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Abstract 

Database  search in tandem mass spectrometry is a power- 
ful tool for protein identification. High-throughput  spec- 
tral  acquisition raises the problem of dealing with genetic 
variation and pept lde modifications within a populat ion of 
related proteins. A method that  cross-correlates and clus- 
ters related spectra  in large collections of uncharacterized 
spectra  (i.e from normal and dmeased individuals) would 
be extremely valuable in functional proteomms. This prob- 
lem is far from being simple since very similar pept ides  may 
have very different spectra. We introduce a new norton of 
spectral similarity tha t  allows one to identify related spectra  
even ff the corresponding peptldes have mult iple modifica- 
t ions/mutat ions.  Based on this notion we developed a new 
algorxthm for mutatmn-tolerant  database search as well as 
a method for cross-correlating related uncharacterized spec- 
tra. The paper  describes this new approach and Its applica- 
tions m functional proteomlcs. 

1 Introduction 

Tandem mass spectrometry (MS/MS) is a widespread meth- 
od for identifying and analyzing proteins. At  the first stage 
of MS/MS parent peptldes (formed by enzymatic cleavages 
at specific sites along the backbone of a protein) are in- 
t roduced to a mass spectrometer and ionized so that  their 
mass/charge ratms may be measured At  the second stage of 
MS/MS indwidual  pept ide ions may be selectively isolated 
and further fragmented to provide informatmn about  the 
mass/charge ratios of resulting fragment ions ( tandem spec- 
t rum of a parent peptlde).  This stmple description hides the 
details of the sigmficant technical barriers m MS/MS tha t  
have been overcome only recently. As a result of these devel- 
opments tandem mass-spectrometry is becoming a method 
of choice in many areas of proteomics. 
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Our work was mot ivated  by the following problem: given 
a large collection of uninterpreted experimental  spectra find 
out which spectra  in the  collection correspond to similar 
peptides, i.e. pept ides  tha t  differ by a small number of mu- 
tatmns/modifications.  The algorithm that  cross-correlates 
and clusters related spect ra  in large collections of unchar- 
actenzed spectra  would be extremely valuable in functional 
proteomics. To the best  of our knowledge, no such algorithm 
was described yet. 

This functional proteomics problem is related to data-  
base search in mass-spectrometry tha t  has been very suc- 
cessful in identification of already known proteins. Experi- 
mental spectrum can be compared with theoretical spectra  
for each pept ide in a database  and the peptide from the 
database with the  best  fit usually provides the sequence of 
the experimental  pept ide  (Mann and Wilm, 1994 [13], Eng 
et al., 1994 [7], Clauser et a1.,1996 [4], Taylor and John- 
son, 1997 [16], Fenyo et al., 1998 [8]). In partmular, SE- 
QUEST ([7]) has been used to identify proteins from class 
II  MHC complex while MS-Tag (Clauser et al., 1999 [3]) suc- 
cessfully identified proteins important  to placental hypoxic 
response relevant to modeling the effects of preeclampsia 
However, in light of the  dynamic nature  of samples intro- 
duced to a mass spectrometer  and potential  multiple muta-  
t ions/modifications,  the  reliability of the database search 
methods that  rely on precise or almost precise matches 
may be called into question. De novo algorithms that  at-  
tempt  to interpret  tandem mass spectra  in the absence of a 
database (Johnson and Biemann, 1989 [12], Bartels, 1990 
[1], Fernandez-de-Cosio et al., 1995, [9], Taylor and Johnson, 
1997 [16], Dancik et al., [5]) are invaluable for identification 
of unknown proteins, but  they are most useful when working 
with high quality spectra. Usually, the peptide must have 
good fragmentation and should not contain modified amino 
acids (Dancik et al., 1999 [5]). 

Since proteins are par ts  of complex systems of cellular 
signalling and metabolic regulation, they are subject to al- 
most uncountable number  of biological modifications (such 
as phosphorylation and glycosylation) and genetic varia- 
tion (Gooley and Packer, 1997 [11]) For example, at least 
1000 kinases exist in the  human genome, indicating that  
phosporylation is a common mechanism for signal transmis- 
stun and enzyme activation. Almost all protein sequences 
are post- t ranslat ional ly modified and as many as 200 types 
of covalent modifications of amino acid residues are known. 
Since currently post- t ranslat ional  modifications cannot be 
inferred from DNA sequences, finding them will remain an 
open problem even after the human genome is completed. 
I t  also raises a challenging computat ional  problem for post-  
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genomic era: given a very large collection of spectra  repre- 
senting the human proteome, find out which of 200 types 
of modifications are present in each human gene. Below we 
describe a computat ional  approach to this  problem based on 
a new mutat ion/modif icatmn-tolerant  database  search. 

Star t ing from the classical Biemann and Scoble, 1987 [2] 
paper  there were a few MS/MS success stories in identifying 
modified proteins (for example, Payne et  al., 1991 identi- 
fied phosphorylation sites of mitogen-act ivated protein ki- 
nase). The computat ional  analysis of modified peptides was 
pioneered by Mann and Wilm, 1994 [13] and Yates et al., 
1995 [17], [18]. The problem is part icularly impor tant  since 
mass-spectrometry techniques sometimes introduces chemi- 
cal modifications to native peptides and make these peptides 
"invisible" for database search programs. Mann and Wilm, 
1994 [13] use a clever combination of part ia l  de novo algo- 
r i thm and database search in their Peptide Sequence Tag 
approach. Peptide sequence tag is a short  run of clearly 
identifiable sequence ions that  is used to reduce the search to 
the peptides containing this tag. This approach was success- 
ful in many applications, including identifying possible pro- 
teins in the apoptot ic  pathway (Shevchenko et al., 1997 [15]), 
but  no information about  its l imitations and error rates for 
mutation-tolerant search is available. Yates et a1.,1995 [17] 
suggested an exhaustive search approach tha t  is to (implic- 
itly) generate a virtual database of all modified peptides 
for a small set of modifications and to match the spectrum 
against this virtual  database.  Yates et al. 1995 [17] noted 
that  it leads to a large combinatorial problem, even for a 
small set of modifications types and indicated tha t  extend- 
ing this approach to a larger set of modifications is an open 
problem. Another l imitation ]s tha t  extremely bulky modifi- 
cations such as glycosylation disrupt the fragmentation pat-  
tern and would not be amenable to analysis by this method.  

Mutation-tolerant  database search in mass-spectrometry 
can be formulated as follows: given an experimental  spec- 
t rum, find a pept ide that  matches the spect rum the best  
among the peptides that  are at most k mutat ions  apar t  from 
a database  peptide. The problem is solved for k = 0 (any 
MS/MS database search program). MS-Tag software in- 
cludes a program for k = 1 (Clauser et a l ,  1999 [3]) but  the 
problem is unsolved for k > 1. I t  indicates tha t  the current 
MS/MS database search programs are unable to detect  pep- 
tides that  are more than 5 - 10% dissimilar, a rather  narrow 
range. 

We have developed a mutat ion-tolerant  MS/MS data-  
base search and software, PEDANTA,  to identify spec- 
t ra  of related peptides tha t  differ by multiple muta-  
t ions/modifications.  PEDANTA reveals potent ial  pept ide 
modifications without exhaustive search and therefore does 
not require generating virtual database of modified peptides. 
We introduce a new measure of spectral  s imdari ty  that  IS 
used to develop an efficient algorithm for mutat ion-tolerant  
database search and pairwise comparison of uncharacterized 
experimental  spectra. The spectrum-to-spectrum compari- 
son turned out to be a powerful method for obtaining spectra  
of interest from a large set of spectra. In part icular,  using 
our spectral similarity algorithm in conjunction with high- 
throughput  tandem mass spectrometry,  we have been able 
to determine possible phosphorylation sites for Chkl  kinase 
(Funari et al., 1997 [10D, a protein known to function in 
G2 /M cell cycle regulation (this work will be described else- 
where). 

2 Peptide identification problem 

Let A be the set of amino acids with molecular masses re(a),  
a E A. A peptide P = pi . . .  p~ IS a sequence of amino acids, 
the (parent) mass of pept ide P is r e (P)  = ~ re(p,).  A 
partzal peptzde pr C P is a substrmg p, . . .p3 of P of mass 
~,<,_<~ re(v,). 

Peptide fragmentation in a tandem mass spectrometer 
can be characterized by a set of numbers A _-- {61, . . . ,6k} 
representing wn-types. A 6-zon of a part ial  peptIde P '  C P 
is such modification of P '  tha t  has mass m(P' )  - 6. For 
tandem mass spectrometry,  theoretical spectrum of pept lde  
P can be calculated by subtract ing all possible ion-types 
61, ., 6k from the masses of all part ial  peptides of P (i.e. 
every part ia l  pept ide  generate~ k masses in the theoretical  
spectrum). An (experimental) spectrum S --- {sx, . . , s in}  
is a set of masses of (fragment) ions. A match between 
spectrum S and pept ide P is the number of masses tha t  ex- 
perimental  and theoretical spectra  have in common (shared 
peaks count). Dancik et al, 1999 [5] addressed the following 

Peptide s e q u e n c i n g  p r o b l e m .  Given spect rum S, the 
set of ion types ~ ,  and the mass m find a pept ide  of mass 
m with the maximal  match to spectrum S. 

Denote par t ia l  N-termznal peptlde p I , . . .  ,p,  as P,, and 
part ia l  C-terminal pept ide p,+l ,  .. ,pn as P[-, i = 1 , . . .  ,n. 
In practice MS/MS spectrum consists mainly of some of 
6-ions of part ia l  N-terminal  and C-terminal peptides. For 
example, in the case of ion-trap mass spectrometer  the most 
frequent N-terminal  ions are b-ions (b, corresponds to P, 
with 6 = - 1 )  and the most frequent C-terminal  ions are 
y-ions (y, corresponds to P,- with 6 = 19). Also, instead of 
the shared peaks count, the existing database search and de 
novo algorithms use more sophisticated objective functions 
(like weighted shared peaks count). We s tudy the following 

P e p t i d e  i d e n t i f i c a t i o n  p r o b l e m .  Given a database  of 
peptides, spectrum S, the set of ion types A, and parameter  
k find a pept ide with the maximal  match to spectrum S tha t  
is at most k mutat ions/modif icat ions apar t  from a database  
entry. 

The major  difficulty in pept ide identification problem 
comes from the fact tha t  very similar peptides Pt  and /)2 
may have very different spectra  SI and $2. Our goal is 
to define a notion of spectral similarity that  correlates well 
with sequence similari ty In other words, if P1 and P2 are a 
few subst i tut ions/ inser t ions/delet ions/modif icat ions apart ,  
the spectral  similari ty between St and $2 should be high. 
Most existing database  search programs are based on the 
shared peaks count tha t  is, of course, an intuitive measure 
of spectral similarity. However, this measure diminishes very 
quickly as the number of mutat ions increases thus leading 
to l imitations in detecting similarities in MS/MS database  
search. Moreover, there are many correlations between spec- 
t ra  of related peptides and only the small portion of them is 
captured by the "shared peaks" count. One can demonstra te  

1 tha t  the "shared peaks" count captures roughly only 2(k~-1) 
of the correlations between spectra  of peptides tha t  are k 
mutat ions apart .  PEDANTA captures all correlations be- 
tween related spectra  for any k and handles the cases when 
mutat ions in the pept ide significantly change the fragmenta- 
tion pat tern.  For example, replacing amino acids like H, K, 
R, P may dramatical ly  alter the fragmentation. Even in an 
extreme case like the one when a single mutat ion changes the 
fragmentation pa t te rn  from, let 's say "only b-ions" to "only 
y-ions", PEDANTA still reveals the similarity between the 
corresponding spectra. 
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3 Spectral Convolution 

Let S1 and $2 be two spectra. Define spectral convolution 
$2@$1 = { s 2 - s i :  sl 6 S l , s 2  6S~} and let (Sz69S1)(x)  
be the multiplicity of element x in this set. In other words, 
($2(9S1)(x) Is the number of pairs sl 6 S1, s2 6 $2 such that  
s 2 - s i  = x. If M ( P )  is the parent mass of pepttde P with the 
spectrum S, then S a = M ( P )  - S is the reversed spectrum 
of S (every b-ion (y-ion) in S corresponds to y-ion (b-ion) in 
SR). The reversed spectral eonvolutwn ($2 (9 Sla)(x) is the 
number of pairs s, 6 S1, s2 6 $2 such that s~ + s , -  M ( P )  = 

To illustrate the idea of the approach, consider two copies 
/'1 and P2 of the same peptide. The number of peaks in 

"common between S, and $2 (shared peaks count) is the 
value of $2 69 S1 at x = 0. Most current MS/MS database 
search algorithms implicitly at tempt to find a peptide P in 
the database that  maximizes $2 (9 $1 at x = 0, where $2 is 
an experimental spectrum and S1 is a theoretical spectrum 
of peptide P. However, if we start introducing k mutations 
in /'2 as compared to /'1, the value of $2 (9 S1 at x = 0 
quickly diminishes. As a result, the discriminating power of 
the "shared peaks" count falls down significantly at k = 1 
and almost disappears at k > 1. 

The new ingredient of our approach is an observation 
that peaks m spectral convolutmn allow one to detect muta- 
tions/modifications without exhaustive search Let P2 differ 
from/ '1 by the only mutatmn (k = 1) with amino acid dif- 
ference (~ = M(P2) - M ( P 1 ) .  In this case S~ 69 S1 is expected 
to have two approximately equal peaks at x = 0 and x = (i. 
If the mutat ion ocurrs at position t in the peptide then the 
peak at x = 0 corresponds to b,-ions for i < t and y,-ions for 
i > t The peak at x = 6 corresponds to b,-ions for i > t and 
y,-ions for i < t. A mutation in P2 that  changes M'(P1) by 
J also "mutates" the spectrum $2 by shifting some peaks by 
5. As a result, the number of shared peaks between S, and 
"mutated" $2 may increase as compared to the number of 
shared peaks between Si and $2. This increase is bounded 
by ($2 (9 $1)(~) and ($2 (9 $1)(0) + ($2 (9 Si)(6) is an up- 
per bound on the number of shared peaks between $1 and 
"mutated" $2. 

The other set of correlations between spectra of mutated 
peptides is captured by the reverse spectral convolution $2 (9 
S~t reflecting the pairings of N-terminal and C-terminal ions 
(see Danmk et al., 1999 [5] for applicatmns of reverse spectral 
convolution for parent mass computing) $2 (9S~ is expected 
to have two peaks at the same positions 0 and (~. 

Now assume that  P2 and/ '1  are two substitutions apart, 
one with mass difference 61 and another with 6 - 61. These 
mutations generate two new peaks in the spectral convolu- 
tion (at x = 61 and at x = 6 - 61). For uniform distribution 
of mutations in a random peptide, the ratio of the expected 
heights of the peaks at 0, 6, 61,6 - (51 is 2 : 2 . 1  : 1. 

Different fragment ions contribute to different peaks but 
short fragment ions contribute mainly to peaks at 0 and 
6. Since short fragment ions are frequently missing from 
the spectra (for ion-trap mass-spectrometers) the heights of 
peaks at 0 and 6 are more in line with the heights of the 
peaks at (fl and ~ - (fi in practice. Therefore, the "shared 
peaks" count ignores 75% of correlations in the related spec- 
tra for k = 1 and even more for k > 1. 

To increase the signal/noise ratio we combine the peaks 
in spectral and reverse spectral convolution 

S=$2@$I + $2(9S~ 

Further we combine the peaks at 0 and 6 (as well as at 61 

and 6 - 61 )  by introducing the shift function 

F(x) = ~-(S(~) + S(~ - ~)) 

Note that F ( x )  Is symmetric around the axis x = ~ with 
F(0) = F(J)  and F(61) = F(5 - 51). We are interested in 
the peaks of F ( x )  for x > ~. 

Define xl = 6 = M(P2) - M(P1) and yl = F(6) = F(O). 
Let y2 = F(x2), y3 = F ( x3 ) , . . .  ,yk = F(x~)  be k - 1  largest 
peaks of F(x )  for x > 6/2 and x ~ 6. Define 

k 

SIMk(S1 ,  S~) 

as an estimate for the similarity between spectra S, and 
$2 under the assumption that  the corresponding peptides 
are k mutations apart. S I M k  is usually the overall height 
of k h,gheSt peaks of the shift function. For example, 
SIM1($1,$2)  = yl  is an upper bound for the number of 
shared peaks between S, and "mutated" $2 if k = 1 mu- 
tation in P2 is allowed. Note the difference in use of the 
spectral convolution in our approach (analysis of top peaks 
to reveal mutations) and the cross-correlation function from 
Eng et al., 1994 [7]. 

In a more practical version of the same definition, 
x2, xa , . .  , xk are restricted to valid mass shifts, i.e. to the 
values that correspond to amino acid mass differences (sub- 
stitutlons), amino acid masses (deletions/insertions) or to 
the mass differences corresponding to potential amino acid 
modffications 

The definition of S I M k  given above treats all fragment 
ions equally without a t tempting to take into account inten- 
sities and to score the major ions (like b) and minor ions 
(like b - H~O) according to their propensities. To account 
for intensities and propensities one can assign a score to 
every peak in the experimental spectrum that gwes more 
weight to the high-intensity peaks and peaks explained by 
multiple fragment-ions See Dancik et al., 1999 [5] for offset 
frequency function approach to such scoring. 

The masses of amino acids present in peptides may gener- 
ate "false" peaks in spectral convolution. Other false peaks 
may correspond to 6 = 18 and (i = 17 (loss of H20  or 
NH3),  or more precisely, every peak in spectral convolution 
may have a twin peak shifted by the mass of H~O or NH3. 
Below we describe even more serious limitat,on of the shift 
function 

Let 

S = {I0, 20, 30, 40, 50, 60, 70, 80, 90, I00} 

be a spectrum of peptide P and assume for simplicity that 
P produces only b-ions. Let 

S' = {10, 20, 30, 40, 50, 55, 65, 75, 85, 95} 

and 
S" = {10, 15, 30, 35, 50, 55, 70, 75, 90, 95} 

be two theoretical spectra corresponding to peptides P '  and 
P" from the database. Which peptide (P '  or P")  fits spec- 
t rum S the best? The "shared peaks" count does not allow 
one to answer this question since both S' and S" have 5 
peaks in common with S. Moreover, the spectral convolu- 
tmn also does not answer this question since both S 69 S' 
and S (9 S" (and corresponding shift functions) reveal the 
strong peaks of the same height at 0 and 5. It  suggests 
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Figure 1: Spectrum S can be transformed into S' by a single mutat ion and D(1) = 10 (left matrix). Spectrum S cannot be 
transformed into S"  by a single mutat ion and D(1) = 6 (right matrix). 

that both P '  and P "  can be obtained from P by a single 
mutation with mass difference 5. However, a more careful 
analysis shows that  although thin muta tmn can be realized 
for P '  by introducing a shift 5 after mass 50, it cannot be 
realized for P".  The major difference between S ~ and S" is 
that  the matching positions in S' come in clumps while the 
matching positrons in S" don' t  This important property of 
related spectra was not captured by spectral convolution and 
was overlooked m the previous studms of MS/MS database 
search. Below we describe the spectral alignment approach 
to address this problem. 

4 Spectral Alignment 

Let A = { a l , . . . a = }  be an ordered set of natural  num- 
bers al < a s . . .  < a , .  A shzft A, transforms A into 
{al ,  . . a , - 1 , a ,  + A , , . . . , a ,  + A,}. We consider only the 
shifts that  do not change the order of elements, i.e the 
shifts with A, > a,-1 -- a,. Gwen sets A = {al, a=} 
and B = {b l , . . .bm} we want to find a series of k shifts 
of A that make A and B as similar as possible. The 
k-similarity D(k)  between sets A and B is ~lefined as 
the maximum number of elements in common between 
these sets after k shifts. For example, a shift -56 trans- 
forms S -- {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} into S' -- 
{10, 20, 30, 40, 50, 55, 65, 75, 85, 95} and therefore D(1) = 10 
for these sets. The set S" = {10, 15, 30, 35, 50, 55, 70, 75, 
90, 95} has 5 elements in common with S (the same as S ' )  
but there is no shift transforming S into S" and D(1) = 6. 
Below we describe a dynamic programming algorithm for 
computing D(k) .  

Define a spectral product A ® B as an x bm two- 
dimensional matrix with n m  l s  corresponding to all pairs 
of indices (a,, b 3) and remaining elements being zeroes. The 
number of ls  at the main diagonal of this matrix describes 
the "shared peaks count" between spectra A and B, or in an- 
other words, 0-similarity between A and B. Figure 1 shows 

the spectral product S ® S'  and S ® S" for an example from 
the previous section. In both cases the number of ls  on the 
main diagonal is the same and D(0) = 5. The "6-shifted 
peaks count" is the number of ls  on the diagonal (i, i + 6). 
The limitation of the shift function is that  it considers diag- 
onals separately without combining them into feamble mu- 
tat ion scenarios. 

Define a directed graph with vertices corresponding to ls  
in the spectral product and edges corresponding to pairs of 
vertices (i ,3) and (z ' , j ' )  with i < i '  and j < 3'. k-szmdamty 
between spectra ~s defined as the maximum number of ls  
on a path through this graph that  uses at most k + 1 diag- 
onals and k-optimal  spectral ahgnment  is defined as a path 
using these k + 1 diagonals For example, 1-similarity is 
defined by the maximum number of ls  on a path through 
the spectral product that  uses at most two diagonals. Fig- 
ure I reveals that  the notmn of 1-similarity allows one to 
find out that  S is closer to S' than to S" since m the first 
case the 2-dmgonal path cover 10 ones (left matrix) versus 
6 m the second case (right matrix). Figure 2 illustrates that 
the spectral ahgnment allows one to detect more and more 
subtle similarities between spectra by increasing k. Below 
we describe a dynamic programming algorithm for spectral 
alignment. 

Let A, and B~ be /-prefix of A and j-prefix of B cor- 
respondingly. Define D, 3 (k) as the k-similarity between A, 
and B~ such that  the last elements of A, and B 3 are matched 
In other words, D, 2 (k) is the maximum number of ls  on a 
path to (a,,b3) that uses at most k + 1 diagonals. We say 
that  ( i ' , j ' )  and (~,j) are co-diagonal f f  a, - a,, = b 3 - b 3, 
and that  ( i ' , j ' )  < ( i , j )  if z' < i and 3' < J. To take care of 
the initial conditions we introduce a ficUtious element (0, 0) 
with Do,o(k) = 0 and assume that  (0, 0) is co-diagonal with 
any other (i, j) .  The dynamic programming recurrency for 
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D,~ (k) ~s 

{ D,,~,(k) + 1, if ( i ' , j ' )  and (i,3) 
D,j (k) = max are co-diagonal 

(v a')<0,:) D,,~, (k - 1) + 1, otherwise 

The k-similarity between A and B is given by D(k)  = 

max,~ D,: (k). 
The described dynamic programming algorithm for spec- 

tral alignment is rather slow (running time o(nak)  for n- 
element spectra) and below we describe O(n2k) algorithm 
for solving this problem. Define diag(i , j)  as the maximal 
co-diagonal pair of ( i , j )  such that diag(i, j)  < ( i , j ) .  In 
other words, diag(i , j )  is the position of prewous 1 on the 

, same diagonal as (a,, b:) or (0, 0) if such position does not 
exzsts. Define 

M~: (k) = max(,,,:,)<(,,:)D,, 3, (k) 

Then the recurrency for D,: (k) can be re-written as 

{ Dd,~9(,a)(k) + 1, 
D,~(k) = max M, - z , : - l ( k  - 1) + 1 

The recurrency for M~: (k) is given by 

D,,(k)  
M,~(k) --- max M~-l,~(k) 

M,, j-  1 (k) 

The described transformation of dynamic programming 
graph is achieved by introducing horizontal and vertical 
edges that provide switching between diagonals (Figure 3). 
The score of the path is the number of ls on this path while 
k corresponds to the number of switches (number of used 
diagonals minus 1). 

5 Al igning Pept ide  against  S p e c t r u m  

The simple descriptmn above hides many details that  make 
the spectral alignment problem difficult. These details in- 
clude szmultaneous analysis of N-terminal and C-terminal 
ions, taking into account the mtensitms and charges, analy- 
sm of minor ions, etc. 

Spectra are usually a combination of an increasing (N- 
terminal ions) and a decreasing (C-terminal ions) number 
series. These series form two diagonals in the spectral prod- 
uct S® S, the main diagonal and the perpendicular diagonal 
that corresponds to pairings of N-terminal and C-terminal 
ions. The described algorithm does not capture this specifics 
and deals with the main dmgonal only. 

To combine N-terminal and C-terminal series together 
we work with (Sz U S~) ® ($2 U S~) where S R is the re- 
versed spectrum of peptide P. This transformation creates 
a "b-version" for every y-ion and "y-version" for every b-ran 
thus increasing noise (since every noisy peak is propagated 
twice) Another and even more serious difficulty is that  ev- 
ery 1 in the spectral product will have a reversed twin and 
only one of these twins should be counted in the feasible 

"spectral alignment. Danczk et al., 1999 [5] demonstrated 
that ignoring this problem may lead to mfeasible solutions 
and formulated an~-symmetme path problem that  addresses 
this issue In the later work, Danczk and Pevzner, 1999 [6] 
suggested a polynomial algorithm for anti-symmetric path 
problem. 

The described algorithm also does not capture all the 
relevant detads in the case of the "sequence against the 
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Figure 3. Modification of dynamic programming graph leads 
to a fast spectral alignment algorithm. 



s p e c t r u m "  compar ison .  In  th i s  case t h e  hor izon ta l  a n d  
ve r tma l  arcs in t h e  d y n a m i c  p r o g r a m m i n g  g r a p h  (Fig. 3) 
are h m l t e d  by  t h e  possible  shif ts  ref lect ing mass  differences 
be tween  amino  acid p a r t i c i p a t i n g  in t h e  m u t a t i o n .  Le t  
P = p l  • pn be  a pep t i de  t h a t  we c o m p a r e  w i th  t he  spec- 
t r u m  S = { s l , . . . , s m } .  d-pref ix of s p e c t r u m  S con ta ins  
all peaks  of  S w i th  st < d. We  i n t r o d u c e  new va rmble  
H~,d(k)  t h a t  descr ibes  t he  " b e s t "  t r a n s f o r m a t m n  of t he  i- 
prefix of  p e p t l d e  P in to  d-pref ix  of  s p e c t r u m  S wi th  a t  mos t  
k s u b s t i t u t i o n s  in P, .  More  precisely, H~,d(k)  descr ibes  t he  
n u m b e r  of l s  on  t h e  op t i m a l  p a t h  w i th  k shif ts  be tween  
d iagonals  f rom (0, 0) to  t he  pos i t ion  (i,  d) of t h e  p roper ly  
def ined "pep t ide  versus  s p e c t r u m "  P ® S ma t r ix .  Also, for 
t h e  sake of simplici ty,  a s sume  t h a t  t h e  theore t i ca l  s p e c t r u m  
of P con ta ins  only b-ions.  

Let  H~,d(k)  be  t he  "bes t"  t r a n s f o r m a t m n  of P~ in to  Sd 
w i t h  k s u b s t i t u t i o n s  0 e. a t r a n s f o r m a t m n  t h a t  uses  max i -  
m u m  n u m b e r  of l s  on  a p a t h  w i t h  a t  m o s t  k shif ts  be tween  
diagonals) .  However,  in th i s  case t h e  j u m p s  be tween  diago- 
na l s  are no t  a r b i t r a r y  b u t  are  r e s t r i c t ed  by  mass  differences 
of m u t a t e d  amino  acids (or mass  differences co r r e spond ing  
to  chemica l  modif ica t ions) .  Below we descr ibe  t h e  d y n a m i c  
p r o g r a m m i n g  a lgo r i t hm for t h e  case of s u b s t i t u t i o n s  (dele- 
t m n s / i n s e r t i o n s  a n d  modff ica t ions  lead to  s imi lar  r ecur ren-  
cies). Define x ( d )  = 1 if d E S a n d  x ( d )  = 0 otherwise .  
T h e n  H~,d(k)  is descr ibed  by  t h e  following r ecu r r ency  ( r e (a )  
is t h e  mass  of a m i n o  acid a):  

H , - 1 , d - r n ( p , ) ( k )  q- x ( d )  
H~,d(k)  = m a x  maxa=x,20 H , , d - ( m ( a ) - m ( p , ) ) ( k  - 1) 

The  c o m p u t a t i o n a l  complex i ty  of  t h e  above  a lgo r i thms  is 
O ( n s , ~ k )  assuming  t h a t  t h e  s p e c t r u m  a n d  masses  of a m i n o  
acids are  integers.  I t  is i m p o r t a n t  to  no t ice  t h a t  t he  c o m p u -  
t a t i o n s  in t he  above  a l g o r i t h m  shou ld  go in t he  increas ing  
o rde r  of k. 

6 Conclusion 

We descr ibed  a m u t a t m n - t o l e r a n t  d a t a b a s e  search a p p r o a c h  
t h a t  is ba sed  on a new n o t m n  of spec t r a l  s imilar i ty .  A n  al ter-  
n a t i v e  to  th i s  m e t h o d  is de novo  i n t e r p r e t a t i o n  followed by  a 
BLAST- l ike  d a t a b a s e  s imi la r i ty  sea rch  as p roposed  by  Tay-  
lor a n d  Johnson ,  1997 [16] a n d  Clauser  (pe rsona l  c o m m u n i -  
ca t ion)  Th i s  app roach  shows a hope  for m u t a t m n - t o l e r a n t  
searches  b u t  is unl ikely to  succeed for mod i f i ca t i on - to l e r an t  
searches  since de novo r e c o n s t r u c t i o n  of modi f ied  pep t ides  
r e m a i n s  an  open  prob lem.  

P E D A N T A  has  been  t e s t e d  on  b o t h  e x p e r i m e n t a l  a n d  
s i m u l a t e d  d a t a  These  t e s t s  d e m o n s t r a t e d  t h a t  P E D A N T A  
is very  efficient for m u t a t i o n - t o l e r a n t  d a t a b a s e  search  w i th  
u p  to  two m u t a t i o n s  even  for re la t ive ly  poo r  spec t ra .  
P E D A N T A  also cap tu re s  m a n y  r e l a t ed  s p e c t r a  for k = 3 
b u t  m thin case a two-s tage  p rocedu re  w i t h  a more  accu ra t e  
ob jec t ive  func t ion  is required .  T h e  resu l t s  of  t h e  t e s t s  will 
be  desc r ibed  elsewhere (Mulyukov  a n d  Pevzner ,  1999 [14]) 
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