
40

Policy Adaptation in Hierarchical Attribute-based
Access Control Systems

SAPTARSHI DAS and SHAMIK SURAL, Indian Institute of Technology Kharagpur, India

JAIDEEP VAIDYA and VIJAYALAKSHMI ATLURI, Rutgers Business School, USA

In Attribute-Based Access Control (ABAC), access to resources is given based on the attributes of subjects,

objects, and environment. There is an imminent need for the development of efficient algorithms that en-

able migration to ABAC. However, existing policy mining approaches do not consider possible adaptation to

the policy of a similar organization. In this article, we address the problem of automatically determining an

optimal assignment of attribute values to subjects for enabling the desired accesses to be granted while min-

imizing the number of ABAC rules used by each subject or other appropriate metrics. We show the problem

to be NP-Complete and propose a heuristic solution.

CCS Concepts: • Security and privacy → Access control;

Additional Key Words and Phrases: ABAC policy, policy adaptation, attribute value hierarchy

ACM Reference format:

Saptarshi Das, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. 2019. Policy Adaptation in Hierarchi-

cal Attribute-based Access Control Systems. ACM Trans. Internet Technol. 19, 3, Article 40 (August 2019), 24

pages.

https://doi.org/10.1145/3323233

1 INTRODUCTION

Protection of organizational resources from unauthorized accesses is crucial for any organization.
Over the years, various access control models have been developed for achieving this goal. Tradi-
tional access control models include Mandatory Access Control (MAC) [13], Discretionary Access
Control (DAC) [8], and Role-Based Access Control (RBAC) [14]. In MAC, each entity is assigned a
pre-defined security level according to which accesses are determined. MAC was predominantly
used in government and defense organizations where confidentiality is of foremost importance.
In contrast, DAC enables an object owner to grant or revoke access privileges to other subjects.
The authorized set of accesses is typically maintained in the form of an Access Control Ma-
trix (ACM) [15]. While flexible, DAC has significant administrative overhead. Hence, Role-Based

Research reported in this publication was supported by the National Institutes of Health under award R01GM118574, and

by the National Science Foundation under awards CNS-1564034, CNS-1624503 and CNS-1747728. The content is solely the

responsibility of the authors and does not necessarily represent the official views of the agencies funding the research.

Authors’ addresses: S. Das and S. Sural, Dept. of Computer Science & Engineering, Indian Institute of Technology Kharag-

pur, West Bengal, 721302, India; emails: saptarshidas13@iitkgp.ac.in, shamik@cse.iitkgp.ac.in; J. Vaidya and V. Atluri, MSIS

Department, Rutgers University, 1 Washington Park Newark, NJ 07102-1803 USA; emails: jsvaidya@business.rutgers.edu,

atluri@rutgers.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1533-5399/2019/08-ART40 $15.00

https://doi.org/10.1145/3323233

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

https://doi.org/10.1145/3323233
mailto:permissions@acm.org
https://doi.org/10.1145/3323233
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3323233&domain=pdf&date_stamp=2019-08-17

40:2 S. Das et al.

Access Control (RBAC) [14] is used as the de facto standard means for access in most commercial
organizations. Instead of directly assigning permissions to users, the permissions are associated
with specific roles. Users acquire their necessary permissions by being assigned membership to
suitable roles. This reduces administrative overhead significantly, since users with similar access
requirements are grouped into the same set of roles and the requisite permissions are included
in those roles. Thus, RBAC can provide considerable flexibility in access control in scenarios that
involve a known set of users. However, in situations that involve resource sharing among multiple
organizations, the set of users cannot be determined a priori. RBAC no longer remains the access
control model of choice in this context.

In recent years, Attribute-Based Access Control (ABAC) [6] has emerged as the appropriate ac-
cess control model for enforcing controlled access in dynamic environments. However, it obligates
organizations using traditional access control models to migrate to ABAC [16]. In ABAC, access is
mediated based on a set of attributes and their associated values, where each attribute represents
a particular characteristic of a subject, object, or the environment in which the access request
is being made. ABAC also includes a set of rules collectively called the organizational ABAC
policy. Thus, any organization migrating to ABAC would require an ABAC policy to be identified.
The process of constructing a sound and complete ABAC policy is called policy engineering [16],
which is considered to be one of the most critical aspects of implementing ABAC. Existing policy
engineering approaches can be classified as either top-down or bottom-up. A top-down approach
first identifies the functionally independent units of the organizational processes and then asso-
ciates them with required accesses. Finally, rules are constructed from the associated accesses. In
contrast, bottom-up approaches capitalize on the existing accesses available in the organization to
construct the ABAC policy. As a third alternative, our view is that, instead of developing the policy
ab initio, adapting to the policy of a similar organization would speed-up the process of migration.

In this work, it is assumed that the new organization has the same set of subject attributes,
object attributes, environment attributes, as well as operations as that of the existing organization
whose policy it is trying to adapt to. For instance, a new university can adapt to the existing
ABAC policy of another university. The assumption mentioned above is realistic in such a scenario,
since the typical attributes of different universities tend to be similar. Almost all universities use
professor, associate professor, assistant professor, student, teaching assistant, secretary, and so on, as
the possible values for the subject attribute designation. Similarly, assignment, transcript, and so
on, are the possible values for the object attribute type; while fall, spring, summer, and so on, are
the possible values for the environment attribute semester. Likewise, a hospital can adapt to the
policy of another hospital that has similar attribute values, such as doctor, nurse, attendant, ward,
prescription, test report, day shift, night shift, and so on. We also emphasize that cross-domain policy
adaptation, like between a university and a hospital, is not envisaged here. The above-mentioned
process of adapting to an existing policy, referred to as policy adaptation [3], can be achieved by
appropriate assignment of attribute values to the users (interchangeably called “subjects” in this
article).

While a suitable assignment pertains to an association of meaningful attribute values to dif-
ferent subject attributes, one also needs to take into account any hierarchy in the values of the
subject attributes. Hierarchy, which is inevitably present in subject attributes, determines the flow
of control and authority in any organization. For instance, a subject attribute Designation can have
a value Project Manager that is senior to the attribute value Team Member in the hierarchy. The
implication is that, a subject having a hierarchically senior value is permitted to access all the
resources accessible to a subject having a junior value in the hierarchy.

Utilizing the hierarchy of subject attribute values ensures assignment of subject attribute-value
pairs to subjects in a way that is close to real-life situations. Moreover, it helps in reducing

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:3

various commonly used measures of goodness of a policy set, such as the number of rules,
Weighted Structural Complexity (WSC) [11], and so on. Therefore, the assignment of values to
the subject attributes with respect to their hierarchies results in a more suitable and meaningful
mapping. Once the policy adaptation process is successfully completed, the shared policy can be
used by the target organization for regulating access to its resources.

In Reference [3], we introduced the problem of policy adaptation. The current article signif-
icantly extends and expands that work by including attribute hierarchy and environmental at-
tributes. As mentioned above, use of hierarchy makes the process more close to the requirements
of real-world organizations. Additionally, use of environmental attributes is being done for the first
time in policy engineering, to the best of our knowledge. Environmental attributes form another
unique feature of ABAC, making it subsume all other access control models including temporal
[9], spatial [1], and spatio-temporal extensions of RBAC [12]. To summarize, in this article, we
propose a migration strategy that enables an organization using a traditional access control model
to adapt to the existing ABAC policy of a similar organization by an optimal assignment of sub-
ject attribute values in the presence of attribute hierarchy and environmental conditions. Here,
optimality is primarily in the number of rules required for each subject to fulfill all its authorized
accesses. This ensures efficient evaluation of rules during policy enforcement, thus enabling faster
access decisions. In addition to the number of rules, we also analyze the quality of the generated
subject attribute-value pairs using the Weighted Structural Complexity (WSC) [11] measure, which
quantifies the size of the assigned subject attribute-value pairs.

2 PRELIMINARIES

In this section, we introduce the terms and notations used for representing the various components
of an ABAC system that will be used throughout the article. Then, we introduce the concept of
attribute hierarchy in ABAC.

2.1 Components of ABAC Model

ABAC consists of subjects, objects, environmental conditions, and access control rules. A subject
is usually a human or an active non-person entity, such as an autonomous service or application.
An object or resource is an entity that needs to be protected from unauthorized access. An envi-
ronment defines the context in which an access request is made, e.g., time of day, location of access,
and so on. Every subject is associated with several attributes, such as designation and experience,
which either individually or in combination compose an expression to identify a group of subjects
having similar access rights. Similarly, for each object, appropriate values are assigned to a set
of object attributes. Typical examples of object attributes include file type, sensitivity level, date of

creation, and so on. Rules collectively define the access control policy of the organization. A set
of formal notations is given below that will be used for precise formulation of the problem being
addressed and its solution.

• S: Set of authorized users in an organization. Each element of S is represented as si , for
1 ≤ i ≤ |S |.

• O: Set of organizational resources or objects. Each element of O is represented as oi , for
1 ≤ i ≤ |O |.

• E: Set of environmental conditions in which access requests can be made. Each element of
E is represented as ei , for 1 ≤ i ≤ |E |.

• Sa : Set of subject attributes that can affect the decision when an access request is made.
Each element of Sa is represented as sai , for 1 ≤ i ≤ |Sa |. Each sai can be assigned values

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:4 S. Das et al.

Table 1. Subject Attributes and

Their Possible Values

Subject attribute
Possible values of subject
attribute

S .Desiдnation {DI R, HOD, REG, P RO F ,
ST U , CLRK }

S .Depar tment {CSE, ECE, F I N }

Table 2. Object Attributes and

Their Possible Values

Object attributes
Possible values of object
attribute

O .T ype {tender, a/c_daily,
assiдnment, qn_paper }

O .Depar tment {CSE, ECE, F I N }

from a set of possible attribute values SVi . Similarly, Oa and Ea represent the sets of object
attributes and environment attributes, respectively.

• Fs : S × Sa → {k |k is a subject attribute value}. It is a function that associates a value for any
subject attribute to a subject. The functions Fo and Fe are similarly defined for object and
environment, respectively. Essentially, assignment of attribute values to attributes of all the
entities is performed by these functions.

• OP : Set of allowed operations in the system. Each element of OP is represented as opi , for
1 ≤ i ≤ |OP |.

• R: Set of rules that forms an ABAC policy. Each element of R is a rule represented as ri , for
1 ≤ i ≤ |R |.

• Sv : A set containing assignment of values to all the subject attributes, also referred to as
subject attribute-value pairs, for all the subjects. Similarly, Ov and Ev represent the sets
containing assignment of values to attributes for all objects and environments, respectively.

Each rule r ∈ R is a 4-tuple of the form < SC,OC,EC,op >, where SC , OC , and EC represent a
set of subject attribute-value pairs, a set of object attribute-value pairs, and a set of environment
attribute-value pairs, respectively. r [SC] represents the subject attribute-value pairs associated
with rule r . r [SC] is alternatively called the subject conditions associated with rule r . r [OC], r [EC],
and r [op] are also defined similarly. op represents any particular operation. Each attribute-value
pair av ∈ {SC ∪OC ∪ EC} is an equality of the form a = c or a = not c , where a is the name of an
attribute and c is the value associated with a and not c represents the set of all the possible values
of a, except c . c is either a constant or a don′t care represented as “−”. An access or a permission is
represented by a 4-tuple. For example, an access < s,o, e,op > means that a subject s can perform
an operation op on an object o under an environment condition e . The inclusion of environment
attributes in ABAC gives it a dynamic nature, i.e., the permissions given to a subject can change
with various environmental conditions.

Example 1. Consider a university ABC that has three departments: Computer Science and Engi-
neering (CSE), Electronics and Communication Engineering (ECE), and Finance (FIN). Each sub-
ject can have one of the following designations: Director (DIR), Head of the Department (HOD),
Registrar (REG), Professor (PROF), Finance Officer (FINO), Student (STU), and Clerk (CLRK). Each
object can be of one of the following types: tender, daily account (a/c_daily), assignment, and ques-
tion paper (qn_paper). The location of an access request can be either office or residence, and the
time of an access request can be a weekday or a weekend. Let Alice and Bob be two subjects of
the university. Each subject has two attributes, namely, S.Designation and S.Department. Tables 1,
2, and 3 respectively represent the set of subject, object, and environment attributes along with
their possible values. The attributes and their corresponding values for the subjects are given in
Table 4. Table 5 contains the ABAC rules of the university. Table 6 shows the values assigned to
object attributes for each object.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:5

Table 3. Environment Attributes and Their

Possible Values

Environment attribute Possible values of environment attribute

E .Location {office, residence}
E .T ime {weekday, weekend}

Table 4. Subject to Subject Attribute

Value Assignment

S.Designation S.Department

Bob ST U CSE

Alice P RO F CSE

Table 5. ABAC Policy to be Re-used Where Office, Residence, Weekday, and Weekend are

Represented by off., res., wd, and wn, Respectively

Subject part Object part Environment part
S.Designation S.Department O.Type O.Department E.Location E.Time

r1 DIR - - - - -
r2 HOD CSE tender CSE off. wd
r3 HOD CSE not tender - - wd
r4 HOD ECE not tender - - wd
r5 HOD ECE tender ECE off. wd
r6 REG - not tender not FIN - -
r7 PROF - a/c_daily - off. wd
r8 PROF - assignment - - -
r9 PROF CSE qn_paper CSE - -
r10 PROF ECE qn_paper ECE - -
r11 FINO - not tender FIN off. -
r12 STU CSE assignment CSE res. wn
r13 STU ECE assignment ECE res. wn
r14 CLRK - a/c_daily - off. wd
r15 REG - tender not FIN off. wd
r16 REG - not tender FIN off. wd

From Tables 1–6, it can be seen that Bob is permitted to access o6 using rule r12, Alice gets the
permission to access objects o5,o6,o7, and o8 using rules r8, r9, and r14.

2.2 Attribute Value Hierarchy in ABAC

The concept of hierarchy is inherently present in every organization expressing the flow of au-
thority and control. Hierarchies can be incorporated in ABAC by arranging the possible values of
a subject attribute with respect to their hierarchy. Figure 1 represents an instance of hierarchy of
attribute values for the subject attribute S.Designation. The attribute values are organized in the
form of a Directed Acyclic Graph (DAG) where the attribute values at the top of the graph are
more influential than those present at the lower levels.

It is natural that the relationship is directed, since if we say A and B are hierarchically related,
one would need to know if A is senior to B or the other way around. Further, it is acyclic, since a
cycle would imply (either directly or transitively) A is senior to B and at the same time B is senior
to A, which is not a common occurrence in any organization.

For example, a directed arrow (→) between the attribute values Director and HOD signifies that
all the accesses permitted to the HOD are also permitted to the Director. The Director can have
additional accesses beyond these. For instance, let there be three subjects named Alice, Bob, and
Cathy. The objects that need to be accessed by these subjects are given below:

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:6 S. Das et al.

Fig. 1. Example hierarchy for subject attribute S.Designation.

Alice – {doc1,doc2,doc3,doc4}
Bob – {doc1,doc2,doc5}
Cathy – {doc2,doc5}
In such a scenario, it can be said that Bob is more influential (higher in the hierarchy) thanCathy,
since Bob can access all the objects accessible to Cathy along with additional objects. However,
although Alice is permitted to access a higher number of objects as compared to Bob, she is not
considered to be more influential, since there is an object (doc5) that can be accessed by Bob but
not Alice .

Definition 2.1 (Attribute Value Hierarchy). The attribute value hierarchy for a particular subject
attribute sai having the possible set of values SVi is denoted by AVH, where AVH ⊆ SVi × SVi is a
partial order on SVi called the attribute value hierarchy, denoted as ≥.

3 POLICY ADAPTATION PROBLEM WITH ATTRIBUTE VALUE HIERARCHY

(POLAP-AVH)

As discussed in Section 1, an organization aspiring to migrate to ABAC requires an ABAC policy,
and the ability to adapt to an existing ABAC policy will result in a faster migration process. We
particularly consider situations in which a target organization indeed finds the ABAC policy of a
similar organization suitable for its own use. Here, similarity implies that the two organizations can
make use of a common set of attributes and have similar access rules. Since the characteristics of
the organizational resources are relatively more immutable compared to the properties of subjects,
we consider the object attributes and their associated values as inputs. Thus, the subject attributes
and their corresponding values can be decided algorithmically. From this perspective, one can
define the policy adaptation problem using attribute value hierarchy (PolAP-AVH) as the problem
of suitable assignment of values to the subject attributes with respect to an ABAC policy and a list
of authorized accesses. It needs to be emphasized here that the target organization does not use the
attribute-value assignments of the subjects or objects of the source organization. It initially assigns
attribute-value pairs to its own objects and environment and then uses the proposed approach
to determine the subject-to-subject attribute-value pair assignments, so using the policy being
adapted to, all the requisite accesses in its ACL may be granted. This is motivated by the fact
that any object in an organization is inherently associated with several attributes. For instance, a
student record in a university is associated with attributes such as department, course, and so on,
each having a set of possible values it can take, such as CSE, ECE (for the attribute department),
and DBMS, Algorithms (for the attribute course). The organization system administrators/security
officers would be aware of this information. Similarly, the environment attributes, such as location,

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:7

Table 6. Objects with Their

Associated Attributes

and Their Values

O.Type O.Department

o1 tender FIN

o2 tender CSE

o3 tender ECE

o4 a/c_record FIN

o5 a/c_daily FIN

o6 assignment CSE

o7 assignment ECE

o8 qn_paper CSE

o9 qn_paper ECE

Table 7. Objects Accessible

Through Each Rule

Rule Objects

r1 o1, o2, o3, o4, o5, o6, o7, o8, o9

r2 o2

r3 o4, o5, o6, o7, o8, o9

r4 o4, o5, o6, o7, o8, o9

r5 o3

r6 o6, o7, o8, o9

r7 o5

r8 o6, o7

r9 o8

r10 o9

r11 o4, o5

r12 o6

r13 o7

r14 o5

r15 o2, o3

r16 o4, o5

Table 8. Rules Using Which

Each Object can be Accessed

Object Rules

o1 r1

o2 r1, r2, r15

o3 r1, r5, r15

o4 r1, r3, r4, r11, r16

o5 r1, r3, r4, r7, r11, r14, r16

o6 r1, r3, r4, r6, r8, r12

o7 r1, r3, r4, r6, r8, r13

o8 r1, r3, r4, r6, r9

o9 r1, r3, r4, r6, r10

Table 9. Desired Accesses Along with Environment Conditions Where Office, Residence, Weekday,

and Weekend are Represented by off., res., wd, and wn, Respectively

o1 o2 o3 o4 o5 o6 o7 o8 o9

s1 (-,-) (-,-) (-,-) (-,-) (-,-) (-,-) (-,-) (-,-) (-,-)
s2 0 (off.,wd) 0 (-,wd) (-,wd) (-,wd) (-,wd) (-,wd) (-,wd)
s3 0 0 (-,wd) (-,wd) (-,wd) (-,wd) (-,wd) (-,wd) (-,wd)
s4 0 (-,-) (-,-) (-,-) (-,-) (-,-) (-,-) (-,-) (-,-)
s5 0 0 0 0 (off.,wd) (-,-) (-,-) (-,-) 0
s6 0 0 0 0 (off.,wd) (-,-) (-,-) 0 (-,-)
s7 0 0 0 0 0 (res.,wn) 0 0 0
s8 0 0 0 0 0 0 (res.,wn) 0 0
s9 0 0 0 (off.,-) (off.,-) 0 0 0 0
s10 0 0 0 0 (off.,wd) 0 0 0 0

day of week, and so on, and their possible values, such as IP address (for the attribute location) and
Monday, Tuesday, and so on, (for the attribute day of week) that affect access decisions would
usually be available with them.

While any valid assignment of subject attribute-value pairs would suffice for this primary re-
quirement, we introduce an optimization requirement to PolAP-AVH that necessitates the attribute
value assignments to be such that the number of rules used by each subject to fulfill all its required
accesses is minimum. Further, we introduce the concept of hierarchical attribute values for the sub-
ject attributes. We extract the hierarchical information from the given ABAC policy and show that
using this hierarchical information generates more meaningful assignments of attribute values to
subjects and further reduces the number of rules used by a subject. For notational simplicity, we
refer to the optimization problem as PolAP-AVH throughout the article. The formal definition of
PolAP-AVH is given below.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:8 S. Das et al.

Definition 3.1 (PolAP-AVH). Given an ABAC policy P , a set S of subjects, setO of objects, setOa

of object attributes, setOv of attribute-value assignments of all objects, set E of environment con-
ditions, set Ea of environment attributes, set Ev of attribute-value assignments of all environment
conditions, set OP of possible operations, and a desired set of accesses, in the form of an access
control list (ACL), L, determine all the subject attribute hierarchies and using it assign subject
attribute-value pairs to all subjects such that all the desired accesses are satisfied and each subject
uses the minimum number of rules to gain all the accesses in L.

Solving PolAP-AVH enables an organization to adapt to an existing ABAC policy by appropri-
ate assignment of subject attribute-value pairs to its users. A solution to PolAP-AVH must not
allow any additional accesses except the ones contained in L, i.e., there should not be any security
violation.

3.1 Complexity Analysis

In this sub-section, we do a formal analysis of the complexity of PolAP-AVH. We show that the
problem is NP-Complete. To develop the proof, we first formulate a decision version of PolAP-
AVH.

Definition 3.2 (Decision Version of PolAP-AVH (D-PolAP-AVH)). Given R, L, S , O , Oa , Ov , Ea , Ev ,
OP as mentioned in Definition 3.1, and an integer k , does there exist a possible assignment of
subject attribute-value pairs such that the required accesses in L are satisfied and each s ∈ S uses

a set of rules R
′

to obtain all its desired accesses and |R′ | ≤ k?

For proving NP-completeness of D-PolAP-AVH, we make use of a known NP-Complete problem,
namely, the Minimum Hitting Set (MHS) problem, which is defined below.

Definition 3.3 (Minimum Hitting Set (MHS) Problem). Given a universal set U and a collection

ST of subsets ofU where each sti ⊆ U and
⋃ |ST |

i=1 sti = U , find the smallest subset H ⊆ U such that
every set in ST is hit by H , i.e., ∀sti ∈ ST : sti ∩ H � ϕ.

Definition 3.4 (Decision Version of Minimum Hitting Set (D-MHS) Problem). Given a collection ST
of subsets of a universal set U and an integer t , does there exist a hitting set H such that |H | ≤ t .

Theorem 1. D-PolAP-AVH is NP-Complete.

Proof. Given a certificate consisting of a set of rules R, a collection RS containing subsets of
rules in R, an assignment of subject attribute-value pairs such that a subject requires a set of rules

R
′

to fulfill all its desired accesses and an integer k , it can be verified in polynomial time whether

|R′ | ≤ k by counting the number of rules in R
′
. It can also be verified in polynomial time that R

and RS are consistent with R
′

by checking that each set of rules in RS contains at least one rule

from R
′
. Thus, D-PolAP-AVH is in NP.

Now, we prove that D-MHS ≤p D-PolAP-AVH. Let, < U , S,k > be an instance of D-MHS, where
U is the universal set containingn elements, i.e.,U = {u1,u2, . . . ,un }. Without loss of generality, we
can assume each ui to be an integer (i.e., each ui ∈ Z), sinceU is either finite or countably infinite.
S consists ofm subsets s1, s2, . . . , sm , where each si ⊆ U and

⋃m
i=1 si = U , and k is an integer.

Let F : Z→ Z4 be a function such that F (ui) = (ui ,ui + 1,ui + 2,ui + 3). Let us denote
(ui ,ui + 1,ui + 2,ui + 3) by ri . Therefore, F (ui) = ri and a rule of D-PolAP-AVH ri can be con-
structed from an elementui ∈ U , whereui ,ui + 1,ui + 2 andui + 3 respectively represent a subject
attribute value, an object attribute value, an environment attribute value, and an operation. Thus,
using F , we can construct an ABAC rule from a given element in constant time. F takes each
ui ∈ U and returns a rule ri . Therefore, from a set of elements U , we can obtain a set of rules R in

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:9

O (n) time, where |U | = n. Similarly, from S containing m subsets of U , a collection of subsets of
D-PolAP-AVH rules RS can be constructed using the function F .

Thus, from the given instance of D-MHS, an instance of D-PolAP-AVH < R,RS,k
′
> can be

constructed using the function F , where R is a set of n authorization rules a user Alice needs to
fulfill all her required accesses, i.e., R = {r1, r2, . . . , rn }. RS consists of m subsets rs1, rs2, . . . , rsm ,
where each rsi ⊆ R such that each rsi corresponds to a set of rules that Alice can use to fulfill a

particular access, and finally setting k
′
= k .

Let R
′

be a solution to the constructed instance of D-PolAP-AVH such that |R′ | ≤ k and every

rsi ∩ R
′
� ϕ. Therefore, < R,RS,k > returnsTRUE and R

′ ⊆ R. Let H be a solution to the instance
of D-MHS. To complete the proof, we show that the solution to the instance of D-MHS (consist-
ing of H) returns TRUE, i.e., |H | ≤ k if and only if the solution to the instance of D-PolAP-AVH

(consisting of R
′
) returns TRUE, i.e., |R′ | ≤ k .

Now, a solution to the instance of D-MHS can be obtained from the given instance of D-PolAP-
AVH as follows: Since for each ui ∈ U , there is a corresponding ri ∈ R, there is always an element
in U for a rule in R. Similarly, for each subset rsi of rules, we can obtain a subset of elements

si ∈ S . H can be constructed by selecting the elements inU corresponding to the rules in R
′
. Now,

if R
′

contains at least one element from each of the subset of rules in RS , then H will also con-
tain at least one element from each of the subset of elements in S , i.e., for each si ∈ S , si ∩ H � ϕ
and |H | = k . Therefore, H is a valid solution to the instance of D-MHS and < U , S,k > returns
TRUE.

4 HEURISTIC APPROACH FOR SOLVING POLAP-AVH

In Section 3, it has been established that the problem of determining a minimal set of rules for each
subject is NP-Complete. Therefore, it is not likely that PolAP-AVH can be solved deterministically
in polynomial time. This necessitates employing a heuristic approach to solve PolAP-AVH, which
we present in this section. A greedy heuristic utilized for solving the minimum hitting set problem
[4] is suitably used in our proposed solution. The overall algorithm for solving PolAP-AVH is
given in Algorithm 1. For each subject, it computes an appropriate assignment of values to all the
attributes and a set of rules by which the subject can acquire all the permitted accesses in L when
a set of objects O , a set of subjects S , a set Ov containing attribute-value pairs corresponding to
each object, a list of desired accesses L, and a policy R are given as input.

Algorithm 1 involves three phases, the first consisting of four steps, the second having a single
step, followed by a third phase involving two steps. In the following sub-sections, we explain each
phase in detail.

4.1 Rule Set Generation

For each subject, this phase constructs a collection of sets that compose rules where each set of
rule corresponds to a specific access allowed to the subject. The rule set generation phase involves
four steps as enumerated below:

Step 1.1 Generate a set of rules corresponding to each object

This is the first step of phase 1 of Algorithm 1 (Line 1). For each object, it finds the set of rules
that can be used to access that object. The detailed procedure for this step is given in Algorithm 2.
It takes a set of objects O , a set Ov containing attribute-value pairs corresponding to each object,
and a set of rules R as inputs and generates a set RO that, for each object, contains a set of rules
through which that object can be accessed. Essentially, for each object, Algorithm 2 iterates over
all the rules in R. All the object attribute-value pairs of a rule r (r [OC]) also being associated with

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:10 S. Das et al.

ALGORITHM 1: Policy adaptation

1: procedure PolAP-AVH(S,O,Ov ,L,R)

2: RO ← GENERATE_RFO (O,Ov ,R)
3: OR ← GENERATE_OFR (O,Ov ,R)
4: OS ← GENERATE_AFS (S,L)
5: AH ← GENERATE_HIERARCHY (R,SA,OR)
6: SR ← []

7: Sv ← []

8: for i ← 1 to |S | do � iterating over all subjects

9: RS ← дenerate_SORO (i,Ov ,RO,OR,OS) � generates sets of rules for a subject

10: if RS == Null then

11: exit
12: H ← GENERATE_RFS (RS) � generate minimal set of rules for a subject

13: insert (SR,H)
14: for j ← 1 to |H | do

15: Sv [i]← Sv [i] ∪ {H [j][i]} � assign attribute values to a subject

16: for i ← 1 to |Sv | do

17: for j ← 1 to |Sv [i]| do

18: if |Sv [i][j]| ≥ 2 then � checking for multi-valued attributes

19: for k ← 1 to |Sv [i][j]| do

20: temp ←max (AH [j])
21: if AH [j][k]! = temp then � comparing the hierarchy values

22: remove Sv [i][j][k] from Sv [i][j] � removing attribute value having a lower

hierarchy value

23: return Sv � return a set containing attribute value assignments for all subjects

ALGORITHM 2: Generate rules for each object

1: procedure generate_RFO(O,Ov ,R)

2: RO ← []

3: for i ← 1 to |O | do � iterating over all objects

4: temp ← []

5: for j ← 1 to |R | do � iterating over all rules

6: if R[j][OC] ⊆ Ov [i] then � checking whether an object is accessible by a rule

7: temp ← temp ∪ {R[j]}
8: insert (RO, temp)

9: return RO

an object o (Line 6) signifies that the object o can be accessed using rule r . The worst-case time
complexity of this algorithm is O (|O | |R | |Ov |).
Step 1.2 Generate a set of objects corresponding to each rule

The second step (Line 3, Algorithm 1) of this phase is the dual of the first step, i.e., it iterates over
all the rules and, for each rule, it generates the set of objects that can be accessed using that rule.
The detailed steps are given in Algorithm 3. The inputs to this step are similar to Step 1.1. For each
rule r ∈ R, the object attribute-value pairs associated with r are compared with the set of object
attribute-value pairs associated with each object. If the object attribute-value pairs associated with
a rule r ∈ R are also associated with o (Line 6), it indicates that object o can be accessed through
r . So, o is added to the set of objects for r (Line 7). Essentially, for each rule, a set of objects is

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:11

ALGORITHM 3: Generate objects for each rule

1: procedure GENERATE_OFR(O,Ov ,R)

2: OR ← []

3: for i ← 1 to |R | do � iterating over all the rules

4: temp ← []

5: for j ← 1 to |Ov | do � iterating over attribute value assignments for all objects

6: if R[i][OC] ⊆ Ov [j] then � checking whether a rule can be used to access an object

7: temp ← temp ∪ {O[j]}
8: insert (OR, temp)

9: return OR

ALGORITHM 4: Generate accesses for each subject

1: procedure GENERATE_AFS(S,L)

2: OS ← []

3: for i ← 1 to |S | do � iterating over all the subjects

4: temp ← []

5: for j ← 1 to |L| do � iterating over all the desired accesses

6: if S[i] ∈ L[j] then � checking whether a subject is present in an access

7: insert (temp, (L[j][1],L[j][2]))

8: insert (OS, temp)

9: return OS

generated such that each object in the set can be accessed through that rule. The worst-case time
complexity of this algorithm is O (|R | |O | |Ov |).
Step 1.3. Generate the set of accesses for each subject

The third step (Line 4, Algorithm 1) determines the object-operation pairs permitted for each sub-
ject. The algorithm for this step is given in Algorithm 4, which takes a set of subjects S and a list
L of desired accesses as inputs and generates a set OS containing sets of object-operation pairs
entitled to each subject. For each subject s , the algorithm iterates over all the accesses in L (Line 5).
If s is present in an access (Line 6), the object and operation associated with that access are added
to the set of object-operation pairs for s . For instance, if an access (s,o,op) is encountered, (o,op)
is added as an object-operation pair allowed to s . The worst-case time complexity of Algorithm 4
is O (|S | |L|)
Step 1.4. Generate collection of rule sets for each subject

The fourth step (Lines 6–11, Algorithm 1) generates a collection of sets of rules, where each set
consists of rules that can be used to access a specific object-operation pair allowed to a subject.
Therefore, for a subject, the collection of sets contains a set of rules corresponding to each object-
operation pair permitted to the subject. The collection of rule sets for subjects is generated by
constructing a Subject-Object-Rule-Object (SORO) tree for each subject. The detailed steps of the
algorithm for building a SORO tree is given in Algorithm 5, whose worst-case time complexity is
O (|L| + |L| |R | + |S | |R |).

Definition 4.1 (Subject-Object-Rule-Object (SORO) Tree). A SORO tree is an n-ary tree having 4
levels. The root (first level) of a SORO tree is a subject. In the second level, the object-operation
pairs permitted to that subject are added as child nodes. The third level is constructed using the
rules through which the objects in the second level can be accessed. The fourth level is constructed
using the objects accessible through the rules in the third level.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:12 S. Das et al.

ALGORITHM 5: Generate rule-sets for each subject

1: procedure GENERATE_SORO(i,Ov ,RO,OR,OS)

2: ST ← OS[i] � obtain all the object-operation pairs entitled to ith subject

3: ST
′ ← []

4: for each (oa ,opb) in ST do � iterating over all object-operation pairs in ST

5: ST
′ ← ST

′ ∪ {oa }
6: RS ← [] � RS will finally contain the sets of rules for the ith subject

7: for each (oc ,opd) in ST do � iterate over all object-operation pairs in ST

8: T ← RO[c] � obtain all the rules corresponding to an object in an object-operation pair

9: for each re in T do � iterate over all rules obtained

10: if re [op] � opd then � check whether the operations in the object-operation pair and the

rule match

11: RO[c]← RO[c] − {re } � discard the rule

12: insert (RS,RO[c])

13: RS
′ ← RS

14: for j ← 1 to |RS ′ | do � iterating over all rule sets

15: for each rf in RS
′
[j] do � iterating over rules in each rule set

16: UT ← OR[f] � obtain the objects corresponding to each rule

17: if UT − ST ′ � Null then � checking for unauthorized accesses

18: RS[j]← RS[j] − {rf } � pruning a rule allowing unauthorized access

19: if RS[j] = Null then

20: exit

21: return RS

The SORO tree for a given subject s is constructed by first initializing the tree with s as the
root. All the object-operation pairs permitted to s are added as child nodes of s . These object-
operation pairs are obtained from the sets of object-operation pairs generated by Algorithm 4. This
completes the second level of the SORO tree. For each object-operation pair in the second level, the
rules through which they can be accessed are added as child nodes of the object-operation pair to
complete the third level of the SORO tree. The rules that allow access to a specific object-operation
pair are obtained from the sets of rules generated by Algorithm 2. Finally, for each rule in the third
level, objects that can be accessed using that rule are added as child nodes of the rule. The objects
accessible through a given rule are obtained from the sets of objects generated by Algorithm 3.
Construction of the SORO tree is followed by a comparison of the objects in the leaf nodes of the
SORO tree with the objects present in the second level. If any extra object is found in the leaf nodes,
the parent of that extraneous object in the third level is removed from the SORO tree along with
all its children. An extraneous object in the leaf node represents an unauthorized access. Note
that, in this work, we assume that it is indeed possible to find attribute values for each subject
(and, correspondingly, object and environment) such that by using the rules in the policy to be
adapted to, all required accesses are satisfied while no extraneous accesses are enabled. Assuming
that one or more such assignments exists, our proposed approach will find an assignment that
minimizes the number of rules used by each subject to get its desired access. Removal of rules
allowing unauthorized accesses is termed as pruninд. After pruning, the rules in the third level
of the SORO tree are grouped into sets with respect to the object-operation pairs present in the
second level. This marks the end of the first phase of Algorithm 1. At this stage, for each subject,
we have a collection of sets of rules.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:13

ALGORITHM 6: Generate attribute value hierarchy

1: procedure GENERATE_HIERARCHY(R, SA,OR)

2: AH ← []

3: for each subject attribute sai ∈ SA do � iterating over all subject attributes

4: SVi ← all values of attribute sai

5: OSV ← []

6: for each value svi j ∈ SVi do � iterating over all the values of a particular attribute

7: objects ← []

8: rules ← all rules where svi j is present
9: temp ← objects accessible usinд all the elements of rules from OR

10: objects ← objects ∪ {temp}
11: insert (OSV ,objects)
12: initialize matrix G of size |SVi | × |SVi | with each G[i][j] := 0 � initializing the adjacency

weight matrix

13: for each G[i][j] ∈ G do

14: if i == j | |OSV [i] == OSV [j] then

15: G[i][j] := ∞ � ensures no self-loop in the hierarchy graph

16: if OSV [j] ⊂ OSV [i] then

17: G[i][j] := −1 � assignment of weight to an edge

18: G
′ ← []

19: for each node n ∈ G do

20: G
′ ← G

′ ∪ SELECT_EDGES (G,n)

21: G
′ ← construct a дraph from all the selected edдes

22: for each node n ∈ G′ do

23: temp ← []

24: hierarchyn ← heiдht (G
′
) − level (n) + 1 � computing the hierarchy value

25: insert (temp,hierarchyn)

26: insert (AH , temp)

27: return AH

4.2 Attribute Value Hierarchy Generation for Subject Attributes

The steps for generating attribute value hierarchy are described in this sub-section.

Step 2.1. Generation of Attribute Value Hierarchy for Each Subject Attribute

The second phase is composed of a single step (Line 6, Algorithm 1). This phase constructs the
hierarchy of the attribute values for each subject attribute. The procedure for generating the at-
tribute value hierarchy is given in Algorithm 6. This step takes a set of rules R, a set of subject
attributes SA, and a set OR containing sets of objects that can be accessed using each rule (gen-
erated using Algorithm 3) as input. At first, for each attribute sa, this step finds all the possible
values that the attribute can have (Line 3). Next, the rules are grouped according to the values of
sa, which is followed by determining the objects accessible by each of the group of rules (Lines
4–10). At this stage, we have a list of objects corresponding to each value of attribute sa. Using this,
an adjacency matrix G is constructed that consists of rows and columns corresponding to each of
the possible values of sa. Each element G[i][j] is assigned values as follows:
G[m][n] is set to∞ when both the row and the column correspond to the same attribute value

or both svim and svin cover the same set of subjects. When svim covers more objects in addition
to the ones covered by svin , G[m][n] is set to −1. Using G, a graph is constructed. For computing
the hierarchy, it is required to remove certain edges from G to obtain a DAG. For example, if there
are three edges a → b, b → c and a → c , we need to remove the edge a → c . Essentially, this is

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:14 S. Das et al.

ALGORITHM 7: Select edges

1: procedure SELECT_EDGES(G, s)
2: topoloдical_sort (G) � topologically sort the nodes of the graph

3: for each node v ∈ V of G do

4: d[v] := ∞
5: π [v] := nil

6: d[s] := 0

7: S := Φ
8: for each node u, taken in topoloдically sorted order do

9: for each node v ∈ Adj[u] do

10: if d[v] > d[u] +w (u,v) then � checking if a shorter path exists

11: d[v] := d[u] +w (u,v)
12: π [v] := u

13: S := S ∪ (u,v)

14: return S

the problem of finding the longest path between a pair of vertices in a DAG. The procedure for
finding the paths is given in Algorithm 7, which basically selects the edges that are to be kept in
the hierarchy graph. Finally, the attribute values in the leaf nodes of the graph are assigned the
value of 1 and the value is incremented by 1 for each of the higher levels (Line 24). Thus, the values
that are higher in the hierarchy tree are assigned higher values. The worst-case time complexity
of Algorithm 7 is O (|Sv |2), where |Sv | is the maximum number of values an attribute can take.

4.3 Generation of Minimal Rule Set and Subject Attribute-value Pairs

The third phase works in two steps. From the collection of sets of rules obtained at the end of the
first phase, for each subject, this phase initially creates a minimal set of rules; using which, the
subject can satisfy its required accesses and then assigns attribute-value pairs to the subjects.

Step 3.1. Determine Minimal Rule Set for Subjects

The first step of the third phase (Line 12, Algorithm 1) computes a minimal set of rules required
by each subject to satisfy all the desired accesses. It takes the rule sets generated by the previous
step and applies theGENERATE_RFS procedure given in Algorithm 8. The minimal set of rules is
computed using a greedy heuristic, where in each step the rule that is a member of the maximum
number of rule sets is selected. The greedy heuristic used in this approach is a loд(n)-approximate
solution where n is the number of rules. In situations where there are more than one minimum
hitting sets, any one is randomly selected. This procedure is similar to finding a minimum hitting
set from a collection of subsets of a universe. Here, in each step, the element occurring in the
maximum number of un-hit sets is selected.

Step 3.2. Subject Attribute-value Pairs Generation

The final step (Lines 14–23) of Algorithm 1 takes the set of rules generated in Step 3.1 as input. For
each subject, the subject attribute-value pairs associated with each rule in the minimal set of rules
for the subject are assigned to that subject. In case of multiple attribute values assigned to a subject
attribute, the attribute value with higher hierarchy is selected. At the end of the second phase of
Algorithm 1, for each subject, we obtain a set of rules by which all the desired accesses can be
satisfied. Also, we get the subject attribute-value pairs assigned to all the subjects. Finally, for the
subject attributes that have multiple values assigned (Line 18), the values that are hierarchically
senior are selected, and the rules containing hierarchically junior values are removed from the set
of rules (Line 22).

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:15

ALGORITHM 8: Generate minimal set of rules for subject

1: procedure GENERATE_RFS(RS)

2: U ← []

3: for i ← 1 to |RS | do

4: U ← U ∪ {RS[i]}
5: RS

′ ← []

6: while RS � Null do

7: select ui f rom U s .t . ui hits maximum number of sets from RS
8: remove already hit sets from RS

9: RS
′ ← RS

′ ∪ {ui }
10: return RS ′

4.4 Illustrative Example

We now elaborate on the workings of our proposed approach using an illustrative example involv-
ing a realistic scenario, where a new university wants to adapt to the ABAC policy of an existing
university. A similar situation arises while setting up a new branch of an existing organization. Let
us consider the university ABC mentioned in Section 2. Let subject s5 be an employee of ABC. The
policy to be adapted to is given in Table 9. The objects along with their attributes and correspond-
ing values are listed in Table 6. From the desired list of accesses permitted to each of the subjects
in Table 9, we can see that the subject s5 is permitted to access the objects o5,o6,o7, and o8 under
certain environment conditions. Although we consider the operation of the proposed solution on
all the entities, we show the subject attribute-value pair assignment to only one subject (s5) for the
sake of brevity.

In Step 1.1 of our proposed solution to PolAP-AVH, for each object, we determine a set of
rules by which the object can be accessed. Algorithm 2 generates a set of rules for each object
by comparing the object attribute-value pairs associated with the object and the rules. The objects
and the rules by which they can be accessed is given in Table 8. We can observe that the objects
o5,o6,o7, and o8 can be accessed using the sets of rules {r1, r3, r4, r7, r11, r14, r16}, {r1, r3, r4, r6, r8, r12},
{r1, r3, r4, r6, r8, r13}, and {r1, r3, r4, r6, r9}, respectively. In this example, we have considered only one
operation, i.e., access .

Now, Step 1.2 determines the set of objects accessible using each rule. This is achieved using
Algorithm 3 by comparing the object conditions associated with each rule to the object attribute-
value pairs associated with each object. The rules and the corresponding objects accessible through
them are given in Table 7. Thus, we obtain the objects that can be used by each rule obtained in
Step 1.1.

In Step 1.3, we find object-operation pairs allowed for each subject. The permitted accesses are
listed in Table 9. Our chosen subject, i.e., s5, is permitted to access objects o5,o6,o7, and o8, as
discussed previously.

Step 1.4 finds a set of rules corresponding to each object that s5 is permitted to access. Here, we
construct a SORO tree for s5 using Algorithm 5. The SORO tree for s5 is given in Figure 2. The root
of the SORO tree is s5. In the second level, the objects accessible by s5 are represented as children
of s5. The third level consists of the rules through which each of the objects can be accessed. The
fourth level consists of objects accessible through each rule in the third level. If any rule allows any
extraneous access, that rule is removed through pruning. For example, rule r3 allows s5 to access
the object o4, which is an extraneous permission, as it is not present in Table 9. So, rule r3 is not
present in the final set of rules that provides s5 access to o5. The final set of rules after pruning is
given under the fourth level of Figure 2.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:16 S. Das et al.

Fig. 2. SORO tree for s5.

Table 10. Rules and Objects Corresponding to Each Attribute

Value for S.Designation

Attribute values Rules Objects
DIR r1 o1,o2,o3,o4,o5,o6,o7,o8,o9

HOD r2, r3, r4, r5 o2,o3,o4,o5,o6,o7,o8,o9

REG r6, r15, r16 o2,o3,o4,o5,o6,o7,o8,o9

PROF r7, r8, r9, r10 o5,o6,o7,o8,o9

FINO r11 o4,o5

STU r12, r13 o6,o7

CLRK r14 o5

Table 11. Adjacency Matrix with Weights for S.Designation

DIR HOD REG PROF FINO STU CLRK
DIR ∞ −1 −1 −1 −1 −1 −1
HOD 0 ∞ ∞ −1 −1 −1 −1
REG 0 ∞ ∞ −1 −1 −1 −1
PROF 0 0 0 ∞ 0 −1 −1
FINO 0 0 0 0 ∞ 0 −1
STU 0 0 0 0 0 ∞ 0
CLRK 0 0 0 0 0 0 ∞

Now, we come to the second phase of our proposed solution, i.e., Step 2.1. Here, we determine the
attribute value hierarchy for the subject attributes. In this example, we only generate the attribute
value hierarchy of the subject attribute S.Designation. At first, we determine the rules correspond-
ing to each of the attribute values of S.Designation. Next, we find the objects corresponding to the
group of rules. The attribute values with their corresponding sets of rules and objects are given
in Table 10. Using this table, we construct the adjacency matrix from which we can obtain the
hierarchy graph for S .Desiдnation. The hierarchy adjacency matrix is given in Table 11. The final
hierarchy graph obtained using Algorithm 6 is the same as the attribute value graph given in Fig-
ure 1. The hierarchy values assigned to DIR is 4, HOD and REG are assigned a value 3, PROF and
FINO are assigned a value of 2, and the remaining ones, i.e., STU andCLRK , are given a value of 1.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:17

In Step 3.1 of the third phase, Algorithm 8 finds the minimal set of rules for s5. In this case, it
generates three minimal sets of rules for s5; namely, {r7, r8, r9}, {r8, r9, r14}, and {r8, r9, r16}. Let us
randomly select the set {r8, r9, r14}.

Finally, in Step 3.2, we assign the subject attribute-value pairs to s5. The subject attribute-value
pairs assigned to s5 are S .Desiдnation : PROF ,CLRK and S .Department : CSE. Now, S .Desiдnation
has been assigned two values, out of which, PROF has a higher hierarchy value of 2 as compared to
CLRK having a hierarchy value of 1. Therefore, we keep the attribute-value S .Desiдnation : PROF ,
which is more meaningful, as a subject cannot be a professor and a clerk at the same time. Now,
as CLRK is removed from the attribute value for the attribute S .Desiдnation, rule r14, from which
CLRK was assigned, is removed from the minimal set of rules for s5. Therefore, the set of rules
to be used by s5 becomes {r8, r9}. Thus, in addition to generating more meaningful assignment of
attribute values, using hierarchy also reduces the number of rules used by each subject.

We would like to emphasize here that the proposed approach uses the same ABAC policy (the
complete rule set) of the source organization in the target organization. In the algorithm, initially,
for each user a collection of candidate rule sets is generated, using which the user can get all its
accesses. The final set of rules is a minimal subset of these candidate rules, which ensures that all
the desired accesses as per the ACL are obtained and yet no extraneous access is generated. It may
be noted that more than one user can make use of the same rule to get access to the same set of
objects. If there are several such cases, it implies that a higher number of rules is generalizable.
Thus, the final rule set is much smaller than the candidate rule sets and, hence, administration
of the resultant set of rules is much easier. Further, if some of the rules in the source policy are
not required in the target organization, those rules are pruned after all the assignments have been
done.

5 EXPERIMENTAL RESULTS

While organizations are gradually migrating to ABAC, data sets from such organizations have not
yet been made publicly available. In the absence of real data sets, we have evaluated our proposed
approach on the benchmark data sets introduced by the authors of Reference [20], which has been
widely used for studies similar to ours, as they closely resemble real-world data in organizations
using ABAC. However, as these data sets involve only a small number of subjects and objects,
we also test our proposed approach on various synthetically generated ABAC policies, lists of
accesses, lists of subjects, objects, and attribute value assignments for the objects. The algorithms
for the proposed approach were implemented in Python 3.5.4 and executed on a 2.5GHz Intel i7
CPU having 16GB of RAM. The notations used for presenting the results are: number of subjects
(|S |), number of objects (|O |), number of subject attributes (|Sa |), number of object attributes (|Oa |),
number of rules in the ABAC policy (|R |), average number of rules used by a subject when attribute
value is not considered (|RS |), and average number of rules used by each subject computed by
taking attribute value hierarchies into account (|RSH |). T and TH represent the time for executing
the algorithm not considering and considering hierarchical attribute values. Both T and TH are
measured in seconds. Additionally, we also show that the effect inclusion of hierarchical attribute
values of the various entities on the Weighted Structural Complexity (WSC) of the generated set
of subject attribute-value pairs. WSC of an assignment of subject attribute-value pairs Sv with n
subjects is defined as [11]:

WSC (Sv) = w ×
n∑

i=1

WSC (Sv [i]), (1)

where Sv [i] is the set of subject attribute-value pairs associated with the ith subject and
WSC (Sv [i]) represents the number of subject attribute values assigned to the ith subject.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:18 S. Das et al.

Table 12. Average Size of Rule Set and Time for the Data Sets in Reference [20]

Dataset |S | |Sa | |O | |Oa | |R | |RS | WSC T (in s .)
Online video library 12 2 13 2 6 1.23 1.17 0.01
Healthcare 21 6 16 7 11 1.33 1.67 0.02
University 20 6 34 5 10 1.40 1.82 0.02
Project management 16 7 40 6 19 1.25 1.75 0.03

For instance, if Bob is associated with the attribute-value pairs {Desiдnation = Professor} and
{subjects taken = OS,DBMS },WSC (Bob) = 3.w is a user-defined weight. We have setw = 1

n
, i.e.,

WSC represents the average number of attribute values assigned to each subject.
Note that, as mentioned earlier, we assume that it is indeed possible to find attribute values

for each subject (and correspondingly, object and environment) such that by using the rules in
the policy to be adapted to, all required accesses are satisfied while no extraneous accesses are
enabled. Therefore, there is no need to evaluate correctness, since it is guaranteed by design (i.e.,
both precision and recall will be 1). In the generated policies for the synthetic data sets, we have
generated the accesses and policy in such a way that this assumption holds.

The average number of rules used by a subject and the time taken for execution of the proposed
algorithm for policy adaptation for the various data sets given in Reference [20] are shown in
Table 12. It is observed that, as the number of subjects and objects increases, the average number
of rules used by each subject also increases. This can be attributed to the increase in the number
of objects. Subjects are likely to access more objects if the number of objects is increased, which,
in turn, increases the number of rules required to fulfill the accesses. The execution time of the
algorithm also increases with increasing number of subjects, as it takes one iteration of the algo-
rithm for generating a minimal set of rules for one subject. Since only single values are assigned
to all the attributes for all the data sets, there is no removal of attribute values due to the presence
of attribute values that are higher in the hierarchy. Therefore, in spite of attribute hierarchies be-
ing identified, the average number of rules used by each subject remains the same even when the
attribute value hierarchies are used.

Next, we evaluate our proposed algorithm on various synthetic data sets. The synthetic data sets
were generated by varying the number of subjects, objects, subject attributes, object attributes, and
environment attributes. Each attribute has a distinct set of possible values. Moreover, we tried to
ensure that the distribution of possible values of various attributes is as close to real life as pos-
sible. For instance, for some of the attributes, the corresponding values are uniformly distributed;
whereas for some other attribute, the frequency of occurrence of some of the values is kept higher
than that of the others. This mimics real-world scenarios; for example, that of a university, where
the number of faculty members is less than the number of students while various departments
have a roughly similar number of students barring a few exceptions. Fixing the number of sub-
jects, objects, and the number of object attributes results in two cases: (i) variation in the number
of subject attributes when the number of rules is kept constant and (ii) variation in the number of
rules while keeping the number of subject attributes constant. Likewise, two cases arise when the
number of subjects, objects, and object attributes is kept constant: (i) variation in the number of
object attributes when the number of rules is fixed and (ii) variation in the number of rules when
the number of object attributes is fixed.

Table 13 shows the variation in the average number of rules used by a subject and execution
time with the number of rules and the number of subject attributes. It is observed that the average
number of rules used by each subject increases when the number of rules is increased. This can
be attributed to the fact that, in the presence of a higher number of rules, a subject is more likely

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:19

Table 13. Average Size of Rule Set and Time for Different Number of Rules

and Subject Attributes

|S | = 100, |O | = 200, |Oa | = 5

|R | = 20 |R | = 30

|Sa | |RS | |RSH | W SC T (in s .) TH (in s .) |Sa | |RS | |RSH | W SC T (in s .) TH (in s .)

3 2.98 2.98 2.29 0.95 1.02 3 4.39 3.98 2.58 1.52 1.64

5 3.14 2.97 2.27 1.30 1.47 5 3.53 2.84 2.22 2.66 2.80

7 2.48 2.16 2.14 1.68 1.97 7 4.43 4.04 2.79 2.76 2.97

|R | = 40 |R | = 50

|Sa | |RS | |RSH | W SC T (in s .) TH (in s .) |Sa | |RS | |RSH | W SC T (in s .) TH (in s .)

3 5.24 4.66 3.57 2.16 2.34 3 5.35 4.58 3.53 2.23 2.34

5 5.58 4.68 3.55 2.31 2.46 5 5.97 5.69 4.42 2.93 3.01

7 5.50 4.43 3.41 2.20 2.29 7 6.68 6.38 4.83 4.13 4.31

Table 14. Average Size of Rule Set and Time for Different Number of Rules

and Object Attributes

|S | = 100, |O | = 200, |Sa | = 5

|R | = 40 |R | = 50

|Oa | |RS | |RSH | W SC T (in s .) TH (in s .) |Oa | |RS | |RSH | W SC T (in s .) TH (in s .)

3 2.91 2.59 2.15 0.88 1.25 3 3.88 3.43 2.64 1.79 1.94

5 3.75 3.64 2.88 1.10 1.21 5 4.58 4.01 3.36 2.02 2.11

7 3.84 3.50 2.72 0.79 0.86 7 4.20 4.18 3.42 1.74 1.81

|R | = 40 |R | = 50

|Oa | |RS | |RSH | W SC T (in s .) TH (in s .) |Oa | |RS | |RSH | W SC T (in s .) TH (in s .)

3 3.48 3.20 2.42 3.16 3.42 3 5.28 5.08 3.86 3.35 3.54

5 5.23 4.84 4.43 2.82 2.98 5 5.68 5.22 4.14 2.73 2.86

7 5.88 5.37 3.36 2.92 3.03 7 6.58 6.27 5.71 3.44 3.89

to use a higher number of rules to gain all the desired accesses. For 20, 30, 40, and 50 rules, the
percentage of rules that need to be evaluated in case of an actual access request are only 15.7%,
14.76%, 13.95%, and 13.36% (computed using the highest value of |RS | for a particular number of
rules), respectively. Moreover, when the hierarchy of the values of the subject attributes is utilized,
the percentage of rules to be evaluated for deciding an access drops to 14.9%, 13.46%, 11.7%, and
12.76% (computed using the highest value of |RSH | for a particular number of rules), respectively.
Therefore, in case of an actual access request, only a very small fraction of rules is required to be
evaluated for deciding an access. With increase in the number of rules, the fraction of rules to be
evaluated for deciding an access reduces. Thus, adapting to policies with higher number of rules
is more advantageous. In contrast, there is relatively less variation in the average number of rules
used by each subject with increase in the number of subject attributes. The execution time of the
algorithm increases with the number of rules. The WSC of the assigned subject attribute-value
pairs vary with the variation in the number of rules used by each subject. As the subject attribute-
value pairs are assigned from the rules used by each subject, the WSC increases with the number
of rules used by each subject.

Table 14 shows the effect of varying the number of rules and object attributes on the average
number of rules used by a subject and the execution time of the algorithm. Unlike Table 13, here
it can be seen that the average number of rules used by a subject increases with increase in the

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:20 S. Das et al.

Table 15. Average Size of Rule Set and Time for Different Number of Subjects and Objects

|Sa | = 5, |Oa | = 5, |R | = 50

|S | = 20 |S | = 50

|O | |RS | |RSH | W SC T (in s .) TH (in s .) |O | |RS | |RSH | W SC T (in s .) TH (in s .)

20 3.70 2.75 2.05 0.04 0.05 20 3.78 2.82 2.39 0.07 0.09

50 5.19 3.51 2.62 0.08 0.10 50 5.04 4.32 3.58 0.14 0.17

100 5.17 4.65 4.19 0.16 0.20 100 5.62 4.81 3.22 0.44 0.55

200 5.45 4.85 3.98 0.73 0.80 200 6.52 4.98 3.87 1.48 1.64

|S | = 100 |S | = 200

|O | |RS | |RSH | W SC T (in s .) TH (in s .) |O | |RS | |RSH | W SC T (in s .) TH (in s .)

20 4.51 3.76 3.02 0.18 0.21 20 3.51 2.69 2.26 0.40 0.48

50 5.22 4.67 4.14 0.28 0.34 50 5.26 4.27 2.57 1.39 1.52

100 5.66 5.32 3.38 1.43 1.55 100 6.18 4.79 3.24 3.25 3.42

200 5.84 5.16 3.31 1.92 2.04 200 6.48 5.80 5.11 7.44 7.44

|S | = 200 |S | = 500

|O | |RS | |RSH | W SC T (in s .) TH (in s .) |O | |RS | |RSH | W SC T (in s .) TH (in s .)

500 5.97 5.43 3.56 15.54 18.75 500 6.78 5.91 5.18 67.89 73.82

1000 6.08 5.26 3.02 43.78 51.18 1000 6.67 6.02 5.08 285.76 330.17

2000 6.32 5.48 4.14 1157.61 1477.28 2000 7.08 6.48 5.98 4387.54 5682.16

5000 6.47 5.53 3.38 2577.09 3169.45 5000 7.35 6.61 6.02 12864.56 15233 .24

number of object attributes. This can be accredited to the use of additional rules for satisfying the
increasing number of object attributes and their associated values. A similar trend can be observed
when the number of rules is increased, i.e., the average number of rules used by a subject increases
with increase in the number of rules. For 20, 30, 40, and 50 rules, the percentage of rules to be
evaluated in case of an access request is found to be 19.20%, 15.27%, 14.7%, and 13.16% (computed
using the highest value of |RS | for a particular number of rules), respectively. When the hierarchy
is considered, the percentage of rules to be evaluated in case of an access request drops to 18.20%,
13.92%, 13.42%, and 12.54% (computed using the highest value of |RSH | for a particular number of
rules), respectively. The execution time of the algorithm increases with number of rules. As seen
in Table 13, similar variation is observed in the WSC of the assigned subject attribute-value pairs.

The results given so far are on a fixed number of subjects and objects. Table 15 shows the varia-
tion of the average number of rules used by each subject and the time taken for policy adaptation
with variation in the number of subjects and objects. It is seen that the average number of rules
used by each subject increases with increase in the number of objects. Increase in the number of
objects results in subjects accessing more objects. Accessing more objects makes it more likely for
the subjects to use more rules to access them. The execution time of the algorithm increases with
the number of both subjects and objects. It is also observed that the WSC of the assigned subject
attribute-value pairs is independent of the number of subjects and objects.

We next show the effect of inclusion of hierarchy in object attribute values and subject attribute
values along with the subject attribute value hierarchies in Table 16. It has already been observed
that inclusion of hierarchical attribute values for subject attributes results in a better assignment of
attribute values to the different subjects, i.e., there is a drop in the WSC value for the assigned set
of subject attribute-value pairs. Similarly, inclusion of hierarchical attribute values for object and
environment attributes also results in removal of attribute values having lower influence, thereby
reducing the WSC.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:21

Table 16. Variation in WSC Due to Inclusion of Hierarchical Attributes

|S | = 100, |O | = 100, |R | = 50
|Sa | WSCold WSCnew |Oa | WSCold WSCnew |Ea | WSCold WSCnew

3 3.95 3.58 3 4.15 3.49 3 4.01 3.68
5 4.96 4.42 5 4.59 4.07 5 4.63 4.27
7 5.27 4.83 7 5.44 5.16 7 5.58 4.72
10 6.29 5.57 10 5.86 5.39 10 6.13 5.59
15 7.74 6.84 15 7.52 6.63 15 8.25 7.47

Fig. 3. Average size of rule set with the number of

attributes with hierarchical values.

Fig. 4. Measure of decrease in the average size of

rule sets with the number of possible values of sub-

ject attributes.

So far, we have seen the effect of varying various parameters on the average number of rules
used by a subject. Next, we explore the impact of considering the obtained attribute hierarchy
data on policy adaptation. It has already been observed in Tables 13, 14, and 15 that using the
extracted attribute hierarchy data for policy adaptation helps in reducing the percentage of rules
to be evaluated for deciding an access. Apart from this, as seen in Section 4.4, using the attribute
value hierarchy data results in more appropriate and realistic assignment of subject attribute-value
pairs to the subjects. It is imperative that not all subject attributes will have hierarchical values.
Figure 3 shows the effect of varying the number of subject attributes with hierarchical attribute
values on the average number of rules used by each subject. It is seen that for different ranges in
the number of values a particular attribute can have, the average number of rules used by each
subject decreases with the number of attributes having hierarchical attribute values. It may be
noted that if there is no change in the average number of rules for an attribute with hierarchical
values, it implies no new rules were removed due to inclusion of the attribute.

Finally, in Figure 4, we show reduction in the average number of rules with the number of
possible attribute values. For various policy sizes, it is observed that the higher the number of
possible values an attribute can have, the higher the reduction in the average number of rules used
by each subject when hierarchical attribute values are taken into account. This can be attributed to
the fact that when an attribute can have a higher number of possible values, each subject attribute is
more likely to be assigned a higher number of values and it is more likely to have more hierarchical
levels for a higher number of possible attribute values.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:22 S. Das et al.

6 RELATED WORK

While work on ABAC policy mining is still in its infancy, there is a considerable body of litera-
ture on role mining in RBAC. Colantonio et al. [2] use attribute data and an access control list for
mining role-based policies. Molloy et al. [11] form RBAC policies with low weighted structural
complexity (WSC). These policies consist of meaningful roles such that the user to role mapping
can be expressed as a predicate over a set of subject attribute-value pairs. One major limitation
of these algorithms is that they use attributes like uid, which uniquely identify a user in a user to
role assignment. This results in some users not being characterized by a subject attribute-value
pair expression. In another work, Molloy et al. [10] utilize machine learning algorithms for role
mining. They use supervised learning techniques to train classifiers for associating permissions
and roles. Their algorithm takes permissions, roles, and role to permission assignments as train-
ing data. The output is a support vector machine (SVM) classifier that automatically allocates new
permissions to roles. In addition, they also consider another scenario where classifiers are trained
using a supervised learning algorithm to automate user to role assignments. The users, roles, user
attribute values, and user to role assignments are given as input to the classifier. Lim et al. [7] use
evolutionary algorithms to construct and improve security policies. Though they do not consider
ABAC policy mining, some complex problems involving risk-based policies are surveyed. Vaidya
et al. [19] identify the requirements for similarity evaluation from the context of access control and
propose a formal framework built upon change detection that computes similarity between poli-
cies and other multi-policy management operations such as policy migration. Their framework
evaluates similarities between security policies by taking into account various access control se-
mantics and, given a set of policies, they find a common organizational policy with the lowest cost
of migration.

Xu et al. [20] propose one of the early approaches for mining ABAC policies using a bottom-
up approach. Their algorithm constructs an ABAC policy from Access Control Lists (ACLs) and
attribute data. It selects specific accesses from the given ACL to construct candidate rules that are
further generalized to cover additional accesses in the given ACL. After covering the given ACL
with the constructed candidate rules, the candidate rules are simplified and merged to improve the
constructed ABAC policy. Finally, the algorithm selects the highest-quality candidate rules that
are added to the generated policy. While this approach is capable of constructing an ABAC policy,
the number of attribute-value pairs in the constructed rules is also crucial. Rules consisting of a
large number of attribute-value pairs result in increased time for access decisions when an access
request is made. Therefore, besides minimizing the number of attribute-value pairs in the total
policy, constraining the number of attribute-value pairs associated with each rule is also helpful.
Gautam et al. [5] consider a variant of the policy mining problem for ABAC that takes an ACM
as input and constructs a minimal set of ABAC authorization rules in such a way that each rule
has at most a fixed number of associated attribute-value pairs and the weight of the constructed
policy is also minimal.

Talukdar et al. [17] show that the problem of policy mining in ABAC is similar to that of iden-
tifying functional dependencies in database tables. In this context, they propose an ABAC pol-
icy mining algorithm called ABAC-FDM that exhaustively enumerates all possible subject-object
pairs. As ABAC-FDM is an exhaustive approach, it is not scalable. To address this limitation, they
propose a more efficient ABAC policy mining algorithm called ABAC-SRM, which uses a bottom-
up approach to initially identify a set of candidate rules, and from the set of candidate rules, the
most general rules are selected to construct an ABAC policy. Vaidya et al. [18] propose the minimal
perturbation role mining problem for RBAC that enables an organization to migrate from an ex-
isting set of roles to a new set of roles with minimum disruption. Migration of roles is required for

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

Policy Adaptation in Hierarchical ABAC 40:23

addressing the gradual changes that occur and also the new requirements in organizational pro-
cesses. In a similar manner, PolAP-AVH can also be used to migrate to a new assignment of subject
attribute-value pairs to handle any change in the functional requirements of an organization. In
spite of such similarities, our work differs from Reference [18] as PolAP-AVH helps organizations
to migrate to ABAC from other access control models. Additionally, it also facilitates sharing of
resources among organizations.

Recently, we proposed the first known algorithm for effective policy adaptation in ABAC [3].
Although this approach is also based on the assignment of appropriate values to subject attributes
for different subjects, it does not consider the hierarchy of different attribute values. Nor does
it consider environmental conditions. As seen in Section 4.4, extracting hierarchical information
from the policy to be re-used and utilizing it for policy adaptation results in the assignment of
more meaningful subject attribute-value pairs. Moreover, it helps in further reducing the number
of rules used by each subject.

7 CONCLUSION AND FUTURE WORK

In this article, we have introduced the problem of policy adaptation using hierarchical attribute
values to provide an effective path for migrating to ABAC using an existing policy. The optimal
policy adaptation problem using hierarchical attribute values has been shown to be NP-Complete,
and a heuristic solution has been proposed and evaluated. Further, this work is the first to consider
environment attributes seamlessly with the subject and object attributes, an aspect commonly
ignored in ABAC policy mining work.

However, a limitation of this work is that the organization pursuing policy adaptation needs to
have the same set of attributes as the organization whose policy it is planning to adapt to. Future
work in this area would be to design approaches that facilitate policy adaptation among organiza-
tions having attribute sets that do not exactly match. A possible direction is to use ontology-based
attribute set mapping. Additionally, novel heuristics can be proposed that further reduce the num-
ber of generated rules.

REFERENCES

[1] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca. 2005. GEO-RBAC: A spatially aware RBAC. In Proceedings of

the 10th ACM Symposium on Access Control Models and Technologies (SACMAT’05). 29–37.

[2] A. Colantonio, R. D. Pietro, and N. V. Verde. 2012. A business-driven decomposition methodology for role mining.

Comput. Sec. 31, 7 (2012), 844–855.

[3] S. Das, S. Sural, J. Vaidya, and V. Atluri. 2017. Policy adaptation in attribute-based access control for inter-

organizational collaboration. In Proceedings of the International Conference on Collaboration and Internet Computing.

136–145.

[4] Andrew Gainer Dewar and Paola Vera Licona. 2016. The minimal hitting set generation problem: Algorithms and

Computation. In SIAM J. Discrete Mathematics 31, 1 (2016), 63–100.

[5] M. Gautam, S. Jha, S. Sural, J. Vaidya, and V. Atluri. 2017. Poster: Constrained policy mining in attribute based access

control. In Proceedings of the ACM Symposium on Access Control Models and Technologies. 121–123.

[6] V. C. Hu, D. Ferraiolo, D. R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, and K. Scarfone. 2014. Guide to Attribute-Based

Access Control (ABAC) Definition and Considerations. Technical Report. NIST Special Publication 800-162.

[7] Y. T. Lim. 2010. Evolving Security Policies. Ph.D. Dissertation, University of York, UK.

[8] W. L. Ruzzo, M. A. Harrison, and J. D. Ullman. 1976. Protection in operating systems. In Commun. ACM 19, 8 (1976),

461–471.

[9] B. Mitra, S. Sural, J. Vaidya, and V. Atluri. 2017. Migrating from RBAC to temporal RBAC. IET Inform. Sec. 11 (2017),

294–300.

[10] Ian Molloy, Hong Chen, Tiancheng Li, Qihua Wang, Ninghui Li, Elisa Bertino, Seraphin Calo, and Jorge Lobo. 2008.

Mining roles with semantic meanings. In Proceedings of the Symposium on Access Control Models and Technologies

(SACMAT’10). 21–30.

[11] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo. 2010. Mining roles with multiple objectives.

ACM Trans. Inform. Syst. Sec. 13, 4 (2010), 36:1–36:35.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

40:24 S. Das et al.

[12] I. Ray and M. Toahchoodee. 2007. A spatio-temporal role-based access control model. In Proceedings of the 21st IFIP

WG 11.3 Working Conference on Data and Applications Security (DBSec’07). 211–226.

[13] R. S. Sandhu. 1993. Lattice-based access control models. In Computer 26, 11 (1996), 9–19.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. 1996. Role-based access control models. IEEE Comput.

29, 2 (1996), 38–47.

[15] Ravi S. Sandhu and Pierangela Samarati. 1994. Access control: Principle and practice. In IEEE Commun. Mag. 32, 9

(1994), 40–48.

[16] D. Servos and S. L. Osborn. 2017. Current research and open problems in attribute-based access control. In ACM

Computing Surveys 49, 4 (2017), 65:1–65:45.

[17] T. Talukdar, G. Batra, J. Vaidya, V. Atluri, and S. Sural. 2017. Efficient bottom-up mining of attribute based access

control policies. In Proceedings of the International Conference on Collaboration and Internet Computing. 339–348.

[18] Jaideep Vaidya, Vijayalakshmi Atluri, Qi Guo, and Nabil Adam. 2008. Migrating to optimal RBAC with minimal

perturbation. In Proceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT’08). 11–20.

[19] J. Vaidya, B. Shafiq, V. Atluri, and D. Lorenzi. 2015. A framework for policy similarity evaluation and migration based

on change detection. In Proceedings of the International Conference on Network and System Security. 191–205.

[20] Z. Xu and S. D. Stoller. 2015. Mining attribute-based access control policies. In IEEE Transactions on Dependable and

Secure Computing (TDSC). 533–545.

Received February 2018; revised January 2019; accepted February 2019

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 40. Publication date: August 2019.

