EA| + 1
5 AVP ← UV ∪OV ∪ EV

6 for i ← 1 to |U | do
7 for j ← 1 to |O | do
8 for k ← 1 to |E | do
9 for l ← 1 to |OP | do

10 T ← concatenate(ui ,oj , ek ,opj )
add T to access_data

11 for each ar ∈ access_data do
12 for i ← 1 to |P | do
13 if ri satisfies ar then
14 rule_f reqi ← rule_f reqi + 1

15 Arrange each r ∈ P in non-increasing order of frequency
16 for i ← 1 to |P | do
17 for j ← 1 to |AVP | do
18 avpc ← AVPj
19 if avpc present in ri then
20 comp_f reqj ← comp_f reqj + 1

21 Arrange the attribute-value pairs in each rule in
non-increasing order of frequency

Step 2. Compute the coverage of each rule
In the second step (Lines 11-14 of Algorithm 2), the number of
access requests satisfied by each rule is computed.
Step 3. Arrange the rules in the policy
In the third step (Line 15 of Algorithm 2), a re-arrangement of the
rules in the policy is done in non-increasing order of the number
of times a rule has been satisfied by access requests. The rule that
permits most of the accesses is made the first rule of the policy.
The idea behind such a re-arrangement is that an incoming access
request is more likely to be satisfied by the rule that allows most
number of accesses. This is based on the assumption that the access
requests are uniformly distributed.
Step 4. Arrange attribute-value pairs within a rule
In the final step (Lines 16-21), the number of times an attribute-value
pair occurs in the policy is computed. Then, the attribute-value
pairs within each rule are re-arranged in non-decreasing order of
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their occurrences in the policy. This keeps the attribute-value pair
with the lowest frequency at the beginning of the rule. It helps in
faster discarding of a rule while resolving an access since the least
frequent attribute-value pair is most unlikely to occur in an access
request.
It may be noted that after re-arranging is done as an off-line one-
time process, when an access request comes, the actual searching
of the rules is done in a manner similar to the Baseline 1 approach
mentioned above.

4 POLICY TREE FOR ABAC
The sequential search approach on the reordered rules as discussed
in Sub-section 3.2 is expected to perform better than the basic
sequential search approach discussed in Sub-section 3.1. However,
the improvement in performance is heavily dependent on the nature
of the access requests. In the worst case, its performance would be
similar to that of sequential search. To address this limitation, we
introduce two unique tree-based data structures for storing ABAC
policies which require a lesser number of comparisons to resolve
an access request.

4.1 Binary Policy Tree
In this sub-section, we present a binary tree-based data structure to
store an ABAC policy. As seen in the baseline approaches discussed
in the last section, comparison of attribute-value pairs is the atomic
operation for resolving an access request. There are two possible
outcomes for an attribute-value pair comparison, i.e., Yes (Y) or No
(N). Therefore, if we consider an attribute-value pair as a node of
a binary tree, resolving it automatically resolves all the attribute-
value pair comparisons in all the rules where it is present.

The procedure for constructing a B-PolTree for a given ABAC
policy is given in Algorithm 3 which takes as input an ABAC policy
P , the set of usersU , objectsO , environmental conditions E as well
as the three sets of attribute-value pairs, i.e., UV , OV and EV .

Each non-leaf node of B-PolTree consists of the following:
• An attribute-value pair
• Two branches,Y and N . TheY and the N branch point to the
left and the right sub-trees of the current node, respectively.

Each leaf node of B − PolTree consists of the following:
• An access decision, i.e., Allow (A) or Deny (D)

B-PolTree construction requires the four steps mentioned below.
Step 1. Find the attribute-value pairwith the highest number
of occurrences
This step (Lines 6-7 of Algorithm 3) finds the attribute-value pair
avp having the maximum normalized frequency in UV ∪ OV ∪
EV . Each attribute-value pair frequency is divided by the number
of entities of the type of the attribute to obtain the normalized
frequency. If multiple attribute value-pairs have the same frequency,
then any one of them can be chosen randomly. A node is created
with avp as its label. The attribute-value pair with the highest
frequency is selected since it is more likely to occur in an access
request. For example, from Tables 1 - 3 and the rules given in Section
2, Desiдnation = Pro f essor is the node with the highest frequency.
The chosen attribute-value pair is made into a node as shown in

Algorithm 3: GEN_BIN_POLTREE (P, AVP, S)
Input: Policy P , Set of all attribute-value pairs

AVP = {UV ∪OV ∪ EV }, Set of all entities
S = {U ∪O ∪ E}

Output: B-PolTree
1 if |P | == 1 then
2 create a node with all the remaining attribute-value pairs

in P
3 add two branches labeled Y and N
4 add leaf nodes A and D for branches Y and N, respectively
5 else
6 avp ← attribute-value pair with highest frequency in all

attributes
7 create a node N with label avp
8 Py ← set of rules in P having avp
9 Pn ← P − Py

10 Sy ← set of all entities covered by Py
11 Sn ← set of all entities covered by Pn

12 AVP
′

← AVP − {avp}

13 le f t[N ] ← GEN_BIN_TREE(Py ,AVP
′

, Sy )

14 riдht[N ] ← GEN_BIN_TREE(Pn ,AVP
′

, Sn )

Figure 1.
Step 2. Find the rules corresponding to the selected attribute-
value pair
In the second step (Lines 8-12 of Algorithm 3), two sets Py and Pn
are constructed. Py is the set of rules in P which contain avp. Pn
is the complement of Py . avp is removed from AVP, as the same
comparison will not be performed twice during the resolution of an
access request. Next, for Py and Pn , the sets Sy and Sn are created
which contain the entities covered by Py and Pn , respectively. The
sets Py , Pn , Sy and Sn corresponding to Desiдnation = Pro f essor
are shown in Figure 1.
Step 3. Repeat the above steps with the smaller policies Py
and Pn
In the third step (Lines 13-14), Algorithm 3 is recursively invoked
with the policies Py and Pn and the new set of attribute-value pairs
AVP

′

. This generates the left sub tree and the right sub tree of the
most recently created node labeled avp.
Step 4. Create a leaf node with the only rule in the policy
This is the base condition of the recursive algorithm. In this step, if
the rule set contains only a single rule, a node is created comprising
the remaining attribute-value pairs of the node. Then, Y and N
branches are added to the rule. Finally, leaf nodes containing A and
D are added to the Y and N branch, respectively. The complete
B-PolTree generated using Algorithm 3 on the example data set is
shown in Figure 1.

Now, we show how an access request is resolved using the con-
structed B-PolTree. The algorithm for resolving an access using
the B-PolTree is given in Algorithm 4, which takes a B-PolTree,
an access request and the current node as inputs and returns the
access decision corresponding to the requested access.
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Figure 1: Binary policy tree

Algorithm 4: BINARY RESOLVE (T, AR, CN)
Input: B-PolTree T, Access request AR, Current node CN
Output: Access decision

1 CN ← root o f T

2 if CN is a lea f node then
3 return decision

4 else
5 avpc ← attribute-value pair (s) in CN
6 if avpc in AR then
7 Set the node in the Y branch as CN

8 BINARY_RESOLVE(T ,AR,CN )
9 else

10 Set the node in the N branch as CN

11 BINARY_RESOLVE(T ,AR,CN )

The function Binary_Resolve is initially called with the complete
tree T, the incoming access request AR and the root node as the
current node CN. Then the presence of the attribute-value pair of
the current node is checked in the access request (Line 6). If present,
the Y branch, i.e., the le f t branch of the current node is selected
(Line 7). Otherwise, the N , i.e., the right branch is selected (Line 10).
Next, the node at the end of the selected branch is set as the current
node. This is continued until a leaf node is reached. Finally, the
value of the leaf node is returned as the decision corresponding to
the access request. The maximum number of comparisons required
to resolve an access request using a B-PolTree is O(|UV | + |OV | +
|EV | + |A|), where |A| is the total number attributes in the system.

4.2 N-ary Policy Tree
In this sub-section, we present another tree-based data structure for
representing an ABAC policy. Here, an ABAC policy is organized
in the form of an n-ary tree. We refer to the constructed tree as
N-PolTree. Each non-leaf node of N-PolTree comprises:
• An attribute

• Branches for each distinct value of the attribute in the policy
P

Each leaf node of an N-PolTree consists of the following:
• A node with decision A which represents allow

Algorithm 5 presents the procedure for constructing anN-PolTree
that takes as input an ABAC policy P , the set of users U , objects
O , environmental conditions E, operations OP and the set of all
attributes, i.e., UA, OA and EA.

Algorithm 5: GEN_N_POL_TREE (P, A, S)
Input: Policy P , Set of all attributes A = {UA ∪OA ∪ EA}, Set

all entities S = {U ∪O ∪ E}
1 if |A| == 0 then
2 create a lea f node L and label it with decision A

3 break

4 else
5 a ← attribute with the hiдhest entropy

6 create a node N and label it with A

7 V ← set o f possible values o f a in P

8 for each v ∈ V do
9 add a branch labeled v to N

10 Pv ← set o f rules in P where a = v

11 Sv ← set o f all entities covered by Pv
12 GEN_N_POL_TREE ( Pv , A − {a}, Sv )

Step 1. Compute the attribute with themaximum entropy
This step (Line 5) finds the attribute with the maximum entropy.
The entropy (H) of an attribute X is computed as follows:

H (X ) = −
n∑
i=1

p(xi )loд2p(xi ),

where x1,x2, ...,xn are the possible values that X can take and p(xi )
is the fraction of entities of the type to which X belongs and takes
up the value xi . p(xi ) is computed from the set of attribute-value
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Figure 2: N-ary policy tree

pairs of all the entities of the same type as X . Choosing an attribute
with the maximum entropy ensures that the policy is split evenly
among the values that the attribute assumes in the policy P. A
node is created with the selected attribute (Line 6). Next, branches
corresponding to the possible values of the selected attribute are
added to the created node (Lines 7-9).

For instance, considering Tables 1, 2, 3 and the rules given in Sec-
tion 2, the user attribute Desiдnation has the highest entropy. Thus,
a node with the label Desiдnation is created. Next, the two possi-
ble values of Desiдnation, i.e., Pro f essor and Student are added as
branches of the node as shown in Figure 2.
Step 2. Determine the list of entities corresponding to the
values of the selected attribute
In the second step (Lines 10-11 of Algorithm 5), for each branch
generated in Step 1, first, the set of rules Pv is computed. Pv consists
of all the rules where the value of the selected attribute is the same
as the branch label. The selected attribute in Step 1 is removed from
A, since the same attribute will not be compared twice during the
resolution of an access request. Next, the set of entities Sv that are
covered by the rules in Pv are obtained.

For example, for the branch Student in Figure 2, rules r3 and r6
have Desiдnation = Student . Therefore, Pstudent = {r3, r6}. The
set of users, resources and environmental conditions covered by
Pstudent are {u1,u3}, {o1,o3} and {e2}, respectively.
Step 3. Recursively invoke the above steps with smaller poli-
cies
In the third step (Line 12), Algorithm 5 is invoked with the set
of rules Pv , set of entities Sv , and the remaining set of attributes
obtained in Step 2 (Line 11). This creates the remaining levels of
the tree.
Step 4. Create leaf node

Finally, when all the attributes have been used up in a particular
path of the policy tree and Algorithm 5 is invoked with an empty
set of attributes, a leaf node with decision A is created. This is done
because a path starting from the root to the leaf node represents
a rule in P, and if during the resolution of an access request, the
leaf node is reached, it means all the attribute-value pair compar-
isons in the rule have already been satisfied by the access request,
and the access has to be granted. The complete N-PolTree for the
illustrative example is shown in Figure 2.

After the N-PolTree construction is completed, actual evaluation
of access requests can be carried out.

Algorithm 6 shows how an access request is resolved using the
N-PolTree, where "*" (Refer to Section 2) is not present in any of
the attribute-value pairs in the ABAC policy.

Initially, the root node of the N-PolTree is set as the current node.
The value corresponding to the current attribute is obtained from
the access request. If the obtained value matches the label of any
of the branches of the current node, the attribute in the node at
the end of the selected branch is chosen and the newly reached
node is set as the current node. Otherwise, if there is no branch
label corresponding to the obtained value from the access request,
it is denied. This procedure is repeated until the access request is
denied at any node. Alternatively, if the leaf node of the N-PolTree
is reached, i.e., all the attributes in the system are evaluated and
there is an allowable value (branch) in the N-PolTree at every
level corresponding to an attribute value in the access request, it
is allowed. The maximum number of comparisons required for
resolving an access request using an N-PolTree is θ (|A|), where |A|
is the total number of attributes in the system.
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Algorithm 6: N_ARY RESOLVE (T, AR, CN)
Input: N-PolTree T, Access request AR, Current node CN
Output: Access decision

1 CN ← root o f T

2 if CN is a lea f node then
3 return Allow

4 else
5 a ← attribute in CN

6 val ← value o f attribute a in AR

7 if branch f or val present in CN then
8 дo to the node in that branch and set it as CN

9 N_ARY RESOLVE (T ,AR,CN )
10 else
11 return Deny

Algorithm 7: N_ARY RESOLVE_ANY(T,AR,CN)
Input: N-PolTree T, Access request AR, Current node CN
Output: Access decision

1 CN ← root o f T

2 tracker = { }

3 if CN is a lea f node then
4 return Allow

5 else
6 a ← attribute(s) in CN

7 val ← value o f attribute a in AR

8 if branch f or val present in CN then
9 if branch f or ” ∗ ” present in CN then

10 add CN to tracker

11 дo to the node in that branch and set it as CN

12 N_ARY RESOLVE_ANY(T ,AR,CN )
13 else
14 if branch f or ” ∗ ” present in CN then
15 дo to the node in that branch and set it as CN

16 N_ARY RESOLVE_ANY(T ,AR,CN )
17 else
18 return Deny

19 if decision is Deny then
20 if tracker is not empty then
21 CN = last entry o f tracker

22 remove CN f rom tracker

23 N_ARY RESOLVE_ANY(T ,AR,CN )
24 else
25 return Deny

Algorithm 6 works only when no attribute in the policy is as-
signed the value ” ∗ ”. If the value assigned to an attribute a is
"*", the value for attribute a need not be looked for in the access
request. Algorithm 7 is used to resolve an access request in a given
N-PolTree where ” ∗ ” is present as an attribute value in the rules
of the ABAC policy.

Resolution of an access request using Algorithm 7 is similar
to Algorithm 6 until an access request is denied (Lines 3-18). For
resolving access requests with ” ∗ ” in the policy, a list of nodes
(attributes) is maintained for which there is a not yet traversed
branch labeled ” ∗ ”. It may sometimes occur that an access request
that has been denied by the N-PolTree may be allowed if the branch
corresponding to ” ∗ ” is chosen instead of a branch whose label
matches with the value in the access request. In such cases, Al-
gorithm 7 falls back to the last node, i.e., to an attribute where a
branch labeled ” ∗ ” is present but was not traversed while resolving
the access decision (Lines 19-23). If there is no node left where a
branch labeled ” ∗ ” is present but the branch is not traversed, the
access request is finally denied (Lines 24-25).

5 EXPERIMENTAL EVALUATION
In the absence of any large scale real-life data sets, we have evalu-
ated our proposed approaches on a number of synthetically gen-
erated data sets. Each such generated data set comprises a set of
users, objects, environmental conditions, attribute-value pairs of
all the entities and a policy. The proposed data structures were
implemented in Python 2.7 and executed on a 3.2 GHz Intel i5 CPU
having 4 GB of RAM.

We denote the obtained results using the average number of
comparisons required to resolve an access for sequential search,
modified sequential search, B-PolTree, and N-PolTree asCL ,CM ,CB
and CN , respectively. We also present the speedup achieved taking
sequential search as the baseline. These are denoted as SL , SM ,
SB and SN , respectively. Obviously, SL = 1. The number of users,
objects, environmental conditions, rules, attributes, and attribute
values are denoted as |U |, |O |, |E |, |P |, |A| and |AV |, respectively.

For experimental evaluation, we consider variation in the average
number of comparisons and speedup in the following scenarios:
(i) different values of |U | and |O | (ii) different values of |P | (iii)
different values of |A| and |AV |. Further, we show the impact of
inclusion of ” ∗ ” in the data sets and compare the performance of
B-PolTree and N-Poltree for the following situations: (i) different
values of |P | (ii) different values of |A| and |AV |. Since the data
sets are synthetically generated, the number of attribute-value pair
comparisons and speedup presented in this section are computed as
the average of 1000 cases. We have rounded off the average number
of comparisons in each instance to the nearest integer.

Table 4 shows the variation in the average number of compar-
isons required to resolve an access request as well as the speedup for
the two baseline approaches and the two tree-based approaches for
different number of users and objects. Little variation is observed in
the average number of comparisons required to resolve an access
request for each of the proposed approaches. This is attributed to
the fact that the number of comparisons is independent of the num-
ber of users and objects in the system. In this situation, N-PolTree
performs the best among all the approaches followed by B-PolTree.
The difference in performance of B-PolTree and N-PolTree is be-
cause in N-PolTree, the maximum number of comparisons required
to resolve an access request is O(|A|), where |A| is the number of
attributes. For B-PolTree, it isO(|AV |), where |AV | is the total num-
ber of possible attribute-value pairs. The modified sequential search
approach performs marginally better than Baseline 1. Performance
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|E | = 10, |P | = 100, |A| = 10, |AV | = 10
|O | = 100 |O | = 200

|U | CL SL CM SM CB SB CN SN CL SL CM SM CB SB CN SN
100 116 1 103 1.56 10 11.11 5 14.28 115 1 105 1.96 10 12.08 4 19.00
200 114 1 105 1.81 9 10.00 4 20.00 121 1 102 1.84 9 11.59 4 17.88
500 118 1 106 1.61 10 11.11 5 16.67 116 1 109 1.53 11 11.04 5 20.13

|O | = 500 |O | = 1000
|U | CL SL CM SM CB SB CN SN CL SL CM SM CB SB CN SN
100 115 1 104 1.63 11 12.26 5 16.34 117 1 103 1.88 11 11.76 5 20.22
200 117 1 108 1.91 10 11.50 5 18.58 119 1 110 1.97 10 12.63 5 16.67
500 120 1 107 1.56 10 11.74 5 15.33 118 1 105 1.64 10 11.44 4 19.48

Table 4: Variation in the average number of comparisons required to resolve an access and speedup for different number of
users and objects

|U | = 100, |O | = 1000, |E | = 10, |A| = 10, |AV | = 10
|P | CL SL CM SM CB SB CN SN
10 17 1 13 1.61 7 1.96 5 2.56
50 60 1 52 1.56 9 5.88 3 16.67
100 115 1 104 1.51 11 11.11 4 25.00
500 553 1 523 1.35 18 42.23 4 138.25
1000 1109 1 1051 1.35 20 76.76 4 277.25

Table 5: Variation in the average number of comparisons re-
quired to resolve an access and speedup for different policy
sizes

of the tree-based approaches clearly surpasses both the baselines. A
similar trend is observed in the speedup of the proposed approaches.
N-PolTree clearly edges past B-PolTree, followed by the two base-
lines. This trend is due to the fact that the time required to resolve
an access is dependent on the number of comparisons made.

Table 5 shows the variation in average number of comparisons
required to resolve an access request and the speedup for all the
four approaches proposed in Sections 3 and 4 for different policy
sizes. The average number of comparisons required for resolving
an access using all the approaches, barring N-PolTree, increases
with the number of rules. For the two baseline approaches, as all
the rules are sequentially evaluated to resolve an access request, the
increase in the number of comparisons is justified. For B-PolTree,
each node is split unless there is only one rule corresponding to
an attribute-value pair. Thus, for more number of rules, the height
of B-PolTree increases, which results in more number of compar-
isons. N-PolTree outperforms all the other approaches once again.
This is attributed to the fact that the number of comparisons for
resolving an access request using N-PolTree is dependent only on
the number of attributes. A similar trend is observed in speedup of
the proposed approaches, where N-PolTree has better performance
due to lesser number of comparisons required with respect to the
other approaches.

In Table 6, we show the effect of varying the number of attributes
and their possible values on the average number of comparisons
to resolve an access and also on speedup. For the two baseline
approaches, the number of accesses required to resolve an access
increases with the number of attributes. However, marginal change
is seen for increase in the number of attribute values. This is attrib-
uted to the fact that in both the baseline approaches, the maximum

number of comparisons to resolve an access is O(|P | × |A|), where
|P | and |A| are the number of rules and attributes, respectively. In
B-PolTree, the average number of comparisons required increases
only with the number of attributes. This is due to the fact that
the number of comparisons required to evaluate a rule increases
with the number of attributes in the system. Here too, N-PolTree
performs better than the rest of the approaches. As the number of
attribute values simply increases the number of branches a node can
have, it does not affect the number of comparisons. We select the
required branch using a hash table in O(1). However, the number
of comparisons required increases with the number of attributes.
Similar to Tables 4 and 5, the speedup in resolving an access varies
uniformly with the average number of comparisons.

Next, we present results involving data sets that have ” ∗ ” as a
possible attribute value. Since the tree-based approaches are bound
to perform better than the baseline approaches, we present the
following results considering only the two tree-based approaches
for the sake of brevity. The speedup presented in the results to follow
is computed with respect to the average number of comparisons
required to resolve an access with the N-PolTree approach.

Table 7 shows the variation in the average number of compar-
isons and speed up for resolving an access for different number of
rules. It is seen that B-PolTree performs better than N-PolTree. This
is owing to the fact that, in B-PolTree, if a leaf node labeled Deny is
reached, the access is resolved. On the other hand, in N-PolTree, it is
required to return to the previous nodes and traverse the branches
labeled ” ∗ ” for initially denied access requests. This increase in the
number of rules results in more number of attributes being assigned
the value ” ∗ ”, which increases the number of branches labeled ” ∗ ”.
It leads to repeated back-tracking to the ∗-labeled branches for the
apparently denied access. Thus, the average number of comparisons
required to resolve an access request using N-PolTree increases
with the number of rules. This makes B-PolTree a suitable choice
for situations where there are many attributes having the value
” ∗ ” in the rules. The speedup is seen to be in accordance with the
required number of comparisons.

Table 8 shows the variation in the average number of compar-
isons and speedup for different number of attributes and the number
of attribute values. Similar to Table 6, the average number of com-
parisons required to resolve an access increases with the number
of attributes for both B-PolTree and N-PolTree. Similar to Table
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|U | = 100, |O | = 1000, |E | = 10, |P | = 10
|AV | = 2 |AV | = 5

|A| CL SL CM SM CB SB CN SN CL SL CM CM CB SB CN SN
5 70 1 57 1.34 8 8.27 5 13.59 67 1 55 1.24 10 6.97 6 11.52
10 118 1 108 1.11 17 6.85 10 11.34 116 1 103 1.13 15 7.24 9 13.19
20 227 1 211 1.15 23 9.74 13 17.95 231 1 204 1.18 22 9.89 14 16.78

|AV | = 10
|A| CL SL CM SM CB SB CN SN
5 76 1 61 1.26 8 9.24 5 15.47
10 118 1 106 1.21 12 10.25 7 16.46
20 229 1 208 1.19 21 10.47 13 17.87

Table 6: Variation in the average number of comparisons required to resolve an access and speedup for different number of
attributes and possible attribute values

|U | = 100, |O | = 1000, |E | = 10,
|A| = 10, |AV | = 10

|P | CB SB CN SN
10 6 1.38 9 1
50 10 2.57 31 1
100 13 3.48 44 1
500 18 4.05 61 1
1000 24 4.33 81 1

Table 7: Variation in the average number of comparisons re-
quired to resolve an access and speedup for different policy
sizes for data sets having ∗

7, B-PolTree performs better than N-PolTree due to the overhead
incurred by N-PolTree in back-tracing and traversing ∗-labeled
branches when required.

6 RELATEDWORK
In the context of deployment of ABAC in organizations, there is
some existing work on standardization [12], policy engineering
[18] [10] [23] [9], etc. Moreover, procedures have been developed
for enabling organizations to migrate to ABAC from other access
control models [14]. There is, however, no existing work on efficient
evaluation of ABAC rules for resolving access requests.

It may be noted that, the nature of the work presented in this
paper has some similarity with the maintenance and evaluation
of firewall policies. Prior work pertaining to firewall policy man-
agement includes representation of firewall policies using decision
trees [17]. There is also selected work on representing firewall poli-
cies using tree-based data structures [1], improving the speed of
firewall policy verification [15] and the use of boolean satisfiability
for firewall policy analysis [13]. Further, there is some existing
work that develops a unified index for efficient enforcement of
spatiotemporal authorizations [3, 4].

However, to the best of our knowledge, there is no work which
is aimed at improving the performance of ABAC once it has been
deployed in an organization. The B-PolTree proposed by us is sim-
ilar in structure to an Ordered Binary Decision Diagram (OBDD)
[2]. But the similarity ends there. Usually, OBDDs are used for rep-
resenting boolean expressions [16], synthesizing circuits [5] and
formal verification [6]. There is also work that enables fast dis-
tributed evaluation of ABAC policies [7], but the main goal there is

to reduce the number of communication messages and thus achieve
low latency.

The basic structure of N-PolTree is loosely based on that of
decision trees [19]. However, decision trees are used as tools for
classification [20] and prediction [21]. Despite the structural simi-
larity, the usage of N-PolTree in our work is completely different.
Additionally, the procedure for resolving an access request using
an N-PolTree is evidently distinct from that of a decision tree.

7 CONCLUSION AND FUTUREWORK
In this paper, we have introduced two tree-based data structures,
namely, B-PolTree and N-PolTree, which can significantly improve
the performance of ABAC in an organization by facilitating fast res-
olution of access requests. We have also provided extensive results
that show the robustness of the proposed data structures. Future
work in this area would include dynamically updating the nodes
of B-PolTree and N-PolTree based on incoming access requests
over a period of time for further reducing the time and number of
comparisons required to resolve an access.
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