
Automated Reasoning in Normative Detachment Structures with

Ideal Conditions

Tomer Libal and Matteo Pascucci

ARTICLE HISTORY

Compiled October 24, 2018

ABSTRACT
Systems of deontic logic suffer either from being too expressive and therefore hard
to mechanize, or from being too simple to capture relevant aspects of normative
reasoning. In this article we look for a suitable way in between: the automation of
a simple logic of normative ideality and sub-ideality that is not affected by many
deontic paradoxes and that is expressive enough to capture contrary-to-duty reason-
ing. We show that this logic is very useful to reason on normative scenarios from
which one can extract a certain kind of argumentative structure, called a Normative
Detachment Structure with Ideal Conditions. The theoretical analysis of the logic
is accompanied by examples of automated reasoning on a concrete legal text.

Keywords: Deontic Logic - Legal Reasoning - Normative Ideality

1. Introduction

In the last decades, computer systems have played an important role in assisting people
in a wide range of tasks, from searching over data to decision-making, and their use is
required in an increasing number of fields. One of these fields is legal reasoning. New
court cases and legislations are accumulated every day. In addition, international orga-
nizations like the European Union are constantly aiming at combining and integrating
separate legal systems (Burley and Walter 1993). However, the automation of legal
reasoning is still underdeveloped. In recent years, some automatic procedures have been
developed in order to deal with courtroom management1 or legal language processing
and management (Boella & al. 2016); moreover, several expert systems based on cases
or rules have been introduced (Zeleznikow and Stranieri 1995; Schild and Kannai 2005);
finally, some logical systems for automatic reasoning over sets of norms such as the
HIPAA and GLBA privacy laws have been presented (DeYoung & al. 2010).

In this article we focus on the automation of logical systems used to reason on legal
texts. One of the main issues in this area of research is finding a good balance between
the expressivity of logical languages and the efficiency of theorem provers. Indeed, the
variety of concepts employed in legal reasoning suggests the choice of very complex
formal languages and systems; however, this entails that existing and efficient tools
for automated reasoning cannot be straightforwardly exploited. Therefore, one has to
look for some logical framework that is expressive enough to capture the fundamental
aspects of the problems of legal reasoning to be addressed and that behaves well from

1http://softpert.com/legal/court-management/winjuris

ar
X

iv
:1

81
0.

09
99

3v
1

 [
cs

.A
I]

 2
3

O
ct

 2
01

8

http://softpert.com/legal/court-management/winjuris

the point of view of automation.
A very simple logical system dealing with normative concepts is SDL (Standard

Deontic Logic). This system can be easily encoded in theorem provers but is affected by
seemingly unsurmountable difficulties in representing very common normative scenarios,
such as those in which a contrary-to-duty norm applies (Navarro and Jorge 2014). On
the other hand, there are extensions of SDL that are still fairly simple but do not share
most of its weaknesses. One of such extensions is proposed by Jones and Pörn (1985)
and called DL. The latter system aims at a rigorous representation of the difference
between normative ideality and sub-ideality, a difference that is not expressible in SDL;
here we will consider a variation of DL suggested by de Boer & al. (2012), which will be
called DL∗. We will show that DL∗ can be suitably exploited to reason on normative
scenarios from which one can extract an argumentative structure involving a list of
ideal normative statements, a list of normative conditionals, a list of factual relations
among the various statements and some actual circumstances. Such structure will be
called a Normative Detachment Structure with Ideal Conditions. Specifically, we will
see how, extracting this structure from a legal text, one can use DL∗ to formulate
normatively relevant queries about the text; moreover, we will show that these queries
can be answered by a theorem prover.

The closest work to ours is Benzmüller & al. (2018), where the authors translate the
language of deontic logics significantly more complex than DL∗ into higher-order lan-
guages and then encode the latter into automatic theorem provers such as Isabelle/HOL
(Nipkow & al. 2002) and LEO-3 (Benzmüller & al. 2017). The major difference with
our approach turns out to be a matter of complexity in derivability-checking.

The article is structured as follows. Section 2 is devoted to a thorough presentation
of logics of normative ideality and sub-ideality, including some detailed motivations for
the choice of DL∗. In the same section we also present the argumentative structure of
the normative scenarios we want to deal with. In section 3 we provide an example of a
legal text and formalize its core sentences within the language of our logical system. In
section 4 we represent some normatively relevant queries as problems of derivability
of formulas in DL∗. Furthermore, we introduce a program which can answer similar
queries in a fully-automated way. Finally, we conclude our work with some theoretical
reflection on the representation of contrary-to-duty scenarios proposed in the article.

2. Logics of normative ideality and sub-ideality

Works on formal approaches to normative reasoning usually start with a radical criticism
of the so-called system of Standard Deontic Logic (SDL), which is the weakest normal
deontic system closed under the schema OA→ ¬O¬A, namely the deontic version of
the alethic system KD. Indeed, authors usually point out a list of theorems of SDL
that are associated with paradoxes of deontic reasoning. For instance, the provable
schema OA → O(A ∨ B) gives rise to Ross’s paradox when the formulas A and B
represent, respectively, the propositions expressed by sentences like ‘Mark posts the
letter’ and ‘Mark burns the letter’: the inference from ‘Mark ought to post the letter’
to ‘Mark ought to post the letter or burn it’ is at least difficult to justify. While these
paradoxes are sometimes due to ambiguities in the natural language sentences to be
formalized, there is a more important flaw of SDL which concerns the formalization
of contrary-to-duty obligations. This problem is exemplified by Chisholm’s paradox.2

2For an extended discussion of the paradox and a presentation of basic aspects of deontic logic, we refer the

reader to Carmo and Jones (2002).

2

Consider the following set of sentences:

(1) it ought to be that Jane helps her neighbors;
(2) it ought to be that if Jane helps her neighbors, she tells them that she is coming;
(3) if Jane does not help her neighbors, then she ought not to tell them that she is

coming;
(4) Jane does not help her neighbors.

Under any plausible formalization in the language of SDL, these sentences turn out
to be either inconsistent or not logically independent and both outcomes are clearly
undesirable.

On the other hand, the reasons of the aforementioned drawbacks are often overlooked.
As Jones and Pörn (1985) claim, many issues arise from the interpretation of the operator
O. Indeed, the semantic intuition associated with a formula of kind OA in SDL is
that A is true in all normatively ideal circumstances (or worlds), namely in all those
circumstances in which every prescription is observed. However, the majority of the
sentences which describe propositions true in all normatively ideal circumstances are
not normatively relevant, such as the sentence ‘it either rains or does not rain’. Thus, in
order to formally capture the meaning of ‘ought’-sentences, one has to take into account
some criterion of normative relevance for sentences. The proposal made by Jones and
Pörn (1985) consists in requiring an ‘ought’-sentence to describe a proposition which
not only holds in all normatively ideal circumstances, but also fails in some normatively
sub-ideal circumstance, namely in some circumstance in which not every prescription
is observed. For instance, if Jane ought to help her neighbors, then one can say that
this happens to be the case in all normatively ideal scenarios, but fails to be the case
in some normatively sub-ideal scenario.

In order to distinguish between normative ideality and sub-ideality, Jones and
Pörn extend the language of SDL with an operator O′ such that the formula O′A
means that A is true in all normatively sub-ideal worlds. Then, they propose the
following formalization of ‘ought’-sentences: Ought(A) =def OA ∧ ¬O′A. The system
obtained with the addition of O′ is called DL and represents a bimodal version of SDL
supplemented with the axiom-schema (OA ∧O′A)→ A. Actually the latter schema is
not explicitly mentioned by the authors, but is valid in the intended semantics, as it can
be easily shown (see also de Boer & al. 2012). Frames to interpret DL are structures
of kind F = 〈W,RO, RO′〉, where W is a domain of worlds and RO and RO′ are binary
relations over W satisfying the following properties:

(I) for all w ∈W , there are v, u ∈W s.t. wROv and wRO′u;
(II) for all w ∈W , RO(w) ∩RO′(w) = ∅;

(III) for all w ∈W , either w ∈ RO(w) or w ∈ RO′(w).

Property (I) can be captured already by the axiomatic basis of bimodal SDL, property
(II) requires further discussion that will be provided below and property (III) can be
captured only if one extends the axiomatic basis of bimodal SDL with a schema such
as (OA ∧O′A)→ A. Thus, if one wants DL to be the logic characterized by the class
of frames satisfying properties (I), (II) and (III), as it seems to be suggested by Jones
and Pörn, then DL has to be a proper extension of bimodal SDL.

Despite its broader expressive power, DL still encounters some obstacles in dealing
with contrary-to-duty obligations. Indeed, as observed in Prakken and Sergot (1996),
it gives rise to a ‘pragmatic oddity’ when the sentences (1)-(4) above are formalized as
suggested by Jones and Pörn, namely (taking P to be ‘Jane helps her neighbors’ and
Q to be ‘Jane tells her neighbors that she is coming’):

3

(1a) Ought(P);
(2a) O(P → Ought(Q)) ∧O′(P → Ought(Q));
(3a) O(¬P → Ought(¬Q)) ∧O′(¬P → Ought(¬Q));
(4a) ¬P .

The oddity is hidden in the fact that in DL (1a)-(4a) entail both OP and O¬Q, which
means that in all normatively ideal worlds Jane helps her neighbors without telling
them that she is coming. Furthermore, Hansson (1989) shows that certain instances
of paradoxes of deontic reasoning still hold in DL, such as the following version of
Ross’s paradox: if Mark neither posts the letter nor burns it, while he ought to post it,
then he ought to post it or burn it. Indeed, the schema (¬A ∧ ¬B)→ (Ought(A)→
Ought(A ∨B)) is provable in DL.

The latter problem finds a remedy in de Boer & al. (2012), where the authors propose
to replace the operator Ought with an operator Ought∗ such that Ought∗(A) =def

OA∧O′¬A; in this way the problematic schemata mentioned by Hansson are no longer
provable. However, there is a fundamental aspect of Ought∗ which requires further
analysis. Since Ought∗(A) is true at a world only if O′¬A is true there, then the
meaning of O′ proposed by Jones and Pörn needs to be revised. Indeed, otherwise
one would have that every prescription is violated in all sub-ideal worlds, which is
implausible, since a world can be classified as normatively sub-ideal even if some but
not all prescriptions are violated there. Thus, in order to exploit the operator Ought∗ it
is better to take O′A as meaning that A holds in all normatively awful worlds. Notice
that this reading allows one to get rid of the schema (OA ∧O′A)→ A, as well as of
the frame condition (III) associated with it, since the current world might turn out to
be neither normatively ideal nor normatively awful (from the perspective of the norms
currently in effect). From the point of view of sub-ideality this change is not dramatic:
a world is still classified as sub-ideal if and only if it is not an ideal one.

Hereafter we will denote by DL∗ the logic resulting from DL by removing the axiom
(OA ∧O′A)→ A and adding the definition of Ought∗. A crucial issue is whether DL∗

coincides with a bimodal version of SDL. This is actually the case, since de Boer & al.
(2012) show (Lemma 3.5) that every model over a frame which violates property (II)
can be transformed into an equivalent model over a frame satisfying property (II); thus,
since property (I) can be captured already by the axioms of bimodal SDL, there is no
need to add further postulates to get a characterization result for DL∗ with respect to
its intended class of frames, namely the class of frames satisfying properties (I) and
(II).

It is important to remark that the ‘pragmatic oddity’ may affect the formalization
of Chisholm’s example even if one uses Ought∗ in place of Ought. For instance, de
Boer & al. (2012) argue that, in the absence of property (III), the formalization of
sentences (2) and (3) needs the following revision in order to allow for the detachment
of Ought∗¬Q, which is an intended consequence of the scenario (Jane ought not to tell
her neighbors that she is coming, since she decided not to help them):

(2a’) (P → Ought∗(Q)) ∧O(P → Ought∗(Q)) ∧O′(P → Ought∗(Q));
(3a’) (¬P → Ought∗(¬Q)) ∧O(¬P → Ought∗(¬Q)) ∧O′(¬P → Ought∗(¬Q)).

However, from (1a), (2a’), (3a’) and (4a) one still gets both OP and O¬Q as conse-
quences and so an implausible description of what is the case in all normatively ideal
worlds (Jane helps her neighbors without telling them).

A solution to the pragmatic oddity can be formulated by combining the use of
Ought∗ (which is beneficial anyway, since it allows one to get rid of Hansson’s version

4

of deontic paradoxes) and an intuition discussed in Jones and Pörn (1985), according to
which the first sentence of a Chisholm-like scenario expresses an obligation which holds
in ideal circumstances, hereafter simply called an ideal obligation. For instance, one
can imagine that in ideal circumstances Jane ought to help her neighbors, while in the
present circumstance something prevents her from doing that; thus, she does not have
an actual obligation to help her neighbors.3 The result is the following formalization of
sentence (1):

(1a’) O(Ought∗(P)).

Moreover, we propose here three modifications of (2a’) and (3a’). First, since the reading
of O′ has to be changed from ‘in all normatively sub-ideal worlds’ to ‘in all normatively
awful worlds’ and normatively awful worlds cannot be expected to verify conditional
obligations, then the conjuncts O′(P → Ought∗(Q)) and O′(¬P → Ought∗(¬Q))
can be dropped from (2a’) and (3a’). Second, we remove also the conjuncts O(P →
Ought∗(Q)) and O(¬P → Ought∗(¬Q)), since in more complex scenarios conjuncts of
this kind could allow one to infer an ideal obligation, O(Ought∗(B)), from two premises
Ought∗(A) and O(A→ Ought∗(B)); indeed, Ought∗(A) entails OA and this, together
with O(A → Ought∗(B)), entails O(Ought∗(B)). The point is that it is clearly not
acceptable to infer an ideal obligation from an actual one. Third, we want the formal
representation of a conditional obligation to allow for the construction of a chain of
statements that provide a full description of what ideally ought to be the case. For
instance, we know that Jane ideally ought help her neighbors and that the fact that
she helps her neighbors entails that she ought to tell them that she is coming; from
this one would like to infer that Jane ideally ought to tell her neighbors that she is
coming. In order to get this result without affecting a uniform rendering of conditional
obligations, we add to (2a’) the conjunct O(Ought∗(P) → Ought∗(Q)) and to (3a’)
the conjunct O(Ought∗(¬P)→ Ought∗(¬Q)). Notice that in the former case one gets
O(Ought∗(Q)) from (1a’) and the schema O(A→ B)→ (OA→ OB), whereas in the
latter case no ideal obligation can be detached, since the antecedent itself is not an
ideal obligation. The result of all modifications is the following rendering of sentences
(2) and (3):

(2a”) (P → Ought∗(Q)) ∧O(Ought∗(P)→ Ought∗(Q));
(3a”) (¬P → Ought∗(¬Q)) ∧O(Ought∗(¬P)→ Ought∗(¬Q)).

The formula OP is not derivable from (1a’),(2a”), (3a”) and (4a), so the pragmatic

3It has to be remarked that, according to this suggestion by Jones and Pörn, a world w is normatively ideal
with respect to a world w′ if an only if:

• all prescriptions that are actual in w′ are observed in w;

• all prescriptions that are ideal in w′ apply to w.

However, it would be more appropriate to say that there are two levels of ideality from the perspective of a

world w: the first level is that of any world w′ s.t. wROw′, which represents ideality with respect to what is
actually prescribed in w; the second level is that of any world w′′ s.t. w′ROw′′ and wROw′, which represents

ideality in a strict sense (everything which is ideally prescribed in w is observed in w′′). Furthermore, notice
that, as claimed by Carmo and Jones (2002), the distinction between ideal prescriptions and actual prescriptions
does not coincide with the distinction between prima facie prescriptions and all-things-considered prescriptions,
which is often invoked in defeasible reasoning. Indeed, among the set of prima facie prescriptions one can have
both ideal prescriptions and non-ideal ones. The notion of ideal prescription makes reference to an implicit

normative standard. In Chisholm’s example, Jane has the prima facie obligation of helping her neighbors and

the prima facie obligation of telling them that she is not coming (as soon as she decides not to help them);
however, the normative standard applies only to the first prescription, since in ideal circumstances she ought to

help her neighbors.

5

oddity no longer arises;4 furthermore, the four premises are still logically independent
and consistent. The key aspect of this solution is that obligations with respect to ideal
worlds (ideal obligations), such as O(Ought∗(P)), are kept distinct from obligations
with respect to the actual world (actual obligations), such as Ought∗(¬Q).

We can generalize this approach to scenarios that are more complex than Chrisholm’s
paradox and that include:

(i) a list of ideal normative statements;
(ii) a list of normative conditionals;
(iii) some factual relations among the statements in (i) and (ii);
(iv) some circumstances which trigger the antecedents of some conditionals in (ii).

We can call this argumentative structure a Normative Detachment Structure with
Ideal Conditions (hereafter NDSIC). Let us consider the case in which all normative
statements involved in an NDSIC are obligations, then this structure can be more
precisely described as follows (for some n, k ≥ 0 and some m ≥ 1):

(Cid1) A∗1 ideally ought to be the case;
...

(Cidn) A∗n ideally ought to be the case;
(Ccon1) if A1 then B1 ought to be the case;

...
(Cconm) if Am then Bn ought to be the case;

(Crel1) some relation Rel1 among the statements involved in (Cid1)-(Cconm) holds;
...

(Crelk) some relation Relk among the statements involved in (Cid1)-(Cconm) holds;
(Cant) the antecedents of some conditionals in (Ccon1)-(Cconm) hold.

In a structure of this kind one can detach both actual obligations (triggered by (Cant))
and ideal obligations (triggered by (Cid1)-(Cidn)) from the list of conditionals.

For instance, take the following example of an NDSIC, extracted from the travel
guidelines of passengers of the Sociedade de Transportes Colectivos do Porto:5

(1b) ideally it ought to be the case that passengers have their ticket ready in advance
before boarding;

(2b) if passengers have their ticket ready in advance, then they ought to validate it
immediately after boarding;

(3b) if passengers do not have their ticket ready in advance, then they ought to buy it
immediately after boarding;

(4b) if passengers ought to buy their ticket immediately after boarding, then they
ought to pay with the exact amount of money.

Furthermore, assume that

(5b) passengers do not have their ticket ready in advance.

From this scenario one can infer that passengers actually ought to buy their ticket
immediately after boarding and (as a consequence) actually ought to pay with the
exact amount of money. However, one cannot infer that passengers actually ought to
have their ticket ready in advance. Here (1b) is a clause of kind (Cid) and (2b)-(4b)
are clauses of kind (Ccon).

Notice that an NDSIC is not a contrary-to-duty structure on its own; a contrary-

4This can be justified in terms of the two levels of ideality described in the previous footnote.
5http://www.stcp.pt/en/travel/how-to-travel/

6

http://www.stcp.pt/en/travel/how-to-travel/

to-duty feature emerges when some clause of kind (Cid), which describes an ideal
normative statement, conflicts with the clause (Cant), which describes what actually is
the case and triggers some normative statement involved in the list of conditionals; in
this situation, some of the normative statements triggered by (Cant) are contrary-to-
duty ones. On the other hand, if there is no conflict between the ideal and the actual,
then an NDSIC simply represents an argumentative structure in which normative
statements can be detached from conditionals given the actual circumstances and the
clauses (Cid1)-(Cidn).

We conclude this section with another important comment on the logic DL∗: the
definition of a plausible operator of permission. One cannot simply take the dual of
Ought∗, since ¬Ought∗(¬A) means ¬(O¬A ∧O′A), namely PA ∨ P ′¬A, which is too
weak to express permission. Also in this case, one can borrow a solution from Jones
and Pörn (1985) and have Perm∗(A) =def PA ∧ P ′¬A. According to such definition
and the revised reading of O′, A is permitted iff there is a normatively ideal world
in which it holds and a normatively awful world in which it does not hold. The first
conjunct witnesses that A is compatible with everything which should be the case; the
second conjunct that A is not trivially true in all possible scenarios.

3. Reasoning in legal texts

When attempting to implement a system capable of reasoning about legal texts, different
types of reasoning emerge; Jones and Sergot (1992) discuss two of them, definitional
(or qualitative) reasoning and normative reasoning. Definitional reasoning specifies the
conditions “under which some entity x counts as an entity of a particular type F”; for
instance, if x was born in the UK, then x is a British citizen. Normative reasoning
concerns the distinction between what is the case in normatively ideal circumstances
and what is the case in actual circumstances. While both kinds of reasoning occur
regularly in legal texts, we will focus on the second one, which can be naturally handled
within the logical framework provided in the previous section.

In order to see how the logic DL∗ can be used to formally represent normative
reasoning, we can borrow an example of a legal text from Jones and Sergot (1992),
The United Nations Convention on Contracts for the International Sale of Goods. In
section 3.1 we provide some articles from the 2010 version of the Convention.6 We
use DL∗ to represent some normatively relevant questions related to this text; more
specifically, we consider a situation in which an international transaction has just been
concluded and either the buyer or the seller wants to navigate through the directives of
the Convention to understand which are the normative consequences of the transaction.

3.1. The United Nations Convention on Contracts for the International
Sale of Goods

The United Nations Convention on Contracts for the International Sale of Goods
represents a common structure in legal texts. Here we will show how an NDSIC can
be extracted from a sample of articles in the Convention. These articles describe the
duties of the seller and the rights and duties of the buyer in case of a transaction.

6https://www.uncitral.org/pdf/english/texts/sales/cisg/V1056997-CISG-e-book.pdf

7

https://www.uncitral.org/pdf/english/texts/sales/cisg/V1056997-CISG-e-book.pdf

Article 30
The seller must deliver the goods, hand over any documents relating to them and
transfer the property in the goods, as required by the contract and this Convention.

Article 31
If the seller is not bound to deliver the goods at any other particular place, his obligation
to deliver consists:

(a) if the contract of sale involves carriage of the goods – in handing the goods over
to the first carrier for transmission to the buyer;

(b) if, in cases not within the preceding subparagraph, the contract relates to specific
goods, or unidentified goods to be drawn from a specific stock or to be man-
ufactured or produced, and at the time of the conclusion of the contract the
parties knew that the goods were at, or were to be manufactured or produced at,
a particular place – in placing the goods at the buyer’s disposal at that place;

(c) in other cases – in placing the goods at the buyer’s disposal at the place where
the seller had his place of business at the time of the conclusion of the contract.

Article 32

(1) If the seller, in accordance with the contract or this Convention, hands the goods
over to a carrier and if the goods are not clearly identified to the contract by
markings on the goods, by shipping documents or otherwise, the seller must give
the buyer notice of the consignment specifying the goods.

(2) If the seller is bound to arrange for carriage of the goods, he must make such
contracts as are necessary for carriage to the place fixed by means of transportation
appropriate in the circumstances and according to the usual terms for such
transportation.

(3) If the seller is not bound to effect insurance in respect of the carriage of the
goods, he must, at the buyers request, provide him with all available information
necessary to enable him to effect such insurance.

Article 45

(1) If the seller fails to perform any of his obligations under the contract or this
Convention, the buyer may:
(a) exercise the rights provided in articles 46 to 52;
(b) claim damages as provided in articles 74 to 77.

(2) The buyer is not deprived of any right he may have to claim damages by exercising
his right to other remedies.

(3) No period of grace may be granted to the seller by a court or arbitral tribunal
when the buyer resorts to a remedy for breach of contract.

Article 53
The buyer must pay the price for the goods and take delivery of them as required by
the contract and this Convention.

Let us first provide a brief and informal reconstruction of the relations among the
various Articles in this part of the Convention. Article 30 describes what ideally ought
to be the case when a transaction has been made: the seller is ideally required to deliver
the goods, hand over the documents and transfer the property in the goods. Article 31
specifies some conditional obligations depending on the ideal duties of the seller: if the

8

seller is committed to carriage of the goods, then he/she must hand the goods over to
the first carrier; in other cases, he/she needs to place the goods at the buyer’s disposal
at a specified place. Article 32 includes further conditional obligations triggered by the
situation in which the seller hands the goods over to the first carrier available (i.e., by
one of the scenarios illustrated in Article 31). Article 45 introduces a contrary-to-duty
feature: if the seller does not fulfill his/her duties described in the previous Articles,
then the buyer can exercise some right and claim damage. Article 53 describes what
ideally ought to be the case when a transaction has been made: the buyer is ideally
required to pay and take delivery of the goods.

3.2. A formal representation of the Convention

There are many ways in which one can move from the natural language sentences of a
legal text, such as the Convention, to formulas of a logical language. The degree of
success of the proposed formalization of a text can be evaluated in terms of the set
of inferences allowed by it, which should correspond to natural language inferences
supported by one’s intuitions.

Definition 3.1 (Language of the Convention). We start by codifying some statements
from the Convention as propositional symbols (constants):

• D - the seller delivers the goods, hands over the documents and transfers the
property according to the procedure described in the contract;
• D0.1 - the contract requires the seller to take care of the carriage of goods;
• D0.2 - the contract relates to goods to be produced at a particular place;
• D1 - the goods are handed over to the first carrier;
• D1.1 the goods are clearly identified by markings, shipping documents, etc.;
• D1.2 the seller notifies the buyer of the consignment;
• D1.3 the seller makes contracts necessary for carriage;
• D1.4 the seller is bound to effect insurance in respect of the carriage;
• D1.5 the seller provides the buyer information to effect the insurance for carriage;
• D2 - the goods are disposed at the place of production;
• D3 - the goods are disposed at the business address of the seller;
• E1 - the buyer exercises rights;
• E2 - the buyer claims damages;
• G - the buyer takes delivery of the goods;
• P - the buyer pays for the goods.

Then, we introduce deontic operators and normative conditionals that can be expressed
in DL∗; we employ here a different and simplified notation which points out their
reading in a more explicit way. Let A and B be propositional formulas, then:

• Id(A) - A holds in all normatively ideal circumstances (this corresponds to the
formula OA in DL∗);
• Aw(A) - A holds in all normatively awful circumstances (this corresponds to the

formula O′A in DL∗);
• Ob(A) - A ought to be the case (this corresponds to the formula Ought∗(A) in

DL∗);
• Pm(A) - A can be the case (this corresponds to the formula Perm∗ in DL∗)
• A⇒Ob B - B is an obligation triggered by condition A (this corresponds to the

formula (A→ Ought∗(B)) ∧O(Ought∗(A)→ Ought∗(B)) in DL∗);

9

• A⇒Pm B - B is a permission triggered by condition A (this corresponds to the
formula (A→ Perm∗(B)) ∧O(Perm∗(A)→ Perm∗(B)) in DL∗).

Definition 3.2 (The Convention). The following is the formal description of a relevant
set of statements from the Convention.

(1) Id(Ob(D));
(2) Id(Ob(P));
(3) D0.1⇒Ob D1;
(4) D0.2⇒Ob D2;
(5) (¬D0.1 ∧ ¬D0.2)⇒Ob D3;
(6) D ⇒Ob G;
(7) D1⇒Ob D1.3;
(8) (D1 ∧ ¬D1.1)⇒Ob D1.2;
(9) (D1 ∧ ¬D1.2)⇒Ob D1.1;

(10) (D1 ∧ ¬D1.4)⇒Ob D1.5;
(11) (D1 ∧ ¬D1.5)⇒Ob D1.4;
(12) ¬D ⇒Pm E1;
(13) ¬D ⇒Pm E2;
(14) D0.1→ ¬D0.2;
(15) D1→ ¬D2;
(16) D1→ ¬D3;
(17) D2→ ¬D3;
(18) D → [(D0.1 → (D1 ∧ (D1.1 ≡ ¬D1.2) ∧D1.3 ∧ (D1.4 ≡ ¬D1.5))) ∧ (D0.2 →

D2) ∧ ((¬D0.1 ∧ ¬D0.2)→ D3)].

Let UN bet the set of formulas (1)-(18) above. By extending UN with a set of actual
circumstances playing the role of (Cant), one gets an NDSIC, where (1)-(2) stand for
clauses of kind (Cid), (3)-(13) for clauses of kind (Ccon) and (14)-(18) for clauses of
kind (Crel). We will next consider some normatively relevant queries concerning this
scenario, that is queries whose answer can help the buyer and the seller in understanding
the normative consequences of the Convention.

4. Normative queries about the Convention

In this section we provide some examples of queries concerning the Convention that
can be formally represented within the language of DL∗, in accordance with Definition
3.1 and Definition 3.2. These queries might be formulated by a buyer or a seller who
has just concluded a transaction and wants to explore its normative consequences.

The first group of problems (Queries 1-2) concerns the compatibility of a given
scenario with the Convention. We can assume that the Convention is violated whenever
something that is ideally obligatory does not hold. We use

∧
UN as an abbreviation

for the conjunction of formulas (1)-(18).

Query 1. Is there any violation of the Convention if the contract requires the seller
to take care of the carriage of the goods and they are placed at the seller’s address of
business?

This problem can be expressed as a question about the derivability of the fol-
lowing conditional in DL∗: (

∧
UN ∧D0.1∧D3)→ (¬D∨¬P ∨¬G). If this conditional

10

is derivable in DL∗, then the situation described in Query 1 actually represents a
violation of the Convention.

Query 2. Is there any violation of the Convention if the contract neither requires the
seller to take care of the carriage of the goods nor refers to goods that have to be
produced at a particular place and the seller does not dispose the goods at his/her
place of business?

This problem can be expressed as a question about the derivability of the fol-
lowing conditional in DL∗: (

∧
UN ∧ ¬D0.1 ∧ ¬D0.2 ∧ ¬D3)→ (¬D ∨ ¬P ∨ ¬G). If

this conditional is derivable in DL∗, then the situation described in Query 2 actually
represents a violation of the Convention.

The second group of problems (Queries 3-6) concerns the detachment of normative
statements from given scenarios. The last three problems in this group (Queries 4-6)
make reference to contrary-to-duty scenarios.

Query 3. In case the contract requires the seller to take care of the carriage of the
goods, does the seller have to notify the buyer of consignment if he/she hands them
over to the first carrier but cannot identify them with appropriate markings, shipping
documents, etc.?

This problem can be formulated as a question concerning the derivability of
the following conditional: (

∧
UN ∧D0.1 ∧D1 ∧ ¬D1.1)→ Ob(D1.2). The answer to

Query 3 is positive if and only if the conditional is provable in DL∗.

Query 4. Is the buyer allowed to claim for damage in case the contract requires the
seller to take care of the carriage and the seller neither effects a carriage insurance nor
provides the buyer information to effect such an insurance?

This problem can be expressed as a question concerning the derivability of
the following conditional in DL∗: (

∧
UN ∧D0.1 ∧ ¬D1.4 ∧ ¬D1.5)→ Pm(E2). The

answer is positive if and only if the conditional is provable.

Query 5. Is the buyer allowed to exercise rights in case the contract makes reference
to goods to be produced at a particular place and the seller disposes them at his/her
address of business?

This problem can be expressed as a question concerning the derivability of
the following conditional in DL∗: (

∧
UN ∧ D0.2 ∧ D3) → Pm(E1). The answer is

positive if and only if the conditional is provable.

Query 6. Is the buyer allowed to exercise rights in case the goods are not delivered
according to the procedure described in the contract?

This problem can be expressed as a question concerning the derivability of
the following conditional in DL∗: (

∧
UN ∧ ¬D)→ Pm(E1). The answer is positive if

and only if the conditional is provable.

11

4.1. Using MleanCoP

In order to automate the answering of such questions, we need an efficient implemen-
tation of a proof-calculus for DL∗. Several proof-calculi and implementations exist
for multimodal versions of SDL and, according to a result in de Boer & al. (2012)
mentioned in section 2, the logic DL∗ turns out to be a bimodal version of SDL
exploiting a non-primitive modal operator, Ought∗, to express obligations. This fact
allows us to use standard theorem-provers for normal multimodal logic in order to check
the derivability of a formula in DL∗. We also want to mention that a proof-calculus
for the related system DL is developed in Governatori (1996); however, such calculus
has no implementation and, as we argued in section 2, there are many theoretical
reasons to prefer DL∗over DL in order to represent normative scenarios involving
contrary-to-duty reasoning.

Among the various systems implementing proof-calculi for normal multimodal logic
two are prominent. The first, MleanCoP7 (Otten 2014), is a native theorem-prover
for various systems of normal modal logic, among which multimodal versions of DL∗.
The second, Leo3 (Benzmüller & al. 2017), is a theorem-prover for higher-order logic
that can be exploited by translating formulas of a modal language into formulas of a
higher-order non-modal language. Each method has its benefits and limitations. Here
we choose to employ MleanCoP, which provides an efficient method and builds proofs
directly within the modal language, so no backward translation from higher-order logic
is needed. In order to ask MleanCoP the queries in section 3, we have to translate
them into a format which MleanCoP can understand. Currently, MleanCoP supports
two different formats for codifying logical languages, the general format TPTP 8 and
its own specific one. We will use MleanCoP’s own format, since it is more concise.

Definition 4.1 (MleanCoP’s syntax). An MleanCoP problem is a predicate of the
form f(G). where G stands for an arbitrary formula. Formulas are constructed from
atoms, whose name must start with a lowercase letter, and the following operators:

• The standard propositional operators ’~’ (negation), ’;’ (disjunction), ’,’

(conjunction), ’=>’ (implication) and ’<=>’ (equivalence).
• The modal box operators ’# 1^d: G’ (G holds in all ideal worlds) and ’# 2^d: G’

(G holds in all awful worlds).
• The modal diamond operators ’* 1^d: G’ (G holds in some ideal worlds) and
’* 2^d: G’ (G holds in some awful worlds).

A comparison between our formalization of the Convention in section 3.2 and
MleanCop’s syntax points out that the encoding of queries in MleanCoP is very
laborious. In order to make the use of this theorem-prover more accessible, we developed
a program capable of executing queries written in our encoding. This program translates
the encoding into the syntax of MLeanCop and then executes the prover. The programs
discussed in this paper as well as the latest version of MLeanCop can be downloaded
from Zenodo. 9

Definition 4.2 (The program syntax). The input to the program consists of a predicate
of the form ([ls],F) where [ls] is a list of comma separated assumptions and F is
the goal we try to prove. Atom names must respect the syntax of MLeanCop. Both

7http://www.leancop.de/mleancop/
8http://www.tptp.org/
9https://zenodo.org/record/1450890#.W7oKGS1fgWM

12

http://www.leancop.de/mleancop/
http://www.tptp.org/
https://zenodo.org/record/1450890#.W7oKGS1fgWM

assumptions and goal are constructed using the following operators, which imitate
those in Definition 3.1.

• The standard propositional operators as defined by MLeanCop;
• The ideality operator Id(F) and the awfulness operator Aw(F) applied to a

formula F;
• The obligation operator Ob(F) and the permission operator Pm(F) applied to a

formula F;
• The conditional obligation NO(F,G) and the conditional permission NP(F,G)

applied to a pair of formulas F and G.

In addition, in order to simplify the process of asking questions, we have added a
constant un which codifies the conjunction of the formulas (1)-(18) in Definition 3.2,
namely

∧
UN .

MleanCoP is written in Prolog and an installation of one of the supported distri-
butions of Prolog is required to run it. Our program comes bundled with MleanCoP
version 1.3 and requires Ruby version 2.5.1 and the Ruby’s gem ’bundler’ version 1.16.2.
We tested our program on Debian 9 using SWI-ptolog version 7.2.3. Let A be a formula
in the language of DL∗ given as an input: the Ruby program translates A into the
format compatible with MleanCoP and executes the latter. The possible answers are
‘Theorem’ and ‘Non-theorem’. The answer ‘Theorem’ means that the formula given as
an input is provable in DL∗; the answer ‘Non-theorem’ means that the formula given
as an input is not provable in DL∗.

In addition, an answer of Theorem is accompanied by a proof of derivability in
the connection calculus employed by MLeanCop (Bibel 1983). As an example of the
procedure described so far, we show how one can formulate Query 1 from section 4. In
order to adhere to the syntax of MLeanCop, we use lower case letters to encode the
propositional constants from Definition 3.2 and we simplify a bit the names of formulas
(e.g., D0.1 becomes d01).

ruby prove1.rb "([un,d01 ,d3],((~ d);((~ p);(~ g))))"

problem is a modal (multi/const) Theorem

Start of proof for problem

...

End of proof for problem

Once the above is executed, MleanCoP states that this is a Theorem and returns a
proof. The commands to execute the program on the remaining queries can be found
in Figure 4.2. The method just described is efficient. The total time of running all
involved programs on each query takes about a second 10.

4.2. Legal applications of automated reasoning

A framework for normative reasoning as the one discussed in this paper can be used
for various applications. In this section we discuss two of them.

The first application is a tool for helping a subject to navigate a legal text, such
as the Convention. Such a tool can make a legal text more accessible to non-experts.
A subject only needs to be able to install the required software and to build queries;
however, a web application and a simple user interface which takes sentences as inputs

10The program was executed on a laptop with an Intel Core i7-5600U processor.

13

Facts Goal Type Command Answer
D0.1, D3 ¬D∨¬P ∨¬G Violation ([un,d01,d3],((~ d);((~ p);(~ g)))) Yes
¬D0.1,¬D0.2,¬D3 ¬D∨¬P ∨¬G Violation ([un,(~ d01),(~ d02),(~ d3)],((~ d);((~ p);(~ g)))) Yes
D0.1, D1,¬D1.1 D1.2 Obligation ([un, d01,d1,(~ d11)],(Ob d12)) Yes
D0.1,¬D1.4,¬D1.5 E1 Permitted ([un,d01,(~ d14),(~ d15)],(Pm e1)) Yes
D0.2, D3 E2 Permitted ([un,d02,d3],(Pm e2)) Yes
¬D E2 Permitted ([un,(~ d)],(Pm e2)) Yes

G Ideal ([un],(Id (Ob g)) Yes

Figure 1. A tool for helping buyers navigate the UN convention

and translates them into the intended expressions to be checked can make make the
whole process more human-friendly.

We now show the possible executions of our program, which correspond to the six
queries of section 4. Each line in the table in Figure 4.2 displays one of such executions.
Each execution requires a set of current facts and an actual or ideal obligation. The user
might choose this information from a pre-defined set of options (by using a drop-box,
for example). The remaining part of each line shows the query being sent to the prover
and its response.

Another application might be as a courtroom decision support system. Decision
support systems are widely used in many fields, such as management (Magni & al.
2006), medicine (Übeyli 2009) and civil engineering (Fonseca & al. 2005). Such systems
help subjects in making informative decisions. These systems do not replace a human
in decision-making, they simply rather exclude from the set of possible decisions those
which do not comply with a given reality.

Decision-supporting systems in the courtroom, which are intended in helping judges
make the right decisions, are much less common. In fact, to the best of knowledge
of the authors, just a handful of such systems exist. Winjuris11 and Forecourt12

are management systems rather than decision-supporting systems. More interesting
examples are an Israeli system for the evaluation of criminal records (Schild and Kannai
2005), the Australian ‘Split Up’ system (Zeleznikow and Stranieri 1995), which assists
in property splitting during divorce trials, and a case-based reasoning system for a
‘virtual courtroom’ (Wah and Muniandy 2014).

One can apply the framework presented in this paper in order to display all possible
normative outcomes for a given set of facts: A judge can feed the system with a set
of known facts and a set of unknown parameters, as well as with a set of possible
interesting outcomes. One option is then to display the information as a graph showing
all possibilities which are compatible with the relevant body of laws. Using this graph,
a judge can more easily navigate the set of all possible decisions and can avoid making
decisions which are not supported by the facts and norms of the case.

We developed a second program for generating such graphs. Given the input just
mentioned, the program executes the script from section 4.1 on all possible combinations
and builds the corresponding graph. Figure 2 shows the execution of the program
given the facts {D0.1}, unknown parameters {D1.1, D1.2, D1.3} and possible outcomes
{Ob(D1.1), Ob(D1.2), Ob(D1.3)}.

To obtain the above image in dot format,13 a user should execute the following
command:

> ruby tree.rb "d01" "d11 ,d12 ,d13"

"(Ob d11),(Ob d12),(Ob d13)" > mytree.dot

11http://softpert.com/legal/court-management/winjuris
12https://www.rsi.com/products/forecourt/
13https://www.graphviz.org/doc/info/lang.html

14

http://softpert.com/legal/court-management/winjuris
https://www.rsi.com/products/forecourt/
https:// www.graphviz.org/doc/info/lang.html

F
ig
u
r
e
2
.

A
g
ra

p
h

re
p

re
se

n
ti

n
g

a
ll

p
o
ss

ib
le

n
o
rm

a
ti

v
e

p
a
th

s
fo

r
a

ce
rt

a
in

ca
se

.

15

5. Final remarks

In this article we provided an automatic procedure for reasoning on legal texts. We
relied on a logic of normative ideality and sub-ideality called DL∗, presented in de Boer
& al. (2012), and focused on problems that can be represented in terms of a Normative
Detachment Structure with Ideal Conditions (NDSIC). Our theoretical framework
provides also some ground for reflection on the problem of the formal rendering of
contrary-to-duty scenarios. Going back to the specific case of Chisholm’s paradox, we
proposed to formalize sentences (1)-(4) in section 2 as follows (here we employ again
the notation used in the literature):

(1a’) O(Ought∗(P));
(2a”) (P → Ought∗(Q)) ∧O(Ought∗(P)→ Ought∗(Q));
(3a”) (¬P → Ought∗(¬Q)) ∧O(Ought∗(¬P)→ Ought∗(¬Q))
(4a) ¬P .

Formula (1a’) is suggested by Jones and Pörn (1985) and wants to stress that Jane
ought to help her neighbors in normatively ideal circumstances (though, not necessarily
in the actual circumstance). Formula (4a) is the obvious way of rendering the fact that
Jane does not help her neighbors. Formulas (2a”) and (3a”) are a novelty to represent
conditional obligations. They were obtained by putting together some intuitions in
de Boer & al. (2012) and the possibility of building a chain of ideal obligations; in
particular, since Jane ideally ought to help her neighbors, then she ideally ought
to tell them. While being more sophisticated than alternative logical renderings of
Chisholm’s scenario, this solution has several advantages which can be highlighted by
making reference to some discussion in Carmo and Jones (2002). Indeed, in the latter
work the authors list eight criteria that should be met by a logical representation of
contrary-to-duty scenarios:

(i) consistency;
(ii) logical independence of the members;
(iii) applicability to (at least apparently) timeless and actionless contrary-to-duty

examples;
(iv) analogous logical structures for conditional sentences;
(v) capacity to derive actual obligations;
(vi) capacity to derive ideal obligations;

(vii) capacity to represent the fact that a violation of an obligation has occurred;
(viii) capacity to avoid the pragmatic oddity.

We have already shown that our formalization meets the requirement (viii) and the
reader can easily check that (i) and (ii) are met as well. Criterion (iii) is also satisfied,
since this formalization is not time-dependent (the language of DL∗ cannot make
temporal distinctions). The fact that conditional obligations always have the same
logical rendering is evident, so we can mark with a tick criterion (iv) too. Criteria (v),
(vi) and (vii) require further analysis. Actual obligations are those of kind Ought∗(A)
and in our representation of Chisholm’s scenario one can surely infer Ought∗(¬Q):
Jane actually ought not to tell her neighbors that she is coming (since she decided
not to help them). Ideal obligations are those of kind O(Ought∗(A)) and in our
representation of Chisholm’s scenario one can infer O(Ought∗(Q)) from O(Ought∗(P))
and O(Ought∗(P) → Ought∗(Q)), since the schema O(A → B) → (OA → OB) is
provable in DL∗: Jane ideally ought to tell her neighbors that she is coming because
she ideally ought to help them. Thus, both (v) and (vi) are met. Finally, concerning

16

criterion (vii), we can say that a violation of A occurs when A ideally ought to be the
case, it is currently not the case but it could have been the case in normatively ideal
circumstances. Now, in our scenario we have both O(Ought∗(A)) and ¬A as premises;
let us take these formulas as true in the actual world, call it wa. From O(Ought∗(A))
one can infer OPA, which means that all worlds which are normatively ideal with
respect to wa have access to a (normatively ideal) world in which A is the case. We can
paraphrase this as follows: in all ideal circumstances with respect to wa it is possible
to bring about A, despite A not being the case in wa. This is the way in which our
approach can represent the fact that a violation of an (ideal) obligation occurred.

A last comment concerns our choice to use a simple logic for the normative reasoning
discussed in this paper. In the introduction, we have mentioned that this choice is
primarily motivated by complexity issues. Indeed, already our simple encoding of parts
of the Convention involves hundreds of terms. Nevertheless, MLeanCop manages to
answer each query in about a second. At the same time, there are many interesting
questions which are beyond the tools mentioned in this paper. For example, abductive
reasoning (Mayer and Fiora 1995) can provide explanations for the invalidity of queries.
By choosing a normal modal logic such as DL∗, we ensure the possibility of using such
results in the future.

References

Benzmüller, C., Steen A. and Wisniewski M. (2017) ‘ Leo-III Version 1.1 (System
description)”. In LPAR Short Presentations, 11-26.

Benzmüller C., Farjami A., Parent X. (2018) ‘A Dyadic Deontic Logic in HOL In
Deontic Logic and Normative Systems’. 14th International Conference, DEON 2018,
College Publications, pp. 33-50.

Bibel, W. (1983) ‘Matings in matrices’. Communications of the ACM 26.11, 844-852.
Boella, G. & al. (2016) ‘Eunomos, a legal document and knowledge management system

for the web to provide relevant, reliable and up-to-date information on the law’.
Artificial Intelligence and Law 24.3, 245-283.

de Boer, M., Gabbay, D.M., Parent, X. and Slavkovic, M. (2012), ‘Two dimensional
Standard Deontic Logic [including a detailed analysis of the 1985 Jones-Pörn deontic
logic system]‘. Synthese 187(2), 623–660.

Burley, A. and Mattli W. (1993) ‘Europe before the court: a political theory of legal
integration’. International organization 47.1, 41-76.

Carmo, J. and Jones, A. (2002), ‘Deontic logic and contrary to duties’. In Handbook of
Philosophical Logic, 2nd edition, pp. 256–344.

DeYoung, H. & al. (2010) ‘Experiences in the logical specification of the HIPAA and
GLBA privacy laws’. Proceedings of the 9th annual ACM workshop on Privacy in
the electronic society. ACM.

Fonseca, D. J., Richards, E., Williamson, D. and Moynihan, G. P. (2005) ‘A knowl-
edgebased system for the recycling of nonhazardous industrial residuals in civil
engineering applications’. Expert Systems 22.1, 1-11.

Governatori, G. (1996) ‘Labelling ideality and subideality’. International Conference
on Formal and Applied Practical Reasoning.

Hansson, S.O. (1989), ‘A note on the deontic system DL of Jones and Pörn’. Synthese
80(3), 427–428.

Jones, A. and Pörn, I. (1985), ‘Ideality, sub-ideality and deontic logic’. Synthese 65(2),
275–290.

17

Jones, A. and Sergot M. (1992), ‘Deontic logic in the representation of law: Towards a
methodology’. Artificial Intelligence and Law 1.1, 45-64. 1992.

Magni, C.A., Malagoli S. and Mastroleo G. (2006) ‘An Alternative Approach to Firms’
Evaluation: Expert Systems and Fuzzy Logic’. International Journal of Information
Technology & Decision Making 5.01, 195-225.

Mayer, M.c. and Fiora P. (1995) ‘Propositional abduction in modal logic’. Logic Journal
of the IGPL 3.6, 907-919.

Navarro, P.E. and Rodrguez J.L. (2014) ‘Deontic logic and legal systems’. Cambridge
University Press.

Nipkow, T., Paulson L.C. and Wenzel M. (2002) ‘Isabelle/HOL’. LNCS, vol. 2283.
Otten, J. (2014) ‘MleanCoP: A Connection Prover for First-Order Modal Logic’.

International Joint Conference on Automated Reasoning, 269-276.
Prakken, H. and Sergot, M. (1996), ‘Contrary to duty obligations’. Studia Logica 57(1),

91–105.
Schild, U. and Kannai, R. (2005), ‘Intelligent Computer Evaluation of Offender’s

Previous Record’. Artificial Intelligence and Law. 13(3-4).
Übeyli, E.D. (2009) ‘Advances in medical decision support systems’. Expert Systems

26.1, 3-7.
Wah, T.K. and Muniandy M. (2014) ‘Courtroom Decision Support System Using Case

based Reasoning’. Procedia-Social and Behavioral Sciences 129, 489-495.
Zeleznikow, J. and Stranieri, A. (1995) ‘The Split-Up System: Integrating Neural

Networks and Rule-Based Reasoning in the Legal Domain’. Proceedings of the 5th
international conference on Artificial intelligence and law.

18

	1 Introduction
	2 Logics of normative ideality and sub-ideality
	3 Reasoning in legal texts
	3.1 The United Nations Convention on Contracts for the International Sale of Goods
	3.2 A formal representation of the Convention

	4 Normative queries about the Convention
	4.1 Using MleanCoP
	4.2 Legal applications of automated reasoning

	5 Final remarks

