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Reconstructing distances in physical maps
of chromosomes with nonoverlapping probes

John Kececioglu*

Abstract

We present a new method for reconstructing the distances
between probes in physical maps of chromosomes con-
structed by hybridizing pairs of clones under the so-called
samphng-without-replacement protocol. In this protocol,
which is sitmple, inexpensive, and has been used to suc-
cessfully map several organisms, equal-length clones are hy-
bridized against a clone-subset called the probes. The probes
are chosen by a sequential process that is designed to gen-
erate a pairwise-nonoverlapping subset of the clones. We
derive a likehhood function on probe spacings and orders
for this protocol under a natural model of hybridization er-
ror, and describe how to reconstruct the most Itkely spacing
for a given order under this objective using continucus op-
timization. The approach is tested on simulated data and
real data from chromosome VI of Aspergillus nidulans. On
simulated data we tecover the true order and close to the
irue spacing; on the real data, for which the true order and
spacing is unknown, we recover a probe order differing sig-
nificantly from the published one. To cur knowledge this is
the first practical approach for computing a globally-optimal
maximum-likelihood reconstruction of interprobe distances
from clone-probe hybridization data.

Keywords Computational biology, physical mappmg of
chromosomes, sampling without replacement protocol, max-
imum likelihood, convex optimization

1 Introduction

Physical mapping mn molecular biology is the task of re-
constructing the order and location of features of holog-
ical interest along a chromeosome. The features may be
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sites at which restriction enzymes cut, so-called sequence-
tagged sites thai are identified by short, uniquely-occurring
sequences, or positions of clones that contain fragments of
the chromosome. There is a diverse array of approaches for
constructing maps of such features depending on the type
of data that is collected, including mapping by nonunique
probes {2, 18], mapping by unique probes [1, 11, 12], map-
ping by unique endprobes [7], mapping by nonoverlap-
ping probes [8], mapping from restriction-fragment length
data {10, 13], radiation-hybrid mapping [24, 5], and optical
mappmg [21, 14, 16]; there are many probabilistic analy-
ses of various approaches [15, 4, 28, 27, 26]; and a wide
variety of computational techniques have been employed or
suggested, including greedy algorithms [18], simulated an-
nealing [20, 25, 2, 1], linear programming [7, 12, 8], and
semidefinite programming {6]

In this paper we develop a maximum-likelihood approach
for a type of physical mapping known as the sampling-
without-replacement protocol. The protocol is inexpen-
sive, simple to carry out in the lab, and uses widely-
available technology Organisms that have been mapped
with this techunique include Schizesaccharomyces pombe {19],
Aspergillus mdulans [22], and Pneumocystis carmu [3],
mapping projects in progress using the technique include
Neurospora crassa and Aspergillus flavus

In the protocol, a library £ consisting of many overlap-
ping clones that each sample a fragment of the chromosome
is developed. Clones in L are size-selected to have a target
length, and are arrayed on a plate. A subset of the clones
called the probe set P is then obtained by the following se-
quential process Imitially, P = @ and & = £. At the :th
iteration of the process, choose a clone F, from § at vandom,
remove P, from S, and add it to P. Hybridize P, against
all the clones in the library by extracting complementary
DNA from both of its ends and washing the DNA over the
arrayed plate, recording all clones in the library to which the
DNA sticks. Remove from & all clones in the hbrary that
have a positive hybridization result with. P,. Then repeat
this process for the next iteration, stopping once & becomes
empty.

We call the final set P the probe s¢f, and theset C = L-P
the clone set. The results of the experiments are summanzed
in a probe-clone hybridization matrix H that records the
outcomes of all hybridizations between the probes in P and
the clones in C

Notice that if a clone C, € C overlaps with a probe P, €
P 1n the chromosome, it must overlap with one of the ends
of P,, as all probes and clones are of the same length. Such
an overlap corresponds to a portion of DNA that is in com-
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mon between the clone and the end of the probe. In the ab-
sence of error, the complementary DNA from the end of P,
will stick to C., and the hybridization test of P; versus C.
will ke a positive result; thus clone €, will be removed from
set § at the jth iteration. This implies that in the absence
of error the probe set P is a maximal nonoverlapping subset
of the library

Suppose that in hybridization matrix H enough of the
clone-probe overlap structure 1s represented that we can re-
cover the order of the probes P across the chromosome.
Then for every consecutive pair of prabes P and @ in this or-
der, we can examine H for the presence of a linking clone C
that overlaps with both £ and @. The probe set P together
with a linking clone for every consecutive pair forms a mini-
mal set of clones that cover the chromosome. A map giving
the order of the probes across the chromosome 1s then very
useful, since by individually sequencing just the probes and
linking clones and overlapping the sequences in the order
given by the map, we can reconstruct the DNA sequence of
the chromosome.

In reality, hybridization tests do net perfectly record the
overlap structure of probes and clones. Hybridization re-
sults contam random false positives and false negatives. A
probe can also hybridize to a nonoverlapping clone due to
repeated DNA in the chromosome. In general, clones can
be chimeric, which means they sample two or more frag-
ments of the chromosome, and can contain deletions, which
happens when portions of the DNA get spliced out during
cloning. In the mapping projects using this protecol at the
TUniversity of Georgia, however, clones are produced by cos-
mids, which are small encugh that chimerism and deletions
are nol a significant problem. In our treatment we model
false positives and false negatives, but not chimerism, dele-
tions, or repeats. Hence false hybridizations due to repeats
are treated as a series of isolated false positives.

Related work Prior work on mapping by the sampling-
without-replacement protocol, by Cuticchia, Arnold and
Timberlake [9], Wang, Prade, Griffith, Tumberlake and
Arnold {25], and Mott, Grigoriev, Maier, Hoheisel and
Lehrach [20], has largely nsed local-search heuristics such as
simulated annealing to try to find a probe order that mn-
imizes the Hamming-distance traveling-salesman objective.
While minimizing this objective is not known to optimize
any natural measure of the goodness of a map, Xiong, Chen,
Prade, Wang, Griffith, Timberlake and Arnold [27] have
shown that under certain assumptions on the distribution
of clones, the Hammng-distance objective is statistically
consistent; this means that as the number of clones goes
to infimty, an exact algonthm for the Hamming-distance
travehng salesman problem would recover the correct probe
order with probability one.

Christof and Kececioglu {8] recently showed that the
problem of computing a maximum-likehood probe order
the sampling-without-replacement protocol in the presence
of false-positive and -negative hybndization error can be re-
duced to the problem of finding the minimum number of
ones to charge to zerves in hybridization matrix H so that
the resuliing matrix H’ has at most 2 ones per row and
the consecutive-ones property on rews. They then showed
how to formulate this problem as an integer huear program,
and developed a branch-and-cut algorithm for computing
an optimal maximum-likelihood probe order. Using this ap-
proach, they were able to compute optimal probe orders for
realistic-sized instances on simulated data, and probe or-
ders with sigmificantly fewer false positives on real data than
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the best-possible map obtainable by a Hamming-distance
traveling-salesman approach In this paper we complement
the work in [8] by developing a practical method for comput-
ing a globally-optimal maximum-likelihood reconstruction
of the interprobe distances, given a probe order.

Plan of the paper In the next section we give a maxi-
mum likelihood formulation of the problem of mapping by
the samphng-without-replacement protocol in the presence
of false positive and false negative error, which we call Map-
ping by Nonowerlapping Probes. The problem is unique in
that the goal is to reconstruct the most likely order and spac-
mg of probes along the map from the hybridization data.
Section 3 then derives the liketihood function on probe or-
ders and spacings for this formulation, which has a remark-
ably simple closed form. Section 4 explains how we tackle
the maximization of this function for a fixed probe order
using continuous optimization. Section 5 presents results
of some experiments with a preliminary implementation of
this approach. We then conclude with several directions for
Turther research.

2 The problem

In cur maxymum hkelihood formulation we do not model
the sequential process of choosing the probes, and hence
we operate under the assumption that the probes form a
nonoverlapping set. We wnte (P, ..., P} for the set of
n probes, {C1, ..., Cm) for the set of m clones, and we
formulate the problem as follows

The task is to recover the probe order ¥ = (71 73 --- mn)
and the probe spacing £ = (%1 %2 -+ %n)} as dlustrated in
Figure 1, given the m x n clone-probe hybndization ma-
trix H containing false positive and false negative errors.
Permutation = gives the names ol the probes in lelt-to-right
order across the chromosome. Vector r gives the distance
beween consecutive probes, where component z, is the dis-
tance between the left end of PnJ and the right end of Pr .
Matnx H = (k) 15 a 0-1 matrix, with

{

We assume that all clones are the same length, that the
probes are nonoverlapping, and that we know

1, P, hybridizes to C,;
0, otherwise.

hey

e [, the length ol the chromosome,
e {, the length of a clone,

¢ p, the probablility that an entry of H has been
corrupted into a false positive, and

s 7, the probability that an entry of H is a false neg-
ative.

As stated, this is not a well-posed problem. In the
presence of false positives and negatives, any permuta-
tion = of {1, . ,n} and any positive vector z for which

1<scn B1 X L —n{ are an explanation of the data. To ob-

tain a well-defined problem, we invoke the principle of maxi-
mum likelihood, which says that the best reconstructed map
is that = and x that are most likely to have given rise to H.
If we write p(x, z | H) for the probability that = and z are
the true order and spacing given the observed matrix H,
a mazmuri likethood reconstruction is a par (x%,2”) that
maximizes p(x,x | H). We take the following as our defini-
tion of the problem.



Definition 1 (Mapping by Nonoverlapping Probes)
The Mapping by Noncverlapping Probes Problem is the fol-
lowing. The wput is the clone-probe hybridization ma-
trix H, the chromosome length L, the clone length £, the
false positive probability p, and the false negative proba-
bility # The output is a probe order and probe spacing
pair {w,z) that maximize p(%,z | H) under the assumption
that the probes are a collection of nonoverlappmng clones, all
clones are of equal length, that the left ends of clones are
uniformly distributed across the chromoseme, and that the
entries of H have been independently corrupted with false
positive probability p and false negative probability 4. O

We can derive the function p(r,z | ) using Bayes’ the-
orem:

p(H | 7, z) p(m, z)
p{ ) ’

In this equation, p(H | 7, z) is the probability of observ-
ing A given that 7 and z arc the true order and spac-
ing, p(r,z) is the probability that # and = occur in na-
ture, and p(H) is the probability of observing H.' Since
p(H) =3~ [~p(H | 7,7) p(%,7)d7, the denominator is a
constant mdependent of 7 and z and can be ignored. Since
the names given to probes and the spaces belween probes
are independent, p(m,z)} = p(r)p(z). Since names are as-
signed to probes completely randomly, p(7) = 1/n!, which
is mndependent of = and can also be ignored. Thus the only
relevant quantities are p(H | 7, z) and p(z).

If the probability density function p(z) on probe spac-
ings is uniform, this factor can be i1gnored as well. For the
model considered below, we do not yet know the density
function p(z), but 1t does not appear to be uniform. We
concenirate instead on deriving the function p(H | =, z),
and take maximizing it as our objective. This will differ
from traly maximizing p(x, z | H) according to the bias due
to p{z).

We next denive function p(H | m,z) uander the sim-
plest process by which H can be generated from # and =
with false positives and negatives. This process has three
stages:

p(m z | H)

{1} each clone is thrown down uniformly and inde-
pendently across the chromosome,

{2} for the row of the hybridization matrix corre-
sponding to a given clone, the probes that a clone
overlaps get a one in their column, and zeros are

placed everywhere else, and

{(3) the ones and zeros are corrupted randomly and
independently with probability n and p respec-

tively.

3 The objective function

To derive p(H | 7, z) under this model, notice that each row
of H is independent of the cther rows, since each clone is
thrown down independently and each entry 1s independently
corrupled. Writing H, for the ith row of H then, it suffices

'Since 7 and # are values taken on by underlying random
varables IT and X, when we write p(x,z) this 15 shorthand
for p(f1 = #, X = v) Furthermore, since 7 13 a discrete variable while
¥ 18 a continuous vanable, when we wnite p(wr, #) this 1s the joint prob-
abihity density function of a discrete and a confmuous random vanable
evaluated at 7 and ¢
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to work out p(H, | =, z}, since

plH|=x2) = H p(H, | =, 5).

1<:<m

To derive p(H, | m,z}, notice that in the absence of error
there are only three possible types of overlaps that can oceur
with a given clone C, as illustrated in Figure 2:

(1) Clone C, overlaps with no probe. If the left end
of clone C, falls between the left ends of probes
Fr,_, and P,TJ but C, overlaps with nesther Py,
ner Pr,_,, we write C, € NJﬂ {(H C, falls to the
left of P-, but does not ovetlap with it, we write
C, € NT, and if C, falls to the right of P, bui

does not overlap with it, we write C, € N7, )

(2)

Clone C, overlaps with exactly one probe. If it
overlaps with only probe P , we write C, € 07

(3) Clone C, overlaps with exactly two probes. If
it overlaps with both probe Pr, and Pr ,,, we
write C, € B].

In Appendix A, we derive p(H. | =, ¢} by summing over
the disjoint events C, € N, G, € O7, and C, € B]. For
here, note that the domain & of the probe crder permuta-
tion 7 is the set of all permutations on {1,.-.,n}, and the
domain P C R"™ of the spacing vector r is the set

D

{(zl,---,mn)e’}l" : each z, > 0, and

(1)

We summartize the derivation in the following theorem.

Theorem 1 {Objective function) For hybridization ma-
trix Hylet f:8 xR™ — R be

-3 m(azf - ¥ o min{z,,z}),

1Le<m 1<3En+1

f(m, )

where the coefficients a] and b], are given by Equations
(2) through (5) in the Appendix, and we define

Fppr = L — nl — Z E,.

1<ign

Then for a fixed probe order =,

argmax p(H |, x) argmin f(=,z),
z€D ZED

where D is given by Equation (1). a
In other words, if we can evalnate the following objective
function on permutations,

T min f{T,z

g(w) mi f(z. z),

{(and recover the minimizing « for a given ), we can reduce
the continuons problem of maximizing p(H | 7, z) to a dis-
crete search for a permntation that minimizes g(r}.? We
now describe how we tackle the evaluation of g(x).

?Note that this does not solve the problem of finding a pair (%, z)
that maximizes p{r, & | H) the objective f{m, &) 1s nissing a term
of —Inp(r), as we do not know the density function p(xz)
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Pﬂ‘l Pﬂ’: Pﬂ'n-l P"'n
Figure 1 The problem is to reconstruct the probe order permutation = = (xy mz --- 7») and the probe spacing vector z =
(1 Z2 -+ 2n) from the clone-probe hybridization matrix H. The probe set {Py, Py, -+, Pn} is chosen to form a non-

overlapping subset of the clones. Clones are size-selected to have the same length.
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(b) e e
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Figure 2 The three possible types of clone-probe overlaps. (a) C. € NJ. (b) C, € OF. (c) C, € B].
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4 Evaluating the objective for a fixed permutation

In this section, for a fixed = let us we write f(z) for f(r,z),
and define

fi(z)

_ L4
= .

a

Z by, min{z,, £}.

1<3En+1

Then

=)

- Z In fi{z).

1<i<m

Below we show that f is convex in certain convex regions
of D, so that a greedy procedure such as gradient descent
will find the global mnimum of f in such a region. We
describe how we choose these regions of D, and then explam
how to find the direction of greatest decrease in f in such
a constrammed region for the gradient descent procedure. A
very readable summary of the facts from optimization that
we use is given by Lengauer [17].

4.1 Convexity

Recall that a set € € R"™ 1s a conver set if for all points p
and g in € and all 0 < A <1, the point Ap+(1-N)gisin C
A function & : C — R defined on a convex set € is a convex
functionif for all points pand ginCand al 0 <A L1,

k(A2 + (1-A)q) Ah(p) + (1-A) k(q).

Informally, a convex function is bowl-shaped.

Let us call a region € C P good if for all points = € C
and all 1 < 7 <n+41, x, # £ where £,,41 is defined as in
Theorem 1. The relevance of good regions is that they are
the regions throughout which f(x) is differentiable.

In a good region C consider all points x = p+svfors > 0,
which is the ray traced by moving from peoint p € C in
direction v = (v1,...,va}. Along such a ray the derivative
of fis well-defined and is equal to

<

d
—f(z) = f-( ),
ds 1; f.(z) ds
where
d
@) = 3 o (8 ula,) - B wlznn)),
1<<n

and where u(-} denotes a unit step function at &

1, <4
w(z) = L, z=4
0, z>¢£

Taking a second derivative along the ray yields
dZ
&;f-(z)

so that

>

d2

Z (f(a:) daf'( ))

1<i<m

This implies that in every convex region C C D that is good,
function f is convex

187

A key property of convex functions is that a local mm-
imnm of a convex function f in a convex set C is a global
mimmum of f on € {17}). Thus if we can divide P into a
small number of good convex regions, it suffices to apply in
each region an algonthm that is only guaranteed to find a
local minimum; the best of these local minima is the global
minimum of f over the regions.

Define

Dap {IGD tar < af,
g, <f€forall 1l <z<n+l, and
bnga Sbﬁ},

and consider the four regions D414y, Pya—1, Pory1, and
D_i1-1. These regions correspond to constraining all inte-
rior distances between probes to be at most ¢, and then
forcing the exterior distances z; and zn41 to be on one side
of £. Each region is an intersection of halfspaces, and hence
is a convex set. The interior of each is a good region, and
for any ray originating in the interior we can make the ap-
propriate choice for the derivative at the boundary so that
the derivative along the ray is continuous throughout the
region. Thus we can find the global minimum in each of
these four regions by gradient descent as described below.

This does not necessarily find the global minimum of f
on D. However, notice that for our function f, if a spacing
vector ¢ is modified by trading distance between two com-
penents z, > £ and z, > € in such a way that both remain
at least £, the value of f is unchanged. Suppose then that
the global optimum z" over D has 7 > £ or zn4; > 4,
and z} > { for some other component. By shrinking z) to £
while stretching the larger of z7 or 7741, we can eventually
transform =* into a point in one of the four regions without
changing its value under f. Thus the best of the minima of
the four regions, call it %, is not a glebal minimum over P
only if for all global minima z* over P, =z} < £, :cf,_,,l < £,
and in some other component x; > £. Shrinking z; and
stretchmg £ OI %h41 as before shows that suboptimality
of T is due only to error in T, of Tp4i. However, as there
are no linking clones by which to estimate T, and T,q.1, the
hybridization data provides no direct information by which
to reconstruct these two exterior distances, and their esti-
mates should be regarded with suspicion in any reconstruc-
tion. Thus, if the biclogist interprets the output 7 with the
understanding that when ¥, = £ for some component, this
distance may exceed £ in the trie map, and that 2, and 7,41
may be inaccurate, then reporting the global optimum 7 of
the four regions is reasonable.

4.2 Gradient descent
The gradient of f at point p s the vector

grad f(p) = (Gt s 5ol ),

where the kth component of the gradiemt is the par-
tial derivative of f with respect to =zx evaluated at

Pp= (Pl:---:Pn),

Z }z(ij(b:rk u(Pr) — brntt '“(PHH)):

1<i<m

azkf(p)

where u(-} is the unit step function defined before and pny:
is defined in the same way as %,4:. A basic fact in mul-
tivariable calculus is that the direction of greatest decrease
of f at pis v = — grad f{p} [17].



"The procedure known as gradient descent [23] starts from
a point p, computes the negative gradient direction v at p,
moves to the point p’ that minimizes f along the ray p+sv,
and repeats, stopping once a point is reached at which the
gradient vanishes. In the unconsirained problem of mini-
mizing f over R”, such a pomt is a local minimum, and
since J 15 convex, when gradient descent halts it has found
a global minimum of the unconstrained problem.

For the constrained problem, however, of minimizing f
over a region € C R", the negative gradient direction v at a
point p on the boundary of C may be directed outside C, m
which case we cannot move along v, yet another direction v’
at p that is directed inside C may exist along which f de-
creases, albeil at a slower rate. Let us call a direction v at a
point p € C feasible if it is possible move along v from p and
remain in C. In general, the feasible direction v of greatest
decrease in f at a point p can be found as follows.

The boundaries of a region ¢ = Dgp are given by con-
straints that are hyperplanes. At point p € C, compute the
negative gradient direction v = — grad f(p), and determine
which of the bounding hyperplanes are tight. Let the hst of
tight hyperplanes for which v points outside the halfspace
given by the hyperplane be Hi, ..., Hi. Take v(® = v,
and successively project v(® onto H; to obtain v{!), then
project v\!) onto Hj to obtain vi?), and so on. The vec-
tor vi¥ resulting from the final projection onto i is the
feasible direction of greatest decrease at p. I vi® = o,
then p is a local minimum of f in C.

Given the feasible direction v of greatest decrease, we
compute the largest value { > 0 for which p + tv € C.
As [ is convex, the one-dunensional problem of minimizing f
along p + sv for s € [0,1] can be sclved by a form of binary
search known as bisectson [23].

‘This completes the description of cur approach to evalu-
ating g{n) Over each of the four regions Dy141,..., Poiy,
we compute a global minimum by constrained gradient de-
scent using bisection, and take the best of the four minima.
Computing the gradient at a given pomnt takes time &(mn},
which dominates the time to find the best feasible direction
by successive projection, and is also the fame o compute
derivatives at each step during bisection. As reaching a lo-
cal minimum can involve several gradient descent iterations,
and each iteration can involve several bisection steps, the
entire procedure i1s expensive. To find a good * we use the
local-search heuristic known as simulated annealing, call-
ing the above procedure to evaluate g{wx) on each candidale
probe order.

5 Preliminary results

We now present some very preliminary results with an
implementation of this approach written by the second au-
thor.

In the first experiments we ran the implementation
on simulated data. For our parameters we picked wval
ues identical to these for chromosome VI of the fungus
Aspergalius nidulans, which has been mapped using the
sampling-without-replacement protocol [22]. This involved
m = 1118 ciones, n = 77 probes, a clone lengih of £ = 40 kb,
and a chromosome length of L = 3500 kb, which corresponds
to a coverage of nearly 13. A false positive and false neg-
ative probability of p = % = 0.2% were used, which are
the estimated error rates for the mapping project. Clones
were thrown at random across the chromosome with the uni-
form distribution, a probe set of nonoverlapping clones was
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chosen, and the corresponding hybridization matrix H with
false positives and false negatives was generated.

We first tested how well the approach recovered the true
spacing, which was known for the simulated data, by rn-
ning the constrained gradient descent procedure with the
true probe order . This 1s summarized 1 Table 1 for the
gradient descent started from a completely uniform initial
spacing, and an initial spacing obtained by alinear program-
ming approximation (which will be described in the full pa-
per). The hope was that a more sophisticated method for
choosing an initial spacing would lead 1o faster convergence
to a local minimum. As Table 1 shows, this was not the
case. Starting from a nniform spacing took fewer iterations
of gradient descent, and fewer total bisection steps. It is
interesting that both approaches found a final spacing with
better likelihood than the true spacing, which had a value
of 6649.32.

As a measure of the error between the true spacing
and the computed spacings, we used the root-mean-square
error (RMS). Interestingly, the linear programming spac-
ing had greater initial error because the two exterior dis-
tances z3 and Zn41 were not well-estimated from the hy-
bridization data, and the uniform spacing happened to give
better estimates for these extenor distances. The compuia-
tion time using either initial spacing was around 5 minutes
on a Son UlraSPARC 1 with a 167 MHz chip The final
RMS error of 3.7 kb is roughly 9% of the clone length.

Clearly there is a limit to the accuracy to which one
can recover the true spacing from the discrete data of a hy-
bridization matrix, which is essentially giving counts of hnk-
ing clones. We can show that every method of recovering
spacings must in the worst case have a root-mean-square er-
ror of at least ¢ = £ (L — £). For the above data, € & 6.2 kb.
In comparison, the final error in Table 1 is around 60% of
this worst-case lower bound.

Next we tested how well the simulated annealing ap-
proach combmed with this procedure for evaluating f re-
covered the true probe order. We started from an initial =
obtained by a greedy heunstic for the Hamming-distance
traveling salesman objective. This imtial # had 6 break-
points with respect to the true «, and an initial likelihood
of 6728.45. After about 12 hours on the above machine the
simulated annealing procedure halted with a final = equal
to the true order, with a final likelthood of 6470.52

In the second experiments we ran the implementation on
real mapping data from chromosome VI of Aspergilius nidu-
lans, which took around 12 hours on the above machine.
The computed probe order had 36 breakpoints with respect
io the published order {22], whick was obtained using sim-
ulated annealing on the Hamming-distance traveling sales-
man objective [25]. While our computed order clearly had
titile in common with the published order, for this mapping
data the true order 1s not known.

6 Conclusion

We have presented a new maximum-likelihood approach for
reconstructing the distances between probes for physical
maps constructed by hybridizing equal-sized clones against
a nonoverlapping clone-subset. This protocol has been used
to successfully map several organisms, and yields a model
whose likelihood function is sufficiently simple to permit a
closed-form expression. The resulting formulation gives to
our knowledge the first practical methed for physical map-
ping from hybridization data that can reconstruct globally-
optimal maximum-likelihood distances along maps.



Table 1 Recovering the spacing on data simulating chromosome VI of Aspergilius nidulans.

LP-based initial spacing

Uniform initial spacing

Bisection steps 185 177

Gradient descent iterations 149 101

Initial RMS error 6865 kb 5.66 kb

Final RMS error 3.78 kb 369 kb

Final likelihood 6610.41 6610.53
References

Further research Finding a provably optimal 7 under
the objective g{(r) = minzep f(7,z) appears formidable
given that f is nonlinear, while attempting to find a
good 7 through simulated annealing started from a ran-
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however:
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{2) Polish T under the original nonhncar objective g
by local search to obtain a final =* and spac-
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For example, g could be the combinatorial 2-consecutive-
ones objective of Christof and Kececiogln [8], which cor-
responds to the same likelihood model but without probe
spacings. In fact, i ¢ is sufficiently accurate to recover an
acceptable 7, one might use the original objective f to sim-
ply recover the besi spacing for T We suspect that the
full f is not needed to recover the true probe order in prac-
tice, and that the real utihty of our likelihood function f
will be 16 infer probe spacings for probe orders computed
by combinatonal methods.

The numerical itechniques we used to compute z* €
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whether convergence to 2" can be sped up by more sophis-
ticated numerical technigues.
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itly assuming that the a prior: probability density function
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function under a natural model of clone placement (which
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spacing.

Finally, a significant source of error not considered in
our model is repeated DNA. When the chromosome con-
tains a repeat R that happens to occur at the end of a
probe P, the probe wilk have a false-positive hybridization
with every clone that does not overlap P but contains the
same repeat . Examination of the hybridization matrix for
chromosome VI of Aspergilius nidulans shows that the false
posttives do not appear to occur completely independently
across the matrix, but appear to occur more frequently in
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A Deriving the objective function

In this appendix we derive the objective function f(x,z)
We first work out the probability of each type of overlap
event, conditioned on a given probe order = and probe spac-
ing =

To simphiy the notation, let

° 1-—0p
7= 1-u,
o« = 7/p,
g = ufp
ko= Yk,
1<7€n

E n—k,

Xy = hey,

f:; = 1 - hmj,
G = L—1{,
g = L-nt

Then
# 7 is the probability of a true negative,

e 7 is the probability of a true positive,
¢ L, is the number of cnes in row z,

¢ k, is the number of zeros in row 1,

¢ (G is ihe effective genome length, and
® g is the total gap length.

Assuming the left ends of clones are uniformly dis-
tributed across the chromosome, it suffices to determine the
length of the interval correspondmg te B, OF, and NJ.
Examining Figure 3,

p(C. e NJ | =, %)
p(C €07 |, z)
p(C. € B] | 7,z)

(a:, - mm{rJ,E})/G,
(mm{z],é] + mln{rj+1,€})/G,
(¢ — min{z,41,£})/C,

where the first equation holds for 1 < j < n 41, the second
equation holds for 1 € 3 €< », and the third equation holds
for} <3< m.

For a giver clone C,, we cannot know which overlap event
occurred, as we only observe the hybridization results of
C, versus the probes given by row 1 of H (which contains
errors). We can work out the probability of observing row 1,
however, conditioned on 7, z, and the occurrence of a given
overlap event.

Suppose event C, € N occurred, where 1 < 3 < n--1.
In the absence of errors, row 1 of H should contain all zeros.
Hence the observed row z contains
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Figure 3 Lengths of regions corresponding to events (a) N7, (b) OF, and (¢} 7.



¢ no true positives,
¢ k, false positaves,

s k, true negatives, and
+ no false negatives.

Thus _
p(H |\ 7,2,C € NI) = o 5.

Now suppose event C, € O] occurred, where 1 < j < n.
In the absence of errors, row ¢ of i should contain a one at
column 7, and a zero everywhere else. Hence the observed
row 1 contains

* X7, true positives,

¢ k, — x7, false positives,

.k, —fg true negatives, and

» X, false negatives.

Thus
p(H, | 7,2,C. €07) = o~ e o G,

Finally, suppose event C, € B} occurred, where 1 <3 <
n. In the absence of errors, row : of H should contain a one
at column 7, a one at column 7,41, and a zero everywhere
else. Hence the observed row 1 contains

e X7, + X141 true positives, -

. E‘ — {x1; + x1;41) false positives,
o ki~ (T; +Xry41) true negatives, and
¢ X, +Y,4 false megatives.

Thus
p(H, | =,2,C € By} = o ,'D‘E' XX ﬁYrJ+Y:}+1_

Let the aggregate events N7, 0", and B™ be

L ™
N = U N7,
1<7<n+1
w ™
ot = U o7,
1<z<n
L ™
B" = ] B
1<r<n

Then since events N7, OF, and B are disjoint for all j,
p(H‘l I 1|',.’E,C, E N’r)
= Y sl \7,2,C € N])p(C. € N] | 7,2)

1<r€n+1
kl El

= pG? (g— Z min{x,,f}), /

1< <nt1
p(H, |7, 2,C €0")

= 3 plH,|72,C €0]) p(C, € O | m,2)

1518

k, =k, —
= £ G’,’ Z v 3% (min{x},é’} + min{z,.n,f}),
1<1<n
p(H, |7, z,C € BT)
= > p(H|75,C €B})p(C € B |n,2)
153<n
k, =k,

PP * L] T T R
= 5 Z XXt gXaHR 4 (f_mm{xﬁ_l)f})_

1j<n

Finally, since the sample space for C, conditioned on
7 and 7 is the disjoint union of N7, 07, and B™,

p(H: |7, 2) = p(H |75, CENT) +
P(H' r,2,C\ € O”) +
p(Hl | 77,1:,0, E Bﬂ.)
= G (af - Z by, min{x,,t’}),
1< <n+1
where
a; = g+ ¢ Z dy, dfy_q, (2)
1<3€n

by, = (1-d;)(1-4d}-1), {3)
e = o7 /G, (4)
I By LI B R
diy = { 0, otherwise. (5)

For a given probe order 7, finding a spacing vector z that
maximizes p(H | r, ) is equivalent to computing

argmax lnp(H | 7, x)
z€D
= argmin ~Inp(H | 7, 1)
zCD

= argmin —In p(H, |7,z
x€D H ( .' )

1<i<m
= argmin — Z Inp(H, | =, z)
€D
1<i<m
= argmin — Z (ln ¢ +
D
1<igm
in(af' - Z by, min{:tj,f}))
1<r<n+1
= argmin ~ Z ]n(af - Z by, min{:c,,f}).
zED
1<1<m 1<3<n+1

The right-hand side is our objective function f(rx, ).
Note that the coefficients af and b, depend only on
= and H, and are constants with respect to the z,.
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