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Abstract 

We present a new method for reconstructing the distances 
between probes in physical maps of chromosomes con- 
structed by hybridizing pairs of clones under the so-called 
samphng-without-replacement protocol. In this protocol, 
which is simple, inexpensive, and has been used to suc- 
cessfully map several organisms, equal-length clones are hy- 
bridtzed against a clone-subset called the probes. The probes 
are chosen by a sequential process that is designed to gen- 
erate a palrwlse-nonoverlapping subset of the clones. We 
derive a likehhood functmn on probe spacings and orders 
for this protocol under a natural model of hybridization er- 
ror, and describe how to reconstruct the most hkely spacing 
for a given order under this objective using continuous op- 
timization. The approach is tested on simulated data and 
real data from chromosome VI of Aspergzllus mdulans. On 
simulated data we recover the true order and close to the 
true spacing; on the real data, for which the true order and 
spacing is unknown, we recover a probe order differing sig- 
mficantly from the published one. To our knowledge this is 
the first practical approach for computing a globally-optimal 
maximum-likelihood reconstruction of interprobe distances 
from clone-probe hybrtdtzatmn data. 

Keywords Computational biology, physical mapping of 
chromosomes, sampling without replacement protocol, max- 
imum likelihood, convex optimization 

l Introduction 

Physical mapping m molecular biology is the task of re- 
constructing the order and location of features of bmlog- 
ical interest along a chromosome. The features may be 
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sites at which restriction enzymes cut, so-called sequence- 
tagged'sites that are identified by short, uniquely-occurring 
sequences, or positions of clones that contain fragments of 
the chromosome. There is a diverse array of approaches for 
constructing maps of such features depending on the type 
of data that is collected, including mapping by nonunique 
probes [2, 18], mapping by unique probes [1, 11, 12], map- 
ping by unique endprobes [7], mapping by nonoverlap- 
ping probes [8], mapping from restriction-fragment length 
data [10, 13], radiation-hybrid mapping [24, 5], and optical 
mapping [21, 14, 16]; there are many probabilistic analy- 
ses of various approaches [15, 4, 28, 27, 26]; and a wide 
variety of computational techniques have been employed or 
suggested, including greedy algorithms [18], simulated an- 
nealing [20, 25, 2, 1], linear programming [7, 12, 8], and 
semidefinite programming [6]. 

In this paper we develop a maximum-likelihood approach 
for a type of physical mapping known as the sampfing- 
without-replacement protocol The protocol is inexpen- 
sive, simple to carry out in the lab, and uses widely- 
available technology Organisms that have been mapped 
with this technique include Schizosaccharomyces pombe [19], 
Aspergdlus mdulans [22], and Pneumocyst2s cartnt, [3], 
mapping projects in progress using the technique include 
Neurospora crassa and Aspergtilus flavus 

In the protocol, a hbrary £ consisting of many overlap- 
ping clones that each sample a fragment of the chromosome 
is developed. Clones in £ are size-selected to have a target 
length, and are arrayed on a plate. A subset of the clones 
called the probe set :P is then obtained by the following se- 
quential process Initially, P = O and $ = £. At the ~th 
iteration of the process, choose a clone P, from $ at random, 
remove P, from B, and add it to :P. Hybridize P, against 
all the clones in the hbrary by extracting complementary 
DNA from both of its ends and washing the DNA over the 
arrayed plate, recording all dories in the library to which the 
DNA sticks. Remove from B all clones in the library that 
have a positive hybridization result with, P,. Then repeat 
this process for the next iteration, stopping once ,q becomes 
empty. 

We call the final set P the probe set, and the set C = £ - : P  
the clone set. The results of the experiments are summarized 
in a probe-done hybridizaUon matrix H that records the 
outcomes of all hybridizations between the probes in $' and 
the clones in £ 

Notice that if a done C, E C overlaps with a probe P~ E 
m the chromosome, it must overlap with one of the ends 

of Pj, as all probes and dones are of the same length. Such 
an overlap corresponds to a portion of DNA that is in com- 
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mon between the clone and the end of the probe. In the ab- 
sence of error, the complementary DNA from the end of Pj 
will stick to C,, and the hybridization test of/>3 versus (7, 
will be a positive result; thus clone C, will be removed from 
set H at the 3th iteration. This implies that in the absence 
of error the probe set P is a maximal nonoverlapping subset 
of the library 

Suppose that in hybridization matrix H enough of the 
clone-probe overlap structure is represented that we can re- 
cover the order of the probes P across the chromosome. 
Then for every consecutive pair of probes P and Q in this or- 
der, we can examine H for the presence of a hnkmg clone C 
that overlaps with both P and Q. The probe set ~P together 
with a linking clone for every consecutive pair forms a mini- 
mal set of clones that cover the chromosome. A map giving 
the order of the probes across the chromosome is then very 
useful, since by individually sequencing just the probes and 
hnking clones and overlapping the sequences in the order 
given by the map, we can reconstruct the DNA sequence of 
the chromosome. 

In reality, hybridization tests do not perfectly record the 
overlap structure of probes and clones. Hybridization re- 
suits contain random false positives and false negatives. A 
probe can also hybridize to a nonoverlappmg clone due to 
repeated DNA in the chromosome. In general, clones can 
be chimeric, which means they sample two or more frag- 
ments of the chromosome, and can contain deletions, which 
happens when portions of the DNA get spliced out during 
cloning. In the mapping projects using this protocol at the 
University of Georgia, however, clones are produced by cos- 
mids, which are small enough that chimerism and deletions 
are not a significant problem. In our treatment we model 
false positives and false negatives, but not chlmerism, dele- 
tions, or repeats. Hence false hybridizations due to repeats 
are treated as a series of isolated false positives. 

Related work Prior work on mapping by the sampling- 
without-replacement protocol, by Cuticchia, Arnold and 
Timberlake [9], Wang, Prude, Griflith, Tlmberlake and 
Arnold [25], and Mot=, Grigoriev, Maier, Hohelsel and 
Lehrach [20], has largely used local-search heuristics such as 
simulated annealing to try to find a probe order that min- 
imizes the Hamming-distance travehng-salesman objective. 
While minimizing this objective is not known to optimize 
any natural measure of the goodness of a map, Xiong, Chen, 
Prade, Wang, Griffith, Tlmberlake and Arnold [27] have 
shown that under certain assumptions on the distribution 
of clones, the Hamming-distance objective is statistically 
consistent; this means that as the number of clones goes 
to infinity, an exact algorithm for the Hamming-distance 
traveling salesman problem would recover the c(Jrrect probe 
order with probability one. 

Christof and Kececioglu [8] recently showed that the 
problem of computing a maximum-likehood probe order in 
the sampling-without-replacement protocol in the presence 
of false-positive and -negative hybridization error can be re- 
duced to the problem of finding the minimum number of 
ones to change to zeroes in hybridization matrix H so that 
the resulting matrix H '  has at most 2 ones per row and 
the consecutive-ones property on rows. They then showed 
how to formulate this problem as an integer hnear program, 
and developed a branch-and-cut algorithm for computing 
an optimal maximum-likelihood probe order. Using this ap- 
proach, they were able to compute optimal probe orders for 
realistic-sized instances on simulated data, and probe or- 
ders with sigmficantly fewer false positives on real data than 

the best-possible map obtainable by a Hamming-distance 
traveling-salesman approach In this paper we complement 
the work in [8] by developing a practical method for comput- 
ing a globally-optimal maximum-likelihood reconstruction 
of the interprobe distances, given a probe order. 

Plan of the paper In the next section we give a maxi- 
mum likelihood formulation of the problem of mapping by 
the sampling-without-replacement protocol in the presence 
of false positive and false negative error, which we call Map- 
ping by Nonoverlappsng Probes. The problem is unique in 
that the goal is to reconstruct the most likely order and spac- 
ing of probes along the map from the hybridization data. 
Section 3 then derives the likelihood function on probe or- 
ders and spacings for this formulation, which has a remark- 
ably simple closed form. Section 4 explaans how we tackle 
the maximization of this function for a fixed probe order 
using continuous optimization. Section 5 presents results 
of some experiments with a preliminary implementation of 
this approach. We then conclude with several directions for 
further research. 

2 The problem 

In our maximum likelihood formulation we do not model 
the sequential process of choosing the probes, and hence 
we operate under the assumption that the probes form a 
nonoverlapping set. We write {/>1, . . . ,  Pn} for the set of 
n probes, {C1, . . . ,  C,,,} for the set of m clones, and we 
formulate the problem as follows 

The task is to recover the probe order ~r = (,rl ~r2 .-- 7r~) 
and the probe spacing x = (xl x2 "" zn) as illustrated in 
Figure 1, given the m × n clone-probe hybridization ma- 
trix H containing false positive and false negative errors. 
Permutation a" gives the names of the probes in left-to-right 
order across the chromosome. Vector z gives the distance 
beween consecutive probes, where component xj is the dis- 
tance between the left end of P.~ and the right end of P,~_~. 
Matrix H = (h,3) is a 0-1 matrix, with 

l 1, />3 hybridizes to C,; 
h'3 = 0, otherwise. 

We assume that all clones are the same length, that the 
probes are nonoverlapping, and that we know 

* L, the length of the chromosome, 

* ~, the length of a clone, 

• p, the probablility that an entry of H has been 
corrupted into a false positive, and 

• ~/, the probability that an entry of H is a false neg- 
ative. 

As stated, this is not a well-posed problem. In the 
presence of false positives and negatives, any permuta- 
tion ~" of {1, . ,n} and any positive vector x for which 
~"~1_<,<, x, < L - n e are an explanation of the data. To ob- 
tain a well-defined problem, we invoke the principle of maxi- 
mum likelihood, which says that the best reconstructed map 
is that 7r and z that are most likely to have given rise to H. 
If we write p0r, z ] H) for the probability that 7r and x are 
the true order and spacing given the observed matrix H, 
a max,mum likehhood reconstruct=on is a pair (rr*, x*) that 
maximizes p(Tr, x ] H). We take the following as our defini- 
tion of the problem. 
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D e f i n i t i o n  1 ( M a p p i n g  b y  N o n o v e r l a p p i n g  P r o b e s )  
The Mapping by Nonoverlappmg Probes Problem is the fol- 
lowing. The input is the clone-probe hybridization ma- 
trix H, the chromosome length L, the clone length g, the 
false positive probability p, and the false negative proba- 
bdity y The output is a probe order and probe spacing 
pair (Tr, x) that  maximize p(Tr, ~c I H) under the assumption 
that  the probes are a collectmn of nonoverlappmg clones, all 
clones are of equal length, that  the left ends of clones are 
uniformly dmtributed across the chromosome, and that  the 
entries of H have been independently corrupted with false 
positive probabihty p and false negative probability 7. [] 

We can derive the function pQr, x [ H) using Bayes' the- 
orem: 

p(H I ~, ~) p(~, ~) 
p ( r , x  I H)  = p(H) 

In thts equation, p(H I r , x )  is the probability of observ- 
ing H given that  ~r and x are the true order and spac- 
ing, p(Tr, z) is the probability that  lr and z occur in na- 
ture, and p(H) is the probability of observing H. 1 Since 
p(H) = ~ -~ f~p (H [ ~ , x ) p ( ~ , ~ ) d x ,  the denominator is a 
constant independent of a" and x and can be ignored. Since 
the names given to probes and the spaces between probes 
are independent, p(rr, x) = p(rr)p(x). Since names are as- 
signed to probes completely randomly, p(rr) = 1/n!, which 
is independent of 7r and can also be ignored. Thus the only 
relevant quantities are p( H I ~r, x) and p(x). 

If the probabihty density function p(x) on probe spac- 
ings is uniform, this factor can be ~gnored as well. For the 
model considered below, we do not yet know the density 
function p(x), but ~t does not appear to be uniform. We 
concentrate instead on deriving the function p(H I r , x ) ,  
and take maximizing it as our objective. This will differ 
from truly maximizing p(Tr, x ] H) according to the bias due 
to p(~). 

We next derive function p(H I ~r,x) under the sim- 
plest process by which H can be generated from ~r and x 
with false positives and negatives. This process has three 
stages: 

(1) each clone is thrown down uniformly and inde- 
pendently across the chromosome, 

(2) for the row of the hybridization matr ix corre- 
sponding to a given clone, the probes that  a clone 
overlaps get a one in their column, and zeros are 
placed everywhere else, and 

(3) the ones and zeros are corrupted randomly and 
independently w~th probabihty ~/ and p respec- 
tively. 

3 The objective function 
/ 

To derive p(H I ~r, z) under this model, notice that  each row 
of H is independent of the other rows, since each clone is 
thrown down independently and each entry is independently 
corrupted. Writing H, for the ~th row of H then, it suffices 

I S m c e  ~r a n d  x a r e  v a l u e s  t a k e n  on  by  u n d e r l y i n g  r a n d o m  
v a r i a b l e s  YI a n d  X ,  w h e n  we w r i t e  p(~r,x) thin is s h o r t h a n d  
fo r  p ( I ]  = ~r, X = x )  F u r t h e r m o r e ,  s i nce  r is a d i s c r e t e  v a r i a b l e  w h i l e  
x is a c o n t i n u o u s  v a r i a b l e ,  w h e n  we w r i t e  p(rr ,  x )  t h i s  is t h e  j o i n t  p r o b -  
ab i l i t y  d e n s i t y  f u n c t i o n  of  a d i s c r e t e  a n d  a c o n t i n u o u s  r a n d o m  v a r m b | e  
e v a l u a t e d  a t  r a n d  x 

to work out p(H, [ 7r, x), since 

p(H [ v , z )  = H p(g,  l ~r, 
l<s<m 

To derive p(H, [ rr, x), notice that  in the absence of error 
there are only three possible types of overlaps that  can occur 
with a given clone C, as illustrated in Figure 2: 

(1) Clone C, overlaps with no probe. If the left end 
of clone C, fails between the left ends of probes 
P~j-1 and P~s but C~ overlaps with neither P~j 
nor P%_ 1, we write C, E N f  (If C, falls to the 
left of P~I but does not overlap with it, we write 
C, E N~, and if C, falls to the right of P~, but 
does not overlap with it, we write C, E N,~+I ) 

(2) Clone C, overlaps with exactly one probe. If it 
overlaps with only probe P,~j, we write C, E O ; .  

(3) Clone C, overlaps with exactly two probes. If 
it overlaps with both probe P~j and P~j+I, we 
write C, E B~. 

In Appendix A, we derive p(H, I 7r, x) by summing over 
the disjoint events C, E N ~r 3,  C, E O~, and C, E B ; .  For 
here, note that  the domain S of the probe order permuta- 
tion 7r is the set of all permutations on {1 , . . .  ,n}, and the 
domain 79 C 7~ '~ of the spacing vector x is the set 

:= { ( x l , ' " , x , ~ ) E R ~  n : each x, > 0 ,  7) a n d  

E 0} (1) L 
1_<,__.n 

We summarize the derivation in the following theorem. 

T h e o r e m  1 ( O b j e c t i v e  f u n c t i o n )  For hybridization ma- 
trix H, let f : S × T~ n ~ ~ be 

f (w ,x )  ---- -- Z I n ( a : -  Z b,~ min{xs,g}) ,  
l < t < r n  l ~ 3 ~ n + l  

where the coemclents a7 and b~ are given by Equations 
(2) through (5) in the Appendix, and we define 

L - n£ - X n + l  Xt .  

Then/'or a fixed probe order r, 

argmax p(H [ r , x )  = argmin f(rr, x), 
x E D  z~E'D 

where 79 is given by Equation (1). [] 

In other words, if we can evaluate the following objective 
function on permutations, 

g(Tr) := m i n f ( r , x ) ,  
x E D  

(and recover the minimizing x for a given rr), we can reduce 
the continuous problem of maximizing p(H I r, x) to a dis- 
crete search for a permutat ion that  minimizes g(r)f l  We 
now describe how we tackle the evaluation of g(Tr). 

2 N o t e  t h a t  t h i s  d o e s  n o t  s o l v e  t h e  p r o b l e m  o f  f i n d i n g  a p a i r  (Tr, x )  
t h a t  m a x l m l z e s  p ( x , x  [ H )  t h e  o b j e c t i v e  S ( ~ r , x )  Is m i s s i n g  a t e r m  
o f  - l n p ( x ) ,  a s  we  d o  n o t  k n o w  t h e  d e n s i t y  f u n c t i o n  p(x) 
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Xl x2 "'" ~n Xn+l 
t I I I ,  , I t  t I 

I I I I I I I I 
I I I I I I I I 

l l r l  ' "  I I I I  

F i g u r e  1 The problem is to reconstruct the probe order permutation re = ( r l  a'2 .-- rrn) and the probe spacing vector z = 
(xl x2 . "  zn) from the clone-probe hybridization matrix H. The probe set {Pa,P2,'",P,~} is chosen to form a non- 
overlapping subset of the clones. Clones are size-selected to have the same length. 

(a) 
P ~ j -  1 

ii 

c ,  

P ~ j  

I I 

(b) . . .  I 

P ~ j  

, I  
I 
! 

t 
c ,  

Pa-3+l 
[ I 

P7¢ eTr3 +1 

(c)  - - .  I' I I [ 
I 

I 
c i  

F i g u r e  2 The three possible types of clone-probe overlaps. (a) C, E N~. (b) C, E 0 7. (c) C, E B ; .  
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4 Evaluating the objective for a fixed permutation 

In this section, for a fixed 7r let us we write f ( x )  for f ( r ,  x), 
and define 

f~(x) := a~ r -- ~ b,~min{x,,e}. 
1<3 n + l  

Then 

= - ~ ln: , (~) .  f ( x )  
l<,<_m 

Below we show that f is convex in certain convex regions 
of/9,  so that a greedy procedure such as gradient descent 
will find the global minimum of f in such a region. We 
describe how we choose these regions of 79, and then explain 
how to find the direction of greatest decrease in f in such 
a constrained region for the gradient descent procedure. A 
very readable summary of the facts from optimization that 
we use is given by Lengauer [17]. 

4.1 Convexity 

Recall that a set C C 7~ '~ Is a convex set if for all points p 
and q in C and all 0 < A < 1, the point )~p+ (1-)~)q is in C 
A function h : C ~ T~ defined on a convex set C is a convex 
]unctton if for all points p and q in C and all 0 < )~ < 17 

h()tp + (1-X)q) <_ )~h(p) + (1 -~ )h (q ) .  

Informally, a convex function is bowl-shaped. 
Let us call a region C C 79 good if for all points x E C 

and all 1 _< 3 < n + 1, x 3 # ~, where xn+l is defined as in 
Theorem 1. The relevance of good regions is that they are 
the regions throughout which f ( x )  is differentiable. 

In a good region C consider all points x = p + s v  for s > 0, 
which is the ray traced by moving from point p E C in 
direction v = ( v l , . . . ,  vn). Along such a ray the derivative 
of f is well-defined and is equal to 

f ,(z)  l<,<m 

where 

= Z * , )  :.-,o('.+,)) 
1Sa<n 

and where u(-) denotes a unit step function at & 

1, x < ~ ;  
u(x) := a_, x = e ;  

O, x >g .  

Taking a second derivative along the ray yields 

d 2 
~s2f , (x  ) = O, 

so that 

( ds ~ f ( x )  = Z 1 i<,<~ ~ f,(x) >_ o. 

This implies that in every convex region C C_/) that is good, 
function f is convex 

A key property of convex functions is that a local min- 
imum of a convex function f in a convex set C is a global 
rn*n,mum of f on C [17]. Thus if we can divide l) into a 
small number of good convex regions, it suffices to apply in 
each region an algorithm that is only guaranteed to find a 
local minimum; the best of these local minima is the global 
minimum of f over the regions. 

Define 

'Dab : =  {X E :l) : axl  ~ ae, 

x, _< ~ for all 1 < t < n + l ,  and 

bx~+l <_ be}, 

and consider the four regions D+1+1, /)+1-1, /)-1+1, and 
/ ) -1-1.  These regions correspond to constraining all inte- 
rior distances between probes to be at most e, and then 
forcing the exterior distances xl and x,~+l to be on one side 
of L Each region is an intersection of halfspaces, and hence 
is a convex set. The interior of each is a good region, and 
for any ray originating in the interior we can make the ap- 
propriate choice for the derivative at the boundary so that 
the derivative along the ray is continuous throughout the 
region. Thus we can find the global minimum in each of 
these four regions by gradient descent as described below. 

This does not necessarily find the global minimum of f 
on /). However, notice that for our function f ,  if a spacing 
vector x is modified by trading distance between two com- 
ponents x, > g and xj > ~ in such a way that both remain 
at least g, tee value of f is unchanged. Suppose then that 
the global optimum x* over /) has x~ > ~ or x~+l > £, 
and x~ > £ for some other component. By shrinking x,* to g 
while stretching the larger of x~ or x* n+l~ w e  c a n  eventually 
transform x* into a point in one of the four regions without 
changing its value under f .  Thus the best of the minima of 
the four regions, call it ~', is not a global minimum over /) 
only if for all global minima x* over / ) ,  x~ < ~, x~+l < g, 
and in some other component x* > £. Shrinking x~ and 
stretching xl or xn+l as before shows that suboptimality 
of x" is due only to error in xl or x'n+l. However, as there 
are no linking clones by which to estimate xl and ~n+l, the 
hybridization data provides no direct information by which 
to reconstruct these two exterior distances, and their esti- 
mates should be regarded with suspicion in any reconstruc- 
tion. Thus, if the biologist interprets the output x" with the 
understanding that when ~, = t for some component, this 
distance may exceed * in the true map, and that ~l and x',~+l 
may be inaccurate, then reporting the global optimum x of 
the four regions is reasonable. 

4.2 Gradient descent 

The gra&ent of f at point p is the vector 

( 0 a f(p)), 
grad f (p )  := \~-~-xlf(p), 

' ~Xn  

where the kth component of the gradient is the par- 
tial derivative of f with respect to xk evaluated at 
p = ( p l , . . . , p n ) ,  

0 f ( p ) =  Z 1 (b~ku(pk) b ~ u(pn+l)) 
azk 

l<,<m 

where u(.) is the unit step function defined before and pn+l 
is defined in the same way as x,,+l. A basic fact in mul- 
tivariable calculus is that the direction of greatest decrease 
of f at p is v = -- grad f (p )  [17]. 
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The procedure known as gradient descent [23] starts from 
a point p, computes the negative gradient direction v at p, 
moves to the point p '  that minimizes f along the ray p +  sv, 
and repeats, stopping once a point is reached at which the 
gradient vanishes. In the unconstrained problem of mini- 
mizing f over R n, such a point is a local minimum, and 
since f IS convex, when gradient descent halts it has found 
a global minimum of the unconstrained problem. 

For the constrained problem, however, of minimizing / 
over a region C C 7~ '~, the negative gradient direction v at a 
point p on the boundary of g may be directed outside C, in 
which case we cannot move along v, yet another darection v '  
at p that is directed inside C may exist along which f de- 
creases, albeit at a slower rate. Let us call a direction v at a 
point p E C ]easzble if it is possible move along v from p and 
remain in C. In general, the feasible direction v of greatest 
decrease in f at a point p can be found as follows. 

The boundaries of a region C = :Dab are given by con- 
stramts that are hyperplanes. At point p E C, compute the 
negative gradient direction v = - g r a d  f (p ) ,  and determine 
which of the bounding hyperplanes are tight. Let the list of 
tight hyperplanes for which v points outside the halfspace 
given by the hyperplane be Ha, ..., Hk. Take v (°) = v, 
and successively project v (°) onto Ha to obtain v (I), then 
project v (I) onto H2 to obtain v (2), and so on. The vec- 
tor v ~k) resulting from the final projection onto Hk is the 
feasible direction of greatest decrease at p. If v (k) = 0, 
then p is a local minimum of f in C. 

Given the feasible direction v of greatest decrease, we 
compute the largest value t > 0 for which p + tv E C. 
As f is convex, the one-dimensional problem of minimizing f 
along p +  sv for s E [0,t] can be solved by a form of binary 
search known as bIseetzon [23]. 

This completes the description of our approach to evalu- 
ating g(Tr) Over each of the four regions 19+1+i, . . . ,  79-a-z, 
we compute a global minimum by constrained gradient de- 
scent using bisection, and take the best of the four minima. 
Computing the gradient at a given point takes time O(mn), 
which dominates the time to find the best feasible direction 
by successive projection, and is also the time to compute 
derivatives at each step during bisection. As reaching a lo- 
cal minimum can involve several gradient descent iterations, 
and each iteration can involve several bisection steps, the 
entire procedure is expensive. To find a good rr we use the 
local-search heuristic known as simulated annealing, call- 
ing the above procedure to evaluate g(rr) on each candidate 
probe order. 

5 Preliminary results 

We now present some very preliminary results with an 
implementation of this approach written by the second au- 
thor. 

In the first experiments we ran the implementation 
on simulated data. For our parameters we picked val- 
ues identical to those for chromosome VI of the fungus 
Aspergsllus nzdulans, which has been mapped using the 
sampling-without-replacement protocol [22]. This involved 
m = 1118 clones, n = 77 probes, a clone length of£ = 40 kb, 
and a chromosome length of L = 3500 kb, which corresponds 
to a coverage of nearly 13. A false positive and false neg- 
ative probability of p = 7/ = 0.2% were used, which are 
the estimated error rates for the mapping project. Clones 
were thrown at random across the chromosome with the uni- 
form distribution, a probe set of nonoverlapping clones was 

chosen, and the corresponding hybridization matrix H with 
false positives and false negatives was generated. 

We first tested how well the approach recovered the true 
spacing, which was known for the simulated data, by run- 
ning the constrained gradient descent procedure with the 
true probe order rr. This zs summarized m Table 1 for the 
gradient descent started from a completely uniform initial 
spacing, and an initial spacing obtained by a linear program- 
ming approximation (which will be described in the full pa- 
per). The hope was that a more sophisticated method for 
choosing an initial spacing would lead to faster convergence 
to a local minimum. As Table 1 shows, this was not the 
case. Staxting from a uniform spacing took fewer iterations 
of gradient descent, and fewer total bisection steps. It is 
interesting that  both approaches found a final spacing with 
better likelihood than the true spacing, which had a value 
of 6649.32. 

As a measure of the error between the true spacing 
and the computed spacings, we used the root-mean-square 
error (RMS). Interestingly, the linear programming spac- 
ing had greater initial error because the two exterior dis- 
tances xa and xn+a were not well-estimated from the hy- 
bridization data, and the uniform spacing happened to give 
better estimates for these exterior distances. The computa- 
tion time using either initial spacing was around 5 minutes 
on a Sun UltraSPARC 1 with a 167 MHz chip The final 
RMS error of 3.7 kb is roughly 9% of the clone length. 

Clearly there is a limit to the accuracy to which one 
can recover the true spacing from the discrete data of a hy- 
bridization matrix, which is essentially giving counts of hnk- 
ing clones. We can show that every method of recovering 
spacings must in the worst case have a root-mean-square er- 
ror of at least e = -~(L - g). For the above data, e ~ 6.2 kb. 
In comparison, the final error in Table 1 is around 60% of 
this worst-case lower bound. 

Next we tested how well the simulated annealing ap- 
proach combined with this procedure for evaluating f re- 
covered the true probe order. We started from an initial r 
obtained by a greedy heuristic for the Hamming-distance 
traveling salesman objective. This initial 7r had 6 break- 
points with respect to the true 7r, and an initial likelihood 
of 6728.45. After about 12 hours on the above machine the 
simulated annealing procedure halted with a final rr equal 
to the true order, with a final likelihood of 6470.52 

In the second experiments we ran the implementation on 
real mapping data from chromosome VI of Aspergzllus n~du- 
lans, which took around 12 hours on the above machine. 
The computed probe order had 36 breakpoints with respect 
to the published order [22], which was obtained using sim- 
ulated annealing on the Hamming-distance traveling sales- 
man objective [25]. While our computed order dearly had 
little in common with the published order, for this mapping 
data the true order is not known. 

6 Conclusion 

We have presented a new maximum-likelihood approach for 
reconstructing the distances between probes for physical 
maps constructed by hybridizing equal-sized clones against 
a nonoverlapping clone-subset. This protocol has been used 
to successfully map several organisms, and yields a model 
whose likelihood function is sufficiently simple to permit a 
dosed-form expression. The resulting formulation gives to 
our knowledge the first practical method for physical map- 
ping from hybridization data that can reconstruct globally- 
optimal maximum-likelihood distances along maps. 
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T a b l e  1 Recovering the spacing on da ta  simulating chromosome VI of Aspergillus nidulans. 

LP-based initial spacing Uniform initial spacing 
Bisection steps 185 177 
Gradient descent iterations 149 101 
Initial RMS error 6 65 kb 5.66 kb 
Final RMS error 3.78 kb 3 69 kb 
Final likelihood 6610.41 6610.53 

Further research Finding a provably optimal rr under 
the objective g(Tr) = min~ev f(Tr, x) appears formidable 
given that  f is nonlinear, while at tempting to find a 
good rr through simulated annealing started from a ran- 
dom :r appears slow given that  g(70 is expenmve to eval- 
uate. The following two-stage approach may be effective, 
however: 

(1) Use a combinatorial approach with guaranteed 
performance to find an imtiM ~ that  optimizes a 
simpler linear combinatorial objective ~'(r). 

(2) Polish ~ under the original nonhnear objective g 
by local search to obtain a final 7r* and spac- 
ing x*. 

For example, ~" could be the combinatorial 2-consecutive- 
ones objective of Christof and Kececioglu [8], wMch cor- 
responds to the same likelihood model but w~thout probe 
spacings. In fact, if ff is sufficiently accurate to recover an 
acceptable ~, one might use the original objective f to sim- 
ply recover the best spacing for ~ We suspect that  the 
full f is not needed to recover the true probe order in prac- 
tice, and that  the real utihty of our likefihood function f 
will be to infer probe spacings for probe orders computed 
by combinatorial methods. 

The numerical techniques we used to compute x* E 
argmin~e v f(Tr, x), namely gradient descent with bisection, 
are elementary, and it would be interesting to investigate 
whether convergence to x* can be sped up by more sophis- 
ticated numerical techniques. 

In taking fQr, x) as our objective, which is equivalent 
to maximizing p(Hlrr, x), not p(rr, x J H), we are impfic- 
itly assuming that  the a pmort probability density function 
on probe spacings, p(x), is uniform. Unfortunately, even 
when the distribution of the left ends of clones is uniform, 
the density function on probe spacings is not. I t  would be 
interesting to work out the a przom probe spacing density 
function under a natural  model of clone placement (which 
appears to be involved), and investigate whether its inclu- 
sion in the likelihood objective improves recovery of the true 
spacing. 

Finally, a significant source of error not considered in 
our model is repeated DNA. When the chromosome con- 
tains a repeat R that  happens to occur at the end of a 
probe P,  the probe will" have a false-positive hybridization 
with every clone that  does not overlap P but contains the 
same repeat R. Examination of the hybridization matrix for 
chromosome VI of Aspergzllus mdulans shows that  the false 
postures do not appear to occur completely independently 
across the matrix, but appear to occur more frequently in 
certain columns. This suggests that  repeats may be present. 
How to best incorporate repeats into the maximum likeli- 
hood objective is an interesting open problem, as it is not 
clear how to appropriately model both the number of repeat 
families and the number of copies in a family. 
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A Deriving the objective function 

In this appendix we derive the objective function f(rr, x) 
We first work out the probabili ty of each type of overlap 
event, conditioned on a given probe order r and probe spac- 
ing x 

To simplify the notation, 

:= 

:= 

Of : ~  

fl := 

k s  : ~  

~r 
X ,  3 :-.~- 

X U :'-~ 

G :---- 
g :---~ 

Then 

let 

1 - p ,  

1 - 7 ,  

~/P, 
~/-~, 

E hu, 
l~_3~_n 

n - -  k ~ ,  

hi'iT 3 , 

1 - -  h,.~, 
L - g, 
L - ng. 

* ~ is the probability of a true negative, 
* ~ is the probability of a true positive, 
• k, is the number of ones in row t, 
• k-, is the number of zeros in row ~, 
• G is the effective genome length, and 
• g is the total  gap length. 

Assuming the left ends of clones are uniformly dis- 
tr ibuted across the chromosome, it suffices to determine the 
length of the interval corresponding to Bf ,  0~ ,  and N~. 
Examining Figure 3, 

p(C, ~ N;  [ ~,x) = 

p(c, ~ B;  I ~,~) = 

(x 3 - min{x3,g})/G , 

(mm{xj, g} + min{x,+i, e } ) / a ,  

(e - mia{xj+ ,e})/a, 

where the first equation holds for 1 < 3 _< n + 1, the second • 
equation holds for 1 < 3 < n, and the third equation holds 
for 1_<3 < n .  

For a given clone C,, we cannot know which overlap event 
occurred, as we only observe the hybridization results of 
C, versus the probes given by row ~ of H (which contains 
errors). We can work out the probabthty of observing row ~, 
however, conditioned on r ,  x, and the occurrence of a given 
overlap event. 

Suppose event C, E N f  occurred, where 1 < 3 _< n + l .  
In the absence of errors, row ~ of H should contain all zeros. 
Hence the observed r o w ,  contains 
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, no true positives, 
, k, false pomtives, 
o k, true negatives, and 
, no false negatives. 

Thus 
p(H, I r, x,C, E N ; )  = pk,-fiL. 

Now suppose event C, E O~ r occurred, where 1 < ) -< n. 
In the absence of errors, row t of H should contain a one at 
column rr 2 and a zero everywhere else. Hence the observed 
row t contains 

* X,~ true positives, 
* k ,  - X,~ false positives, 
• k', - ~  true negatives, and 
• ~,~ false negatives. 

Thus 

p(H, [ ~r, x, C, E 0 ; )  = pk, -~r, o~x,; fl77,~. 

Finally, suppose event C, E B~ occurred, where 1 g I < 
n. In the absence of errors, row t of H should contain a one 
at column ~rj, a one at column 7rj÷~, and a zero everywhere 
else. Hence the observed row t contains 

• X,~ + X,~+l true positives, 
• k ,  - (X,~ + X,~+l ) false positives, 

- -  --Tr 
• k ,  - ( X , ~  + X,~,+1) true negatives, and 
• X',~ + ~,~+l f~se negatives. 

Thus 

p(H, I w, x, C, E B; )  = pk, -~, ax,5+x,5+~ fly5+¥5+~. 

Let the aggregate events N ~, O ~r, and B ~ be 

N~ := U N; ,  
l < a < n + l  

O" := U 0 ; ,  
1<~<,, 

B-:= UB; .  
l<_3<n 

Then since events N~, 07 ,  and B 7 are disjoint for all ), 

p(S,  [ lr, x, C, E N '~) 

= E p(H, [ r , x ,C ,  E Y ; )  p(C, E N ;  lit, x) 
l < 2 _ < n + l  

--pk,~g,(g__ E min{x~, '}) ,  
G 

p(H, I r, x, C, E 0 "~) 

= ~ p(H, I~, ~, c, e o ; )  p(c,  e o ;  I,~, ~) 
l<_a<_n 
p k , -~'k , ~" --~ 

-- G E ax'~ flx'~(min{x2'£} + min{x¢+l'~}) ' 
l <_a <,~ 

p(H, I ~r, x, C, E B '~) 

= y ~  ~(H, I . ,  ~, c,  e B;)  v(c,  e B;  I . ,  ~) 
l_<3<n  

G E a x"  +x"+~ flxT" +Y:'+x ( f  - min{x'+~ ' f})" 
~ < ¢ < n  

Finally, since the sample space for C, 
~r and x is the disjoint union of N ~r, 0 n, and B ", 

p(H, I ,~, ~) = p(H, I ~, ~, C, ~ N' )  + 
1,(I-1, I ~, ~:, c,  ~ o ' )  + 
p(H, [ r, ~, C, E B") 

conditioned on 

= c ' (  a~' - E b'~min{x3'£}) ' 
l__.j<n+l 

where 

a, :=  g + e d,~d,3_t, (2) 
l < 3 < n  

b,~ := ( 1 - d ~ ) ( 1 - d , ~ _ l )  , (3) 

c, := d ' ~ ' / G ,  (4) 

ax,Sfl-£,;, l < 3 < n ;  
d,~ :=  0, otherwise. (5) 

For a given probe order rr, finding a spacing vector x that 
maximizes p(H I r, x) is equivalent to computing 

argmax lnp(H [ rr, x) 
xE 'D 

= argmin - l n p ( H  [ r ,x )  
x E ~  

= a r g m i n - l n  ] - [  p ( H , [ r ,  X)  

xE2~ 1 _<* <:rn ~ 

= argmin - lnp(H, I~,~) 
xfiT) l _ < t < m  

= argminx~v - E (ln c, + 
l<_,_<m 

In (  a'~ - E b ,~min{x~, t} ) )  
l<3<n+l 

= a r g m i n -  E l n @ ~ -  E b,'~ min{x3,~}). 
xE 'D a_<,_<m l<j< .+l  

The right-hand side is our objective function for ,  x). 
Note that the coefficients a, ~ and b,~ depend only on 

7r and H, and are constants with respect to the x~. 
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