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Abstract 

In a recent paper [PFU99] we have introduced 
a novel probing scheme for DNA sequencing 
by hybridization (SBH). The new gapped-probe 
scheme combines natural and universal bases in 
a well defined periodic pattern. It was shown in 
[PFU99] that the performance of the gapped- 
probe scheme (in terms of the length of a se- 
quence that can be uniquely reconstructed us- 
ing a given library size of probes) is signifi- 
cantly better than the standard scheme based 
on oligomer probes. 

In this paper we present and analyze a new, 
more powerful, sequencing algorithm for the 
gapped-probe scheme. We prove that the new 
algorithm exploits the full potential of the SBH 
technology with high-confidence performance, 
that comes within a small constant factor (about 
2) of the information-theory bound. Moreover, 
this performance is achieved while maintain- 
ing running time linear in the target sequence 
length. 

1 Introduction 

Sequencing by hybridization [BS91, L+88, D+89, 

* Computer Science Department, Brown University, 
115 Waterman Street, Providence, RI 02912-1910, USA. 
E-mail: {frn~aco, eli}@c=.broma.edu. 

Permission to make digital or hard copm~ of all or part of this v~o~k for 
personal or classroom use ~s granted without lee pro'~ded that copm~ 
are not made or d~strlbuted for profit or commcrcml ad',antagc and that 
copies bear th~s notice and the full c~tatmn on the fi~st page 1o copy 
otherwise, to repubhsh, to post on servers or to redistribute to hsts, 
requires prmr specific perm~smn and/or a fee 

R E C O M B  2000 Tokyo Japan U SA  
Copyright ACM 2000 1o58113-186-0/00/04, $5 O0 

P89, PL94, W95l is a novel DNA sequencing 
technique in which an array (SBH chip) of short 
sequences of nucleotides (probes) is brought in 
contact with a solution of (replicas of) the tar- 
get DNA sequence. A biochemical method de- 
termines the subset of probes that bind to the 
target sequence (the spectrum of the sequence), 
and a combinatorial method is used to recon- 
struct the DNA sequence from the spectrum. 
Since technology limits the number of probes 
on the SBH chip, a challenging combinatorial 
question is the design of a smallest set of probes 
that can sequence an arbitrary DNA string of 
a given length. 

Current implementations of SBH use "classi- 
cal" probing schemes, i.e., chips accommodat- 
ing all 4 k k-mer oligonucleotide ("solid" probes 
with no gaps), the symbols being the well-known 
DNA bases { A,C,G,T } and k being a technology- 
dependent integer parameter. Pevzner 
et al. [P+91, PL94, W95] observed that the ex- 
pected length of unambiguously reconstructible 
sequences with solid length-k probes is O(2 k) 
and a tight bound of the same order has been 
proven in [DFS94]. These results were con- 
firmed by extensive simulations. Note, how- 
ever, that an information-theoretic argument 
yields an upper bound O(4k). 

In a recent paper [PFU99] we have intro- 
duced a novel probing scheme for DNA sequencing- 
by-hybridization. This method, which uses prob- 
ing patterns with a well-defined periodic gap 
structures (and rests on the deployment of uni- 
versal bases for the realization of the gaps) over- 
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comes the well-known shortcomings of tradi- 
tional SBH based on oligomer probes, which 
had raised a negative prognosis for the com- 
petitiveness of the approach. We had shown 
that  a simple algorithm, which reconstructs the 
target sequence from its spectrum symbol-by 
symbol and halts the process (declares failure) 
when more that one extension is confirmed by 
a chosen number of probes, dramatically im- 
proves over the oligomer method and, with a 
high level of confidence, can correctly recon- 
struct sequences whose length m is "asymp- 
totically" optimal ( for example, for 8 speci- 
fied nucleotides and confidence 0.95, the sim- 
ple algorithm achieves m ~ 2000, against the 
information-theoretic bound of 32768). 

The asymptotic result, however, despite its 
inherent significance for a problem that has been 
the focus of considerable research interest for 
a decade, did not fully reveal the potential of 
the approach. In this paper we present a novel, 
more powerful algorithm, that provably exploits 
the potential of the probing scheme. In addi- 
tion, we present a combinatorially subtle proba- 
bilistic analysis, based on the hypothesis of tar- 
get sequences generated by a maximum-entropy 
memoryless source, and show that the high- 
confidence performance comes within a 
constant factor (about 2) of the information- 
theory bound. Our analysis is, of course, con- 
fined to sequences generated by the above ran- 
dom process, as has been the practice in pre- 
vious analogous analyses. Unfortunately, very 
little is known about a corresponding probabil- 
ity model for natural sequences, but extensive 
simulations with sequences of known genomes 
( HaemophiIus influenzae, Escherichia coli) show, 
despite an expected minor degradation due to 
the constrained randomness of natural DNA, 
analogous behavior. 

Therefore, the new algorithm improves by 
a substantial constant factor over the one of 
[PFU99]. This fact, despite its minor signif- 
icance in asymptotic analysis, may have enor- 
mous practical repercussions. We also note that  
the superior performance is achieved while main- 
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taining O(m) running time, under the criterion 
to adopt the smallest feasible k for the given m. 
In Figure 1 we display the diagrams of the prob- 
abilities of success (for random sequences) of 
the basic and of the advanced algorithms: The 
success probability is on the vertical axis, while 
the other two axes display sequence length anal 
the parameter r. To validate the analysis, in 
the Appendix we display for comparison corre- 
sponding analytical and ~xperimental diagrams 
for (4, 4)-probes. 

Figure 1: Probability of successful sequence re- 
construction for the new algorithm compared to 
the basic algorithm (shaded graph), as a func- 
tion of target sequence length (< 13,000) for 
and all possible choices of (s, r) with k = 8. 

2 Review of the probin 8 scheme 

A Sequencing by Hybridization (SBH) chip con- 
sists of a fixed number of features. Each feature 
can accommodate one probe. A probe is a string 
of symbols (nucleotides) from the alphabet 

~4 = { A,C,G,T,*}, 



where A,C,G, and T denote the standard DNA 
bases and • denotes the "don't care " symbol 
("blank"), implemented using a universal base 
[LB94]. 

The spectrum of a target sequence is the set 
of probes that  are Watson/Crick-complementary 
to a subsequence of the target. A sequencing 
algorithm is an algorithm that, given a set of 
probes and a spectrum, decides if the spectrum 

"defines a unique DNA sequence, and, if so, re- 
constructs that  sequence. 

A gapped-probe scheme [PFU99] uses a fam- 
ily of probes with a well defined periodic pat- 
tern of gaps ((s,r)-probes). We denote by a v 
the p-fold repetition of a string a, and if u is 
a binary string, fi is its complementary binary 
string. 

Def in i t i on  1 For integers r > 0 and s > 1, 
a probing pattern is the concatenations uSv ~ of  
two periodic strings u s and v ~, where u and v 
are two binary strings related as follows: 

probes are collected by placing the leftmost po- 
sition of the probing pattern to correspond to 
the i-th position of a, for 

i =  1 ,2 , . . .  , l a l -  s(r + 1) + 1, 

and extracting the sampled subsequence. 
The sequence reconstruction task is a the 

symbol-by-symbol construction from the spec- 
t rum of a putative sequence b, intended to be 
identical to the target sequence that  originated 
the spectrum. Reconstruction succeeds if and 
only if sequence b coincides with sequence a. 

Given 'a sequence b (the current putative se- 
quence), b, denotes its i-th symbol and boo ) = 
blb,+l. . ,  bj. The fundamental primitive oper- 
ation of sequence reconstruction is extension, 
i.e., the addition of one extra symbol to the 
current putative sequence. The following al- 
gorithm extends a prefix bo, 0 of the putative 
sequence to its right, possibly to its rightmost 
end. Obviously g > (r + 1)s. 

U - -  1 , V  = t t S - l u ,  o r  v ~--- 1 , U  .~  V ~  r - 1  

referred to, respectively, as direct and reverse 
patterns. 

Considering direct patterns, the correspond- 
ing probes have the form Xs(.8-xX) r, for inte- 
ger parameters s and r, where X ranges over 
the alphabet and • is blank. For example, a 
(4, 3)-probe has the form 

X X X X  * * *  X * * *  X * * *  X .  

Formally, it is convenient to view an (s, r)-probe 
as having s (r  + 1) symbols over the extended 
alphabet A U {*}. Of these s(r + 1) symbols 
r(s - 1) are blanks, arid, since in each probe 
there are s + r positions with an X symbol, the 
-set of (~,r)-probes has exactly IAI r+s = IAI ~ 
members. Note that  the classical scheme is a 
very special case since it uses (k, 0)-probes. 

For given s and r, the collection of all the 
probes of a target sequence a is called the (s, r ) -  
spec t rum of a, or, briefly, its spectrum. These 

A l g o r i t h m  sequence(S;  b(1,O) 
The algorithm uses as a subroutine a function 
extend(S;  q), for some probe q, which returns 
a pair (b, w), in which b is a nonempty string 
(normally, a single symbol), or a set of symbols, 
or the empty symbol e, and, correspondingly, 
the paraxneter w is "continue", or "ambiguous", 
or "complete". 

1.u +-- continue 
2.while (u = continue) do 
3. q +- b(t-s(r+l)+2,t)* 
4. (b ,w)  ~- ex tend(S;q)  
5. i f  (w = continue) 
6. then 
7. bo,t+lbl) +-- bo,t)b 
8. g +-- g + Ibl 
9. u+--w 
10.return (bo,0, w) 

The"while"-loop 2-9 normally extends the pu- 
tative sequence one symbol at a time. In line 
3 a query probe is prepared as the ((r + 1)s - 
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1)-suffix of the current putative sequence ex- 
tended with a single "blank" (intended to sam- 
ple the extension symbol). This query is used 
by the function extend (line 4) to interrogate 
the spectrum (see next section), and will ob- 
tain the set of M1 the probes matching the query 
in their specified positions. If this probe set is 
a singleton, then the extension is unique, and 
function extend immediately returns a symbol 
b, with a certificate w = continue. Other- 
wise it will interrogate the spectrum for ad- 
ditional evidence, and will ultimately return a 
pair (b, w) of the forms (b, continue) (b a sym- 
bol), (e, complete) (e the empty symbols), or 
(B, ambiguous) (B a set of symbols, [B[ > 1). 
Extension is implemented in line 7. The se- 
mantics of the designations { continue, com- 
plete, ambiguous} is straightforward. Specifi- 
cally, "ambiguous" means that the algorithm is 
unable to return a unique extension, and there- 
fore the process of complete reconstruction fails 
(only a proper prefix of the target sequence has 
been produced). 

3 An optimal SBH algorithm and its performance 
analysis 

Clearly, the crucial component of the method is 
the implementation of the function extend(S; q). 
In [PFU99] we proposed an implementation, re- 
ferred to here as the "basic algorithm", with the 
following failure mechanism. 

When the interrogation of the spectrum re- 
turns a set M0 consisting of more than one 
probe (i.e., a potential ambiguous extension), 
let B0 be the set of the possible extensions. 
The verification is executed as follows. We con- 
struct the set M1 of all probes in the spectrum 
such that their common ( s t -  1)-prefix matches 
b(t-sr+l,a~-l), and their (s + 1)-suffixes agree, in 
appropriate shifts, with the probes in Mo. Let 
/71 be the set of symbols appearing in the sr-th 
position of the probes in M0. If B0 fl B1 is a 
singleton, then we have a unique extension to 
the string. Otherwise we continue by construct- 
ing the set 3//2 of the spectrum probes whose 
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( s ( r -  1) - 1)-prefix matches b(t_s(r_l)+l,t_l) and 
(2s + 1)-sufIix agrees with the probes in M1. 
From M2 we construct the corresponding set 
B2 of extensions. Again, if B0 N Bz N B2 is a 
singleton we are done, else we proceed by con- 
sidering shorter prefixes of lengths s ( r - 2 ) ,  s ( r -  
3) ,s ( r  - 4), .... ,s  of the spectrum probes. If 
] fq~--1 B3[ -" 1 for some i < r, then we have 
an unambiguous extension. Otherwise, in the 
basic scheme we halt and report the current se- 
quence. 

We now present, and discuss in detail, a more 
sophisticated technique, referred to as the "ad- 
vanced algorithm", which we show to fully ex- 
ploit the power of the probing scheme (i.e., to 
achieve non-asymptotically the information the- 
ory bound). 

Advanced algorithm 
The next-symbol extension is first at tempted 

using the basic Mgorithm. Upon detection of 
an ambiguous branching (i.e., the event causing 
fMlure of the basic algorithm), the advanced al- 
gorithm at tempts  the extension (based on the 
spectrum), up to some maximum length H (a 
design parameter)  beyond the branching, of all 
paths issuing from such branching, and of those 
spawned by them, in a breadth-first fashion. 
Beyond the ambiguous branching each path is 
extended on the basis of a single probe: the ab- 
sence of any such extending probe causes ter- 
mination of the path. This construction stops 
either if there remains only one (the correct) 
path, or upon reaching the threshold H oth- 
erwise. In either case, the algorithm extends 
the putative sequence with the longest common 
prefix of all surviving paths, and fails only when 
such prefix is empty. (We show in the next sec- 
tion that  the threshold H must be chosen ade- 
quately larger than rs + 1). 

To anMyze the performance of the outlined 
advanced algorithm, we note that  the success 
of our approach (for both the basic and the ad- 
vanced algorithms) is based on the fact that the 
probability of the simultaneous occurrence of a 



large number of fooling probes is adequately 
small. 

We begin by showing the following property 
of paths beyond an ambiguous branching. 

L a m i n a  1 After  an ambiguous branching with 
two or more paths, only one of  which is legiti- 
mate, both the legitimate path and the spurious 
paths are deterministically extended rs times 

. (so that both diverging paths achieve length rs + 
1 beyond the branching). 

Proof :  Let P(1,0 denote the segment of the cor- 
rect (legitimate) path such that  the ambigu- 
ous extension occurs at position t = (r + 1)s. 
Also, let w denote the probing pattern and let 
w(') = w f3 p(,,,+t-1), i.e., the probe correspond- 
ing to (its leftmost symbol in) position i of 
segment p(1,t). Note that  w (i) is a string of 
t -  1 symbols with "don' t  care" • in the po- 
sitions where the probing pat tern has univer- 
sal bases. Since we have an ambiguous ex- 
tension at position t, the spectrum contains at 
least one complete set of (r + 1) fooling probes 
q(D,q(2),... ,q(r+D supporting the (incorrect) 
extension symbol al ~ pt. These fooling probes 
a r e  q(1) _ w ( 1 ) a l  with al ~ Pt, and q0) = 
w(8+1) ,~(,-1) t,8-1,,.~ with arbitrary ai. For all ( : ,~ - l )~ (~ , t -~ )~  "*,J, " 
positions in the range [t + 1, 2t - s] - Z, where 
Z = t + is, i = 1, 2 , . . .  , r, the (existing) probe 
that extends the correct path also extends the 
spurious path since it does not overlap with any 
of the symbols al, a2, . . .  , a~. Extension in po- 
sition t + is G Z, i = 1, 2 , . . .  , r, of the spurious 
path is provided by fooling probe q(1). 

E2 

This result shows that  we must select H > 
rs + 1 and a quantitative criterion will be for- 
mulated on the basis of Theorem 1. Assuming 
conventionally as position 1 the position of the 

.aMbiguous branching, beyond position rs + 1 
the correct path is deterministically extended, 
but spurious paths must be supported by fool- 
ing probes present in the spectrum. 

Whereas in the basic algorithm [PFU99], 
which halts upon detection of an ambiguous 

branching, there is a single event that  charac- 
terizes the algorithm's failure (the presence in 
the spectrum of r + 1 fooling probes support- 
ing a spurious extension), we shall see that the 
advanced algorithm being analyzed has a more 
complex failure mechanism. 

We begin with a technical lemma. With ref- 
erence to a segment a(t+l,t+2(~+l)s-1) of the tar- 
get sequence, define probe tj, j = 0 , . . .  , r, as a 
subsequence such that  for i = 2 , . . .  , r + 1 

a( t¢+l , t :  +s) -" a(t+3s+l , t+(j+l)s) ,  

a t j+is  - -  at+(j+i)s .  

The span of a probe is the interval between its 
first and last designated symbol. 

L e m m a  2 The probability 

P r o b ( ( t l , . . . ,  t~)lto ) 

of t = ( t l , . . .  ,tr) occurring, conditional on 
to, in a target sequence of length m is bounded 
above by 

~ +  3.4,_------ ~ = ~- I +-3m--m ] 

Proof :  Given two distinct probes t, and t~, 
t, < tj, whose spans are not disjoint (i.e., t I - 
t, < (r + 1)s), we note that only for t 3 = tl 
mod s they intersect in more than one symbol. 
In all other cases their intersection is exactly 
one symbols, but since they constrain different 
symbols of the correct segment, it is as if their 
spans were disjoint. When t i = ti + hs, h = 
1, . . .  , r  probe t 3 constrains s - 1 + h rather 
than k symbols. In such case we say that  the 
two probes technically overlap. 

To describe probe overlap, with each vector 
t we associate a vector a ( t )  = ( a , , . . .  ,a t )  over 
the integer labels {0, 1 , . . .  , r}, where al = a s if 
ti and t i overlap and the leftmost occurrences 
of each value form the sequence 0, 1,2, . . . .  The 
probability of vector t is determined by the 
number of its "sites" (distinct values of the com- 
ponents of a( t ) )  and by the amounts of over- 
lap between consecutive probes occurring at the 
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same site. Specifically, if P3--1 is the probabil- 
ity of the j-prefix of a( t ) ,  then pj = P3-1qj, 
and qj is the total probability of the following 
set of events: either t~ defines a new site (with 
probability ~ m / 4  k) or t 3 overlaps with a previ- 
ously defined site ( with probability : /&- l+h , ,  
where hi = j - i, i < j ,  and a, is the rightmost 
probe at that site). It follows that % is at most 
m/4 k + (1/4"-') E,~, 1/4h' < m/4k + 1/3.4"-'. 
By a straightforward induction the lemma fol- 
lows. 

O 

By the same argument, we establish that 
defining as t j ,  j = r + 1 , . . .  , k - 1, the subse- 
quence 

a(ta+l,ta+s) -- a(t+rs+j, t+(r+l)s+j-1),  

ata+,s ---- at+j+(r+i)si ,  

for i = 2 , . . .  , r + 1, we obtain 

Coro l l a ry  1 The probability 

Prob( ( t ,+ , , . . .  , tk-,)l*,) 

oft = ( t r+ l , . . .  , tk-1) occurring, conditional on 
t~, in a target sequence o f  length m is bounded 
above by 

( m  1 ) "-1 { 'm'~ ' - ' (  4~''~ "-' 
.-~ + -~_ ~ = k 4k ) 1 + -~m ] 

We now prove the main result of this paper. 

T h e o r e m  1 The probability that the advanced 
algorithm fails to reconstruct a (maximum-entropy)  
random DNA m - m e t  is bounded above by 

4 " + " ~  (1 + 4" h~-I 4 k ,~ "~ 

Proof :  With the previous notation, extension 
beyond position rs + : occurs supported either 
by fooling probes (probabilistically) or by a seg- 
ment of the target sequence (deterministically). 
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We consider the first case, denoted here Event 
&.  

1. Event El. A spurious path, starting at po- 
sition 1 (deterministically extended up to posi- 
tion rs + 1 by Lemma 1) is extended up to posi- 
tion H. Extension between positions rs + 2 and 
H must be supported by fooling probes. Let fp 
be the probability of extension up to position 
rs + p. Clearly, fl  = t. Extension to posi- 
tion rs + p + 1 occurs either if the current fool- 
ing probe is isolated and therefore constrains all 
but its last symbol (with probability m / 4 k - x ) ,  
or if it overlaps with a subset of the preceding 
( r + l ) s - 1  fooling probes. Arguing as in Lemma 
2, we only need consider the closest among the 
overlapping probes: therefore, arguing in terms 
of constrained symbols, we conclude that  

f,,+, </p 4-z:r_, 

(4-rzr-, (: v- '  +4r ) p = m + ) 

It is immediate that the above quanti ty van- 
ishes exponentially with p, so that,  assuming 
that an appropriate (small) value ofp is adopted, 
Event £1 will be neglected henceforth. 

When the path extension is deterministically 
supported by a sequence segment, the latter ei- 
ther does not contain (Event E2) or does contain 
(Event E3) the ambiguous-branching position. 
We now examine these two cases. 

1. Event C2. In this case, the spectrum pro- 
vides evidence of two segments au2 and bu2 
with lu21 = (r + 1 ) s -  x, lal = Ibl = X a n d  
a ~ b: Extension of both paths proceeds deter- 
ministically and the algorithm fails. The target 
sequence contains the (correct) segment ulau2 
(with lu, I = (r  + 1)s - 1) while uxbu2 is (nor- 
mally) emulated by fooling probes. With the 
only simplifying assumption that  ulau2 and the 
fooling probes are disjoint, we remark: The 
position of ulauz can be chosen in (approxi- 
mately) m ways, symbol b can be chosen in 3 



ways, and the probability that Ulbu2 be emu- 
lated by fooling probes is Prob(t0, t l , . . .  , tk-1). 
Using Lemma 2, Corollary 1, and the fact that 
the probability of probe to is (3m/4k), we ob- 
tain that  the probability of event C1 is bounded 
above by 

am (711)r ( 4rTl~r (m)s-1 ( is ) s-1 
-4 1+ ) -4 + 

(l~)k ( 4rTl~r ( is ) s-1 

2. Event Ca. The target sequence contains an 
actual branching point, i.e., it contains the (cor- 
rect) string ulvlau2v2 (with lulvl] = ]u2v21 = 
(r  + 1 ) s -  1,1al = 1, I.,a  l = (r + 1)s, and 
o __ Ivll < (r + 1)s) and a (fooling) string v, bu2 
with b # a. In addition, depending upon the 
length lull there are at most ( k -  1) fooling 
probes emulating the subsequence UlVlb. The 
probability of the occurrence of VlbU2 is approx- 
imately m/4 ('+l)s, and the probability of the 
emulated subsequence ulvlb is easily shown to 
be bounded above by 4k/(4 k - m). It follows 
that  the probability of event £2 is at most 

4 k m 
3m 4k _ m 4(*+1)" 

Since only Events £2 and £3 are significant 
for the failure of the algorithm, the theorem is 
proved. [] 

R e m a r k .  For a reasonably small value of p, 
choosing H - rs + 1 + p guarantees that  Event 
C1 can be neglected. Referring to Expression 
(1), the second term is'dominant for small and 
large values of r, but it becomes negligible for 
t he  most efficient choices of r, i.e., for r ~ s - 
1. Therefore, for r ~ s - 1 ~ k/2, we obtain 

4 r + l  ~ 4 s 
(I + -f~-j ~ (i + ~-~) ~ i and 

Prob(failure) ~ 3m ~ 
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so Prob(failure) < e, for a conveniently small 
e, leads to 

r n< :4  * 

i.e., for any fixed confidence value, the length of 
the unambiguously reconstructible sequence is 
within a small constant factor of the information- 
theoretic bound 4 k- ~ for very small values of k 
(for example, for e = 0.05,k = 9, the exponent 
is ~ 9 - 1.23). 

4 Running time of the algorithm 

Since the algorithm performs a type of "bounded 
breadth-first-search" of all possible sequence re- 
constructions from the given spectrum, it is im- 
portant to verify that  the running time of the 
algorithm is not significantly degraded by this 
search. In this section we give a high-confidence 
bound on the execution time. The time perfor- 
mance is expressed in terms of number of ac- 
cesses to the spectrum, each assumed doable in 
O(1) average time by standard hashing tech- 
niques. 

In our analysis, we assume that the algo- 
r i thm operates at its best performance for a 
given confidence level, i.e., that m and k are 
related by m = 4 k-1-'1, for some 7/> 0. 

Theorem 2 The total number of sequence po- 
sitions (one-base extensions) associated with am- 
biguous branchings is w.h.p, o(m/ log m). 

Ske tch  of proof: We bound the number of 
ambiguous branchings on the target sequence. 
Arguing as in Lemma 2, we conclude that their 
expected number is 

/ /  --- 

4 \4  k - l )  1 + 
4r+lm ) r 

Since, m = 4 k-l-n,  and r ~ (1/4)log 2 m, we 
conclude that  v = ml -g ,  which is strictly sub- 
linear in m. Paths issuing from an ambigu- 
ous branching are explored only up to length 
H = O(rs) = O((logm)2). The probability of 



a branch on any path issuing from an ambigu- 
ous branching is bounded by 

Thus, we can prove that the total number of 
accesses associated with the ambiguous branch- 
ings is w.h.p, uH = O(ml-g log 2 m) = o(m/ log m). 

Q 
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we show that with high probability the sum Z 
is O(m). 0 

We close this section by observing, that when 
we consider the actual running time of the al- 
gorithm for a fixed k and m < 4 k-l-~, the work 
due to the processing of the ambiguous branch- 
ing becomes the dominant factor for large val- 
ues of m, so that for m E [4k-1-~/2, 4 k-l-~] the 
number of accesses is proportional to O(m log 2 m). 
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Figure 2: Diagrams of the frequency of cor- 
rect reconstruction and of a lower bound to the 
probability of success for (4, 4)-probes as a func- 
tion of the sequence length 
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