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Abstract. We consider the problem of constructing a species tree given a number of gene trees.
In the frameworks introduced by Goodman et al. [GCMRMT79], Page [P94], and Guigé, Muchnik,
and Smith [GMS96] this is formulated as an optimization problem; namely, that of finding the
species tree requiring the minimum number of duplications and/or losses in order to explain the
gene trees.

In this paper, we introduce the WIDTH & DupPLICATION-LOSs and WIDTH & DUPLICATION prob-
lems. A gene tree has width k w.r.t. a species tree, if the species tree can be reconciled with the
gene tree using at most k simultaneously active copies of the gene along its branches. We explain
w.r.t. to the underlying biological model, why this width typically is very small in comparison
to the total number of duplications and losses needed. We show polynomial time algorithms for
finding optimal species trees having bounded width w.r.t. at least one of the input gene trees. Fur-
thermore, we present the first algorithm for input gene trees that are unrooted. Lastly, we apply
our algorithms to a dataset from [GMS96] and show species trees requiring significantly fewer
duplications and fewer duplications/losses than those trees given in the original paper.

1 Introduction

The following strategy has become the de facto norm for reconstructing the evolutionary re-
lationships of a set of species (i.e. their species tree): One begins by constructing phylogenetic
trees for a set of distinct gene families (i.e. gene trees). Typically, these gene trees are built us-
ing one of the standard techniques for constructing phylogenetic trees from molecular sequence
data. However, for many gene families, the gene tree differs from the species tree (using another
terminology, their topologies disagree). Hence, a single gene tree is not considered sufficient for
inferring a species tree. For this reason, a set of gene trees is often used in order to increase the
reliability of the resulting species tree. This approach does of course demand a procedure to
reconcile the contradictory information contained in the differing gene trees in order to obtain
a species tree. Before trying to find such a procedure, one must ask why some gene trees differ
from the species tree. There are a number of answers to this question e.g. partial domain agree-
ment, horizontal transfer, long distance homology and parology via gene duplication and loss
events. See [ BDDEHY98, GCMRM79,KTG98, TKL97] for general discussions on these subjects.

With respect to paralogy, Goodman et al. [ GCMRMT79] introduced the concept of reconciling
gene trees with a species tree; this was later formalized by Page [P94] and Guigd, Muchnik,
and Smith [GMS96]. Basically, the authors show how gene tree disagreement can stem from
a series of speciation, duplication and loss events. Duplications are genome level evolutionary
events that, in essence, copy a contiguous strand of DNA in the genome of a taxa; any genes
located along this strand are copied and proceed through evolution independently of each
other. Two genes are paralogous if their lowest common ancestor can be traced back to a
such a duplication event. Two homologous genes are said to be orthologous if they evolved
from a single gene existing in the genome of their lowest common ancestor taxa. A loss is
an event where a copy of a gene is lost in the genome of a species. The investigations of
[GCMRMT79.GMS96,P94] led to a set of optimization problems that ask to find the species tree
that requires the minimum number of postulated duplications (the DUPLICATION problem) or
the minimum number of postulated duplications and losses (the DUPLICATION-LOSS problem)
needed in order to reconcile the set of input gene trees.



A heuristic based on neighbor swapping was given for the DUPLICATION-LOSS problem
in [GMS96]; and then applied to a set of 53 gene trees over 16 taxa. Ma et al. [MLZ98] and later
[FHKS98] show that the DupLicATION and DUPLICATION-LoOSS problems remain N P-hard for
various parameterizations and restrictions. The DUPLICATION-LOSS problem is known to be
approximable to within a factor of 2 in polynomial time [MLZ98]; here the authors also give a
heuristic derived from their approximation algorithm. It is also known that the DUPLICATION
problem is fized parameter tractable when parameterized by the number of duplications [S99].

Here we study, among other things, the WIDTH & DUPLICATION-LOSS problem. A gene
tree has width k with respect to a species tree, if the species tree can explain the gene tree
using at most k simultaneously active copies of the gene along any of its branches. The WiDTH
k DupLicATION-LOSs problem asks for the species tree S requiring the minimum number of
duplications and losses with the proviso that at least one of the input gene trees has width
< k w.r.t. to S. The reason for introducing such a parameter is simply that, in many cases,
the optimum species tree has small width w.r.t. the input gene trees and, when the width is
bounded, the optimum species tree can be found in polynomial time (i.e. fast)!.
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Fig. 1. Gene tree reconciled with species tree.

Figure 1 contains a small example of a species tree (((4, B),C), D) that has large width
w.r.t. to the gene tree ((4, D), C), B). The width here is 3, since edge (ABC, ABCD) of S has
3 simultaneously active copies of the gene. Note that many of the N P-hardness gadgets used in
[MLZ98] employ a generalization of this construction using n taxa with conflicting gene trees
of the form (A1, (A2,...,(An—1,4,)...) and (4,, (An_1,..., (A2, 41)...). In such a case, the
width is » — 1 and, when interpreted in terms of the underlying biological model, it requires
that n — 1 copies of the same gene co-existed in the genome of the ancestral taxa, only to
have n — 2 of these lost in each of the extant taxa. Although there is evidence that a species
benefits from having more copies of some genes in its genome (a possible example is the Hox
gene family), such a behavior where many copies co-exist and then are lost in such a pattern
seems very degenerate. The width k model disallows this.

The optimization problem introduced here asks for the species tree that requires the fewest
number of postulated duplications (or, duplications and losses) in order to reconcile the set of
input gene trees with this species tree with the proviso that no more than a bounded number
k of simultaneously active genes are located in any species at any time. Our four optimization
functions are the WIDTH k& DUPLICATION problem (find the species tree minimizing duplica-
tions with < k simultaneously active genes) for rooted and unrooted gene trees, and the WIDTH
k DupLICATION-LoOSS problem for rooted and unrooted gene trees.

! The species tree given in [GMS96] for 53 gene trees over 16 taxa has a width of only 3 w.r.t. to its gene trees.
In contrast, this species tree requires the postulation of 46 duplications (172 duplications and losses). An
algorithm bounded by a polynomial with a degree bound of k, the width, will out-perform a similar algorithm
with the degree bounded by the duplication cost.



The contributions of this paper are as follows. Section 3 introduces our width & algorithm
and its proof of correctness. Section 4 provides the first model and algorithm for input gene
trees that are unrooted. Working with unrooted gene trees is advantageous as the determination
of roots in phylogenetic tree analysis remains a hard problem, and belongs to the domain of
biology rather than to that of mathematics or computer science [HMM96]. Section 5 extends
the algorithm from Section 3 to handle losses. Lastly, our algorithms are practical and have
yielded good results. In Section 6 we present our experimentation with a dataset from [GMS96]
and show trees that score better in many respects.

2  Definitions

A graph G consist of a set of vertices denoted V(G) and a set of edges denoted E(G). A
directed graph D consist of a set of vertices denoted V(D) and a set of arcs denoted A(D).
For a directed graph D, E(D) denotes the edges of the underlying undirected graph of D. A
pseudo tree is a graph G given together with a set Lg C V(G), called leaves, such that each
cycle of G contains a leaf. The vertices of V(G) \ L are called internal vertices. A leaf path of a
pseudo tree (G is path that startsin a non-leaf, ends in a leaf [, and contains no other leaf than
l. A rooted pseudo tree is a directed graph D given together with a vertex r € V/(D), called the
root, and a set Lp C V(D), called leaves, such that each maximal directed path of D starts in
the root and ends in a leaf and only leaves have indegree > 2. The vertices of V(D) \ (LpU{r})
are called internal vertices. A directed tree is a rooted pseudo tree D such that the underlying
undirected graph of D is a tree. A binary pseudo treeis a pseudo tree where all internal vertices
have degree 3. A rooted binary pseudo tree is a directed tree, where the root has outdegree 2
and indegree 0, and the rest of the internal vertices have indegree 1 and outdegree 2. Let T be
a rooted binary pseudo tree. For any vertex v € V(T'), L7(v) is the set of leaves of T reachable
from v by directed paths. If T is a rooted binary pseudo tree and v € V(T'), then any vertex
reachable from v by a directed path is a descendant of v (this means that v is a descendant
of v). If T is a directed tree and L C L7, then the least common ancestor (LCA) of L in T is
defined as follows: if L = {/}, then the LCA is /; otherwise, the LCA is the vertex v such that
L C Ly(v) but L € Ly(u) for each descendant u # v of v. Disjoint union is denoted by 4.
By a gene tree we mean a rooted binary pseudo tree. By a simple gene tree we mean a rooted
binary tree (i.e. a rooted binary pseudo tree which is also directed). By a unrooted gene tree
we mean a binary pseudo tree. By a species tree we mean a rooted binary tree. A gene tree T
and a species tree S are compatible if Ly C Lg.

Definition 1. Let T be a gene tree and S a compatible species tree. The mapping Ars :
V(T) — V(S) is defined as follows: A s(v) is the least common ancestor of Ly(v) in S.

The width parameter is introduced below.

Definition 2. Let T be a gene tree and S a compatible species tree. The width of T with respect
to S is defined to be the mazimum of

{(z,y) € A(T) : Ar.s(z) = ', Ar.s(y) = b where a (V') is a descendant of a' (b) in S}|.

over all (a,b) € A(S).

Our polynomial time algorithms are based on dynamic programming. The most crucial
observation necessary to make is that, for a width bounded by a constant, we need only consider
a polynomial number of subproblems. These subproblems are constructed from combining the
partitions of the input gene trees.



Definition 3. If T is an unrooted gene tree, then for each edge (z,y) € E(T), Pr(e) =
{L1, Ly} where Ly and Ly are the leaves reachable by leaf paths in T\ (z,y) from x and y, respec-
tively . Moreover, Pr = Uceg(myPr(e)U{L1}. Similarly, if T is a (simple) rooted gene tree, then

for each arc (z,y) € A(T), Pr(z,y) = Lt(y) (this is similar to the unrooted case since L1 (y)
is the set of leaves reachable from y by leaf paths). Moreover, Pt = {Pr(e) : e € A(T)}U{Lr}
and for any F C A(T), Pr(F) = UeerPr(€). In the rooted as well as the unrooted case, we
call Pt the partitions of T.

Following [GMS96], we define the duplication cost as follows.

Definition 4. Let T be a gene tree and S a compatible species tree. Let Ar g = |{z :3(z,y) €
A(T), Ar.s(z) = A1 s5(y) }H, that is, At s is the number of duplications needed to explain the gene
tree T under the species tree S. Moreover, let Ar, . 1, 5 denoted ;_| At 5, and let 6(Ty, ..., T))
denote the tree S that minimize Ar, . T, 5.

3 The Rooted Gene Tree Duplication Problem

In this section, we consider the WIDTH & DUPLICATION problem for gene trees (i.e. rooted
pseudo trees). The most important elements are the (1) basic dynamic programming algorithm
and (2) the algorithm for choosing an appropriate set of partitions P.

3.1 The basic dynamic programming algorithm

If S is the optimal tree, then the dynamic programming algorithm will return an optimal
solution when Pg is guaranteed to be a subset of the subproblems considered.

Definition 5. A species tree S is P-restricted if and only if Ps C P.

The following algorithm accepts as input a set of gene trees and a P such that 6(Ty,...,T;)

is P-restricted and computes Ay, 71, 5(7y,...1,)- The algorithms runs in polynomial time in the

size of the input T7y,..., T, and P. It is straightforward to modified it so that it also computes

§(Ty,...,T,). Let P{) denote the sets in P of size 7, i.e. {4 € P : |A| = i}. Let P(£9) denote

the sets in P of size < i, i.e. {A € P :|A4| <i}.

ALGORITHM MINIMUM NUMBER OF DUPLICATIONS (ROOTED CASE)
input: gene trees T3, ..., T, (s.t. L(T;) = L) and P (s.t. UyepA =L and L € P)
For i =1 to |L]
For each A € P
Let M(A) := min M(A;) + M(Az) +d where A, | A4y = A, A1, Ay € P and
d=H{z:3(z,y) € A(T});1 <i<riL(z), L(y) C A; L(2), L(y) € Ar: L(2), L(y) € A2}
output: M(L).
Here d should be interpreted as the number of duplications needed at vertex a with leaf set
Ls(a) = A and with children @y and ay with Lg(a;) = Ay and Lg(az) = Ay resp.
We now give a definition for an optimal subsolution.

Definition 6. Let A € P. We define Dt 5(A) to be the number

{z:3(z,y) € A(T) : Ar.s(z) = Ar.s(y), and At s(z) is a descendant of the LCA of A in S}|

(Intuitively, Dt s(A) is the number of duplications required below the edge €, where A = Pr(e) €
A(S) is the set that minimizes this number). Moreover, Dr, ..
minimum, taken over all P-restricted species trees S such that A € Ps, of 3°._, D1, 5(A).



By the following observation, an optimal solution to a subproblem is equivalent to an
optimal solution to the original problem.

Observation 1 If §(T4,...,T,) is P-restricted, then Ar,

It follows from Lemma 1 that our algorithm correctly computes optimal subsolutions.
Lemma 1. IfA € PO, then Dr,.....
where the minimum is taken over all Ay, Ay € PE=Y) such that: AlUAy = A and A\NAy =0,
and where d(A, A1, Az) equals

TT(A7P) = min DTl ..... TT(A17P)+DT1 ..... TT(A27P)+d(A7A17A2)

Hz:3(z,y) € A(Ti);1<i<r;L(z), L(y) C A; L(z), L(y) € Ar; L(z). L(y) € Az}|

Proof. We first prove the inequality

Dr,..1.(A,P) <min D7, . 1,(A1,P)+ Dry... 7. (A2, P) + d(A, Ay, A)). (1)

Assume that Sy and S are P-restricted gene trees such that: Dy, 71, (A1, P)=>_._; D1.5 (A1)
and A; € Ps,, and Dry,..1.(A2.P) = >.i_Dr.s5,(A2) and A, € Pg,, respectively. Let
(a},ay) € A(Sy) and (a}, az) € A(S2) be edges such that 4y = Pg, (¢}, a;) and Ay = Pg, (d)y, as),
respectively. Let S| be the subtree of Sy rooted at a;. Let S} be the subtree of Sy rooted at
az. Let S’ be the rooted binary tree obtained by attaching a S as left subtree and S} as right
subtree to a root a. Since Sy and Sy are P-restricted, and moreover A € P, S’ is P-restricted.
Let S be any P-restricted gene tree with S’ as a rooted subtree. It is straightforward to verify
that 7, D1, 5(A) = D11, (A1, P) + D1y ... 1. (A2, P) + d(A, Ay, A). This equality yields
(1).

We now prove the inequality

Dry..1.(A,P) > min Dy, . 1,(A1,P)+ Dry....7. (A2, P) + d(A, Ay, A)). (2)

Assume that S is a P-restricted gene tree such that: D7, 7,(A4,P) = >.;_; D1, 5(A) and
A € Pg. Let (a’,a) € A(S) be an edge such that A = Pg(a’,a). Let S’ be the subtree of S
rooted at a. Let S; and Sy be the left and the right subtree of S at a; moreover, let A; =
Ls, and Ay = Lg,. It is straightforward to verify that Dz, . 7,(4,P) = > D1, 5(4) =

Yo 1 Drs (A1) + X1 Drys, (A2) + d(A, Ay, Ag) This equality yields (2).

We are now ready to state the main result of this section.

Lemma 2. Let T}, ..., T, be gene trees. Assume that §(T1,...,T,) is P-restricted. Given P

and T4, ..., T, the value Ar, 1,511, (and the tree 6(T1,...,T;)) can be computed in

polynomial time (the exact running time is stated below).
Proof. The lemma follows easily from Observation 1 and Lemma 1 above.

The running time of the algorithm is O(p? - @ - r -1?) where p = |P|, I = |U Lt,|, and «a is the
time needed to access a set A € P. Notice that @ < logp < I and that a = O(1) expected
time. Each element A € P has at most p candidate sets Ay and Ay, since A and A; uniquely
determines A,. For each triplet A, Ay, Ay, the number of duplications at this vertex in the
species trees must be calculated for each of the O(l) edges in each of the r gene trees. Each
such edge requires O(I) time giving a bound of O(r - I?) in total.



3.2 How to find the right P

In this subsection, we begin by showing that, if all but one copy of each species is removed
from a gene tree, then the width will not increase. We will use this result later when we show
how an adequate set P can be generated from such simple gene trees (i.e. a set P adequate for
the original - not necessarily simple - gene trees). First, we formally define the simplification
procedure.

Definition 7. Let T be a gene tree (i.e. a rooted binary pseudo tree). Let T' be obtained by
taking a rooted binary subtree T" of T with the same leaf set as T and removing each verter
with indegree 1 and outdegree 1 (recursively) by connecting its two neighbors. The simple gene
tree T' is said to be obtained by simplifying T using T". Notice that V(T") = V(T).

The following observation is a straightforward consequence of the definition of LCA.

Observation 2 Let T be a gene tree and S a compatible species tree. If y is a descendant of
in T, the verter At s(y) is a descendant of At s(z) in S. Let T' be a simple gene tree obtained
by simplifying T. For each t of V(T"), the vertex A s(t) is a descendant of At s(t).

By the lemma below, simplification does not increase the width. Since simplification clearly
does not change the leaf set, it follows that it is sufficient to consider subproblems in our
dynamic programming algorithm that are created from simple gene trees.

Lemma 3. Let T be a gene tree and S a compatible species tree. If T' is a simple gene tree
obtained by simplifying T (using T" ), then the width of T' w.r.t. S is at most the width of T
w.r.t. S.

Proof. Let (a,b) be an edge of S. Let
A=A{(z,y) € A(T) : AMr.s(z) = ', A\r.s(y) = b’ where a (b') is a descendant of ' (b) in S}

and define A’ similarily but over all (z,y) € A(T'). For any vertex y of T”, let fru(y) be the
parent of y in T”. For any vertex y of T, let fr:(y) be the parent of y in T'. We now prove the
theorem by showing the existence of an injective function g : A’ — A.

Let (fr(y),y) € A’. Notice that, by Observation 2, Apv (fr/(y)) is a descendant of A s(fr/(y)).
Hence, there is a unique descendant z of fr:(y) in T” which also is an ancestor of y in T" such
that (frn(2),2) € A. Let g(fr(y),y) = (frn(2),2).

Assume that (fr/(y1).v1), (fr/(y2).y2) € A’ and that g(fr/(y1),y1) = g(fr(y2).y2). It
follows that there is vertex z of T” such that (1) z is an ancestor of y; as well as of yo in
T", and (2) z has a parent frv(z) in T" such that (frn(z),z) € A. Notice that (1) implies
that z is an ancestor of y; as well as y, in T’. This together with Observation 2 shows that
(fr#(2),z) € A contradicts (fr/(y1), y1) € A".

We now show how to construct an adequate polynomial sized set P from the gene trees.
Recall that we are given gene trees 17,75, ..., T, such that T; C Lg and T; has width < k
w.r.t. S. By the above lemma, we may w.l.o.g. assume that they all are simple gene trees.
The simplest strategy would be use all of the r gene trees, thus generating a set P of size
[1;_, |A(T;)|*. For large r and k, the size of this set will approach 2/"sl. However, we may be
able to do better than this via Lemma 4. The intuition behind this technique is to choose a

subset of the gene trees (call them T4,...,T,) from which to construct our P set.

Lemma 4. Let T1,..., T, be simple gene trees and S a compatible species tree. If Ty, ..., T,

all have width < k with respect to S and Ls \ (U/_;L1,) = R, then Ps C P where

P={Bu |J Ai:4i;€Pr,BCR}
1<i<p1<i<k



Moreover, |P| < 2IRl IT2_, |A(T;) |-

Proof. Let P = {A\R: A€ Ps}, P ={A\R: A€ P}, P(F) =VU_,Pr(F), P(F) =
{A\R:Ac P(F)},and Py, (F) = {A\R: A € Pr,(F)} For each (a,b) € A(S), let F;(a,b) be
the set

{(z,y) € A(T}) : Ars(z) = d’, A7 s(y) = b' where a (') is a descendant of ¢’ (b) in S}

and let F(a,b) = U’_, Fi(a, b). Observe that, since T} has width < k with respect to S, |F(€)| <
k for each € € A(S).

Define the height of an arc m € A(S) to be the length of the longest directed path from
b to a leaf of S. We prove, by induction on the height of €, that

Ps(€) C P(F(e)), (3)
for each € € A(S) which yields
Ps C P’ (4)

After (3) is proven, we derive the lemma from (4).

Since Ars|r, is the identity mapping, (3) holds for each arc of height 0 of S. Assume
that (a,b) € A(S) has height i > 0. Let (b, ¢;) and (b, ¢3) be two distinct arcs of S. Since
(a,b) € A(S) has height i > 0, (b,¢;) as well as (b, c3) has height at most ¢ — 1, and hence
satisfy (3). This means that we will be able to conclude that (a,b) satisfies (3), if the following
two statements hold:

P5((a 1)) =
P/(F{b, 1)) UP/(F(b ) C

5((b, 1)) UP5((b, c2)) ()

P
P(F(a,b)) (6)

The equality (5) is straightforward to verify. We will now end the proof of (3) by showing

Ph, (Fi(b, 1)) UPh (F(b: e2) C Ph.(Fi(a, b)) (7)

which clearly implies (6).

Assume that (z,y) € F;(b,¢;) where ¢ € {1,2}. If (z,y) ¢ F;(a,b) then Ar, s(z) = b. Let r
be the root of T'. Clearly Ar, s(r) is the root of S and a is a descendant of Ay, s(r). It follows
that there are vertices 2’ and z” of T such that z’ is the parent of 2, z is a descendant of 2",
Ar;.s(z") = b, and «a is a descendant of Ay, g(z’). From this, it follows that (z/, 2") € F;(a,b)
which gives P, (Fi(b, ¢;)) C Pr;(Fi(a,b)). Thus (7) holds and hence also (6) which yields (3).

We now show that (4) implies the lemma. Assume that A € Ps. Let A’ = A\ R. Clearly
A" € P§ and hence A’ € P’ which yields that A = A’ U (AN R) € P and the lemma follows.
QED

Thus, by Lemma 4, we may choose a subset of the gene trees to cover the total leaf set Lg
as completely as possibly but simultaneously manage to keep p reasonably small. In particular,
we want to choose gene trees in a way that minimizes 2/%I T[%_, |A(T;)|*, where R is the set of
leaves not appearing in any of Ty,...,T).

Corollary 1 Let T be a simple gene tree and S a species tree such that Lt = Lg. If T has
width < k with respect to S, then Ps C {UF_| A, : A; € Pr}.



4 The Unrooted Gene Tree Duplication Problem

Previous work on the DUPLICATION /DUPLICATION-LOsS problems focused on input gene trees
that are rooted. For various reasons, the determination of the root of a phylogenetic tree is
a difficult problem that, in many cases, requires the expertise of biologists. For this reason,
we introduce the UNROOTED DUPLICATION problem. Within this paper, we do not consider
the DUPLICATION-LOSS problem but note that it is straightforward to modify the following
algorithm for this case (Section 5).

As input, we are given unrooted gene trees Ti,..., T, and asked to compute A(T7},...,T})
where (1) T} is T; rooted at one of its vertices and (2) Ty, ..., T, minimize A(TY,...,T}) with
respect to (1). Since Pr: C Pry, the set Pg can be constructed as before from T4, ..., T,. Given

the subproblems defined by Pg, the algorithm proceeds in the same manner as in Section 3 with
one exception. Presently, we must store subsolutions for each of the possible ways of rooting
each unrooted gene tree. Fortunately, each tree can be considered separately.

ALGORITHM MINIMUM NUMBER OF DUPLICATIONS (UNROOTED CASE)
input: unrooted gene trees Ty,...,T, (s.t. L(T;) = L) and P (s.t. UsepA = L and
LeP)
For i =1 to |L]
For each A € P
Let T; ; be T; rooted at its jth vertex.
(These trees do not have to be constructed).
Let M(A);; := min M (A1), ;+ M(A2); ;+ d; ;, where Ay |H A, = A, Ay, Ay € P(9)
and
dij =z :3(z,y) € A(Ti;);1 <i<r;L(x),L(y) C A; L(z), L(y) € A1; L(z), L(y) € Az}
output: ), .., min;{M(L);;}.

In the above algorithm, d; ; is the number of duplications needed with respect to T; ; at a
vertex a with leaf set A and children @y and a3 s.t. Ls(a1) = A; and Lg(az) = A,.

Theorem 1. The algorithm correctly computes A(Ty, ..., T)) and Ty, ..., T} minimize A(TY, ...,

The running time of the algorithm is O(p* -r-a-I3), where p=|P|, l = |U L1,|, and a is the
time needed to access a set A € P.

Proof. The proof is similar to that of Section 3.2.

5 The Rooted Gene Tree Duplication-Loss Problem

Following [GMS96], we define the losses at a vertex a with children b and c of a gene tree T
with respect to a species tree S as:

l~(a) - {0 if /\TTS(a) = /\T,S(b) = /\T,S(C)
AN |d5(/\T75(a), /\T,S(b)) — 1| + |d5(/\T75(a), /\T.S(C')) — 1| otherwise

where ds(z,y) is the distance from z to y in S (i.e. the number of edges on the unique path
between them).

Definition 8. Let At s be the number of losses needed to erplain the gene tree T under the
species tree S, i.e. At s = erV(Ti) Is(z). Moreover, let o7, . 1,5 denote Y . | Ar, s+ At s,

and let o(Th, ..., T,) denote the tree S that minimize X, ’TT,VS-

To facilitate the formulation of a dynamic programming algorithm that also handles losses,
we give a procedure to count losses by only inspecting a parent and its two children. Let



X(L,A, Ay, Ap) be true if and only if L C A and L € A, for ¢ = 1,2. Let z be a vertex of a
tree T with a parent f and children sq,s9, and let A, Ay, Ay be three sets such that A is the

disjoint union of 4y and A;. We say that a loss happens at A, 4;, A w.r.t. z and T if and only
if either (1) or (2) holds:

(1) LT(:C) C A, X(LT(‘r):A:Al:AZ): X(LT(51)7A7A17A2)7 and not X(LT(52)7A7A17A2)
(2) Lr(z) C A, Lr(f) € A, and not x(Lr(x), 4, Ay, A)

Let [ be the function defined as follows

I(T, 2, A, Ay, Ag) = lifa los§ happens at A, Ay, Ay w.r.t. z and T
0 otherwise
ALGORITHM MINIMUM NUMBER OF DUPLICATIONS AND LOSSES (ROOTED CASE)
input: gene trees Ti,....T, (such that L(T;) C L) and P (such that UsepA =L and
LeP)
For i =1 to |L|
For each A € P(")
Let M(A) := min M (A;) + M(A3) + d+1 where A; |1 A; = A, Ay, Ay € P(SY),
d=[{z:3(z,y) € A(T3);: 1 <i <r;L(z), L(y) C A; L(z), L(y) € Ar: L(z), L(y) € A2},
and
l — ZIGV(Tl) Z(TZ—VZ7 ;:ET 147 A17 AQ)
output: M(L).

Let I, be defined as above. The following holds: ZUQV(S) I(T;, 2, Ls(v), Ls(I(v)), Ls(r(v))) =
Is(z). From the above equality, it follows that eV (S)zeV(T)) I(T;,z,Ls(v), Ls(l(v)), Ls(r(v))) =
erV(Ti) ls(z). That is, the above algorithm counts the number of losses correctly.

Theorem 2. The running time for this algorithm is O(p?-r-a-1%), where p = |P|, | = |U L],
and a is the time needed to access a set A € P.

6 Experimental Results

We focused our attention to the dataset provided in [GMS96]; this consists of 53 gene trees
formed over 16 taxa. The gene trees given in the paper have width 3 w.r.t. the species tree. In
total, the best tree they found has 17 of the 53 gene trees agree with this species tree (in other
words, they have width 1) and the total score for this species tree is 190 (47 duplications, 143

PROTOZOA //T. 7 ——
FUNGI EMBRYOPHITA — / *—
CHLOROPHYCEA ARTHROPODA EcHiNDERIATA N\ AMPHIBIA / MAMMALIA
ACOELEMATES CHONDRICHTHYES OSTEICHTHYES MOLLUSCA / AN

ANNELIDA AGNATHA REPTILIA
AVES

Fig. 2. The best tree for the dataset from [GMS96] found w.r.t. the DUPLICATION-LOSS problem.

Figure 2 gives a tree we found using our algorithm from Section 5 that scores better under
the DupLICATION-LOss model. In total, the tree scores 159 (36 duplications and 123 losses).
The overall width is 4. (This tree was later verified to be optimal via an exhaustive dynamic
programming algorithm using all possible partitions.)

We coded our algorithms in the bioinformatics programming language DARWIN [GH99] and,
although much slower than native C code, the implementations were fast enough to run our



algorithms for P sets created with respect to width 4 (at this width, the P set has size 58757
out of a possible 65536). For larger datasets, it may be infeasible to compute such large sets
exactly. We offer the following heuristic: Choose an initial species tree S. Repeat the following
until there is no improvement: Generate P = {U?:1Ai : A; € Pr}. Let S be equal to the results
of applying the DUPLICATION-LOSS algorithm of Section 5 using all of the gene trees Ty, .. .. T,.

This heuristic, using the [GMS96] tree as the initial species tree, managed to find the optimal
species tree for the DUPLICATION problem after only 2 iterations. It was also extremely fast,

since the size of the P set was very small (below ('A(QS”) = 435 out of a possible size of

2l's = 65536). In general, a good candidate for choosing the initial species tree might be a
tree which agrees with many of the gene trees. Or, one might use the algorithm in Section 5
with a P set created from all the gene trees and £ = 1 to form the initial topology. Initial
experiments on random data have given good results with the number of iterations, before
finding the optimal species tree, always below 4.

7 Open Problems

One current avenue for future research would be to determine if these problems are hard for any
level of the W-hierarchy - the appropriate framework for these questions - when parameterized
by the number of gene trees and/or the width. If this is the case, an approximation algorithm
or solid heuristic for choosing good P sets will be needed for larger widths.

Also, our algorithms should be compared against the [P94] and [MLZ98] implementations
on gene trees having large width w.r.t. their species tree. The heuristic presented in Section 6
might complement the work done in these other systems.
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