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ABSTRACT
Real-Time Systems often come with additional requirements apart
from being functionally correct and adhering to their timing con-
straints. Another common additional optimization goal is to meet
code size requirements. Code compression techniques might be
utilized to meet code size constraints in embedded systems. We
show how to extend a compiler targeting hard real-time systems by
an asymmetric compiler-based code compression/decompression,
where the compression is performed at the compilation time and
the decompression takes place at the execution time. Moreover, ex-
perimental results show the impact of the decompression algorithm
on the estimated Worst-Case Execution Time that is one of the key
properties of hard real-time systems.

CCS CONCEPTS
• Information systems→Compression strategies; •Computer
systems organization → Real-time systems; • Software and
its engineering → Compilers; • Mathematics of computing
→ Integer programming.
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1 INTRODUCTION
An embedded system that must react within a given deadline and
where missing this deadline might lead to a catastrophic system
failure, is called a hard real-time system. For this reason, the Worst-
Case Execution Time (WCET) is one of the key properties of such a
system. The WCET is defined as the worst possible execution time
of a program, independently from its input data.
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To ensure that timing constraints are met, optimizing compilers
such as the WCET-Aware C Compiler Framework (WCC) [5] can
be used. WCC focuses on minimizing the WCET of the compiled
program in order to guarantee that all timing constraints will always
be met. It is also able to optimize systems with several tasks [12]
running on multiple cores [14] with regard to their schedulability.

However, program size is another important criterion in modern
embedded systems for which hard design restrictions apply due to
increasing code complexity of embedded applications on the one
hand and limited memory space on the other hand.

Moreover, we focus on a target architecture that has different me-
mories for storing code and data, e.g., the TC1797 microprocessor
from Infineon. If the space in the code section is not enough, then
the code can be stored in the data section and moved back in parts
to the code section before being executed. However, this might lead
to data memory overflow. Thus, in this case, code compression is
required before storing the code in the data section.

For PC systems, run-time compression techniques are used that
allow to distribute compact program files, which are then extracted
at execution time. However, these methods often decompress the
whole application into memory, which is impractical in the world
of embedded systems because of very limited memory on embed-
ded platforms. At the same time, the hard real-time capability of
these methods is not examined, so that they are not suitable for
use in safety-critical systems. For the purpose described above,
our approach applies compression not to the whole program si-
multaneously, but to the smaller parts of it, namely to individual
functions.

Asymmetric compression methods are characterized by the fact
that compression is very time-consuming comparing to decompres-
sion, but still achieves good compression rates, while the decompres-
sion is fast. Therefore, an asymmetric method for code compression
is suitable for use in embedded real-time systems, where the execu-
tion time of a program is one of the most important criteria. Using
such a method avoids a dramatic increase in the run-time perform-
ing decompression during the execution of the program and at the
same time, during compilation time a good compression rate can
be achieved and moreover, the speed of compression is not critical
in this case.

It is expected that in any case, the additional computational
effort for decompression on the embedded system is not negligible.
Therefore, the compiler must weigh exactly which part of the code
can be compressed such that the necessary decompression at run-
time will not lead to a violation of time limits. In addition, our
goal is to reduce the code size of a program with as little WCET
penalty as possible. Hence, the compiler must be able to find a
trade-off between code size and the WCET of the final program.
Consequently, in principle, the decompression algorithm should be
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adjusted in such a way that it can be analyzed within the compiler
in order to compute theWCET of the final program. Moreover, since
the code compression takes place at compilation time, the input data
for the decompression routines is known within the compiler. Thus,
the WCET of the decompression method can be safely estimated.
In our approach, the computed WCET is used in an Integer-Linear
Programming (ILP) model to find a trade-off between the code size
and the WCET of the final program at compilation time.

Due to the limitations of caches, some architectures are equipped
with fully software-controllable secondary memories. These are
memories that are tightly integrated with the CPU to achieve best
possible performance. These scratchpad memories (SPM) can be ac-
cessed directly and are therefore in general well suited for optimiza-
tions regarding energy consumption and execution time. Hence,
SPM is utilized as a buffer to which compressed code will be de-
compressed in our model.

The contribution of this paper is a completely novel and unique
compiler framework where:

• functions are considered as candidates for compression to
deal with the highest level of abstraction as the first ap-
proach;

• the compression takes place at compilation time;
• the compressed functions are decompressed into SPM at
execution time before being called;

• an asymmetric compression method is utilized for the com-
pression/decompression;

• the estimated WCET of the decompression method is com-
puted as precisely as possible;

• the compiler is able to find a trade-off between the code size
and the WCET of the final program, so that time limits are
not violated;

• the optimized program is not functionally broken and can
be executed on the target architecture.

This paper is organized as follows: Section 2 gives a brief overview
of related work with regard to both compression and decompres-
sion techniques. Section 3 briefly introduces the WCC compiler
framework used as a basis for the proposed compression/decompres-
sion technique. Section 4 explains the compression/decompression
framework in detail. In Section 5, we present evaluation results.

2 RELATEDWORK
Code compression/decompression has been and remains a hot
topic [2] [21]. Different approaches are used depending on the
compression strategy such as Huffman coding, dictionary-based
or combinations of them. There exist different implementation
techniques, namely software or hardware-based methods. Decom-
pression schemes are also characterized by the location of the de-
compression engine: between the cache and the memory for the
pre-cache approaches, between the cache and the processor for
post-cache schemes or inside the processor core.

Pinter and Waldman [17] present a software-based code com-
pression scheme that reduces the storage space of a program. In the
paper, overheads in term of run-time and memory consumption
were considered, but the WCET was not taken into account. In
contrast to our approach where functions are considered as com-
pression candidates, in that paper, sets of basic blocks were chosen

as compression regions. The scheme compresses and embeds the
regions in the code together with code that invokes a run-time
library; this library is referred to as a decompression engine.

Dias and Moreno [3] present a code compression method for
ARM embedded processors where different dictionaries are used, all
of them based on the traditional Huffman algorithm. It was devel-
oped with the main objective of reducing the number of accesses to
the instruction cache and therefore the main memory. The method
was designed for pre-cache decompression architectures. Code size
and compression rate were analyzed, while the running time was
not taken into account in the paper.

Ros and Sutton [19] described the application of single- and
multiple-instruction dictionary methods for code compression to
decrease overall code size for the TI TMS320C6xxx DSP family. The
compression is applied at the instruction level and not to functions
as in our model. In contrast to our approach, hardware was used to
analyze instructions as they are fetched from memory and decide
whether to allow the instruction to pass on to the CPU unaltered,
or whether to decompress the recognized code-word by looking up
a dictionary and passing-on the dictionary word instead.

Helan et al. [7] present a technique that can be used in embedded
systems to reduce the memory usage. Two methods were discussed
in the paper, namely Bit Mask code compression and dictionary-
based code compression. The Bit Mask code compression is to
record mismatched values and their positions to reduce the greater
number of instructions. In addition, a dictionary selection algorithm
was proposed to increase the instruction match rates. So, various
steps of code compression were combined into a new algorithm
here to improve the compression performance in smaller hardware.
Furthermore, the separated dictionary architecture was proposed
to improve the performance of the decompression engine. The
implementation technique described in the paper is a hardware-
based method, while we consider a pure software approach.

Ozaktas et al. [15] analyzed the impact of code compression on
the estimatedWorst-Case Execution Time of critical tasks that must
meet at the same time code size constraints and timing deadlines.
They used a post-cache code compression technique that is likely to
optimize at the same time the code size and the energy consumption.
Since their intention was to consider high-performance processors,
they opted for in-pipeline decompression that, in addition, avoids
the complexity of handling different address spaces. However, in
this case a decompression stage must be added except if the proces-
sor already has a stage for translation of microcoded instructions
into instructions. Thanks to the use of an in-pipeline decompression
engine, the decompression time penalty was hidden by pipelined
execution. This is why experiments show an improvement of the
observed execution time besides the reduction of the code size. In
contrast to this approach, we consider a technique that can be done
using only a compiler framework.

Ozturk et al. [16] present an approach for automated data com-
pression/decompression. The goal of the paper was to study how
automated compiler support can help in deciding the set of data
elements to compress/decompress and the points during execu-
tion at which these compressions/decompressions should be per-
formed. The proposed compiler support achieves this by analyzing
the source code of the application to be optimized and identifying
the order in which the different data blocks are accessed. Based
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on this analysis, the compiler then automatically inserts compres-
sion/decompression calls in the application code. In the paper, a
compiler-based implementation is described, however, the tech-
nique is designed for data compression/decompression and cannot
be used for code compression/decompression that is considered in
this paper.

3 WCC FRAMEWORK
We use the WCET-aware C compiler framework WCC [5] as a
basis for the compression and decompression optimization. The
main components are a parser, the high-level representation, a code
selector, the low-level representation, followed by a code generator
and the integration of a WCET analyzer. WCC is tightly coupled to
a static WCET analyzer, the tool aiT [1].

The parser is compatible with ANSI-C and creates the high-level
intermediate representation from the source files. The intermediate
representation of the C code is machine independent and features
code analyses and high-level optimizations, that can be considered
as multi-objective optimizations [13]. The considered C programs
can be annotated with flow facts within the ANSI-C source code.
This data provides information about the code structure, such as
the number of loop iterations or recursion depths, and is mandatory
for a static WCET analysis. We consider this information as given
for the original C programs and it is otherwise out of scope for
this work. However, loop bounds for the decompression routine are
computed and annotated at compile time as described in Section
4.4 to perform a static WCET analysis of the decompression code.

A code selector generates the low-level intermediate represen-
tation which is a framework to model any kind of machine in-
struction. Numerous optimizations are available at the low-level
representation, e.g., to minimize energy consumption [20]. Finally,
the low-level representation is then processed by an assembler and
a linker to produce the final executable.

Our approach makes the following assumptions:

(1) Recall that SPM is used as a buffer. The execution of the
decompressed functions from SPM, which is much faster
than the main memory, will definitely of itself improve the
final WCET. For this reason, the final WCET and code size of
the program are not compared with the initial values where
all code is executed from slow Flash memory. Instead, the
functions to be compressed are first moved to the SPM and
then, the initial WCETs and code sizes are computed. In this
case, only the influence of compression/decompression to
the objectives is considered;

(2) All compressed functions are decompressed right upfront
when starting an optimized program. This assumption is
rather strict, future work will relax it by adding a more
sophisticated method for choosing the positions in the code
where the compressed functions have to be decompressed
before being called;

(3) Any function from the original program can be considered
as a candidate for compression except the entry point of the
program. This is a natural assumption, since then, at least one
function remains in the code for calling the decompression
routines;

(4) Data compression is not considered, since we concentrate
on code compression.

The code compression is fully integrated within WCC. The
phases of the WCC compression and decompression are shown
in Figure 1. The process starts with selecting functions for com-
pression using an ILP model as described in Section 4.1. The bytes
corresponding to the selected functions are extracted from the
original binary file and compressed as presented in Section 4.2.
The compressed bytes corresponding to the selected functions are
stored as data objects in the original code. In the next step, the
calls of the decompression routine are inserted in the code with
the compressed bytes passed as a parameter in order to enable the
run-time decompression. The details of the decompression phase
can be found in Section 4.3. Next, the code for decompression is
annotated with flow facts as shown in Section 4.4. This step is
necessary for the more precise computation of the final estimated
WCET. Finally, the original and uncompressed functions, that were
stored as compressed objects, are deleted from the code.

The output of WCC is a program that can be executed on the
target architecture, where compressed bytes are represented as
data objects. Furthermore, the final executable contains the decom-
pression function. Before calling the original function the decom-
pression function is utilized at execution time to decompress the
compressed bytes corresponding to the original function.

4 CODE COMPRESSION
Our goal is to reduce the code size of a program with as little
WCET penalty as possible. Therefore, we use FastLZ library [8] for
compression and decompression. FastLZ is an improvement over
Herman Vogt’s LZV and Marc Lehmann’s LZF algorithms. It is a
lossless data compression library meaning that the original data is
perfectly reconstructed from the compressed data, in contrast to
lossy compression which allows only an approximate reconstruc-
tion of the data and therefore it is not suitable in our case. FastLZ
decompression is very simple and quite fast which is important in
our approach, since decompression occurs at execution time and
may increase the WCET of a program dramatically. FastLZ is imple-
mented in portable C, so it can be easily compiled and analyzed by
WCC. To the best of our knowledge, the FastLZ library has never
been analyzed in terms of the WCET.

4.1 ILP Selection Model
In our approach, we consider functions as candidates for compres-
sion. The selection process is divided into two parts: the pre-phase
and the ILP selection model.

For the reasons described in Assumption 3 in Section 3, the pre-
phase considers all functions, except the entry point of the program,
as candidates for compression. In this step, a compression ratio is
used as the initial criterion to measure the efficiency of compressing
a function. A compression ratio CR is defined as the size required to
store the compressed bytes corresponding to the function divided
by the size required to store the original function.

Definition 4.1. The compression ratio is

CR =
size(compressed f unction)

size(oriдinal f unction)
(1)
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Figure 1: Compression and decompression phases.

If the compression ratio of a function is less than 1, then the
function is considered as a candidate for compression by the ILP
model.

We consider two objectives in our approach, namely the code
size and WCET, both of which have to be minimized. On the one
hand, we deal with multi-objective optimization, but on the other
hand, the main aim of the compression techniques is to minimize
the code size, so we do not accept solutions that lead to an increase
in the code size. Moreover, due to Assumption 1, the WCET can
only increase after compressing a function because of the WCET
of the decompression routine that decompresses the compressed
functions at run-time. For these reasons, we aim to reduce code
size as much as possible without violating WCET constraints. In
this case the problem has a unique solution.

Let us assume that the pre-phase described above has selected N
functions { f1, f2, .., fN } as candidates for compression. Moreover,
CSinit andWCETinit denote the initial code size and WCET of the
original program, respectively, taking into consideration Assump-
tion 1. Then, the increase in the WCET compressing the function
fi , i = 1, 2, ..N is defined as follows:

∆WCETi =
WCET

decomp
i

WCETinit
, (2)

whereWCET
decomp
i is the WCET of the decompression routine

decompressing function fi .
Calling the decompression routine in the code to decompress the

compressed functions requires additional changes of some variables,
e.g., the original size of a function, the size of the compressed bytes,
the memory address to which the function has to be decompressed,
etc. Since these changes definitely have an influence on WCET and
code size, they are also taken into account in the ILP model. The
WCET change due to calling the decompression code is already
included inWCET

decomp
i (cf. equation (2)), while the increase in the

code size is defined asCSdecomp
i for every function fi , i = 1, 2, ..,N .

The code size of the decompression routine itself is not included in

CS
decomp
i , because the decompression code is inserted just once

as an additional function and will be considered later.
Consequently, the change in code size after compressing the

function fi , i = 1, 2, ..N is defined as follows:

∆CSi =
CS

decomp
i −CSi

CSinit
, (3)

where CSi is the code size of the original function fi .
It should be mentioned, ∆CSi is defined in such a way that it

usually results in a negative value and consequently, has to be
minimized to achieve better compression of the final executable.

In the ILP model, we consider the binary variables xi , xi ∈ {0, 1}
that correspond to the functions fi , i = 1, ..N identified by the
pre-phase as compression candidates.

xi =

{
1, fi is being compressed,
0, otherwise.

(4)

Then, the objective function F is defined as follows:

F (x) =
N∑
i=1

(C · ∆WCETi + ∆CSi ) · xi , (5)

whereC is a positive weight describing howmuch slower theWCET
has to increase in comparison to the decrease of the code size
compressing functions. C is a user-defined parameter that can be
set by a system designer. Choosing a value for the parameter C is a
difficult task and will be considered in the future work. However,
in the simplest case, when the change in the code size is only of
importance and the WCET is simply bounded by a constant as
defined in (6), C can be set to 0.

The quantities ∆WCETi and ∆CSi are defined in such a way that
both of them have to be minimized. Consequently, the objective
function F is also being minimized.

Additional constraints are considered in the ILP model:
(1) To avoid the violation of the time limits the increase in

the WCET must not be greater than the predefined value
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∆WCETl imit .
N∑
i=1

∆WCETi · xi ≤ ∆WCETl imit ; (6)

(2) The code size never increases even though the decompres-
sion code is inserted in the final binary file.

CSdecomp

CSinit
·max

i
(xi ) +

N∑
i=1

∆CSi · xi ≤ 0, (7)

where CSdecomp is the code size of the decompression rou-
tine.
To rewrite the non-linear operator max in inequality (7) as a
linear operator, we define a new artificial variable y ∈ {0, 1}.
Then, inequality (7) is equivalent to the following system of
inequalities:{CSdecomp

CSor iд · y +
∑N
i=1 ∆CSi · xi ≤ 0,

y ≥ xi , ∀i ∈ {1, 2, ..,N };
(8)

(3) Due to the limited data storage of the target architecture the
total size of the compressed bytes must not be greater than
the predefined value DSl imit .

N∑
i=1

DSi · xi ≤ DSl imit , (9)

where DSi is the size of the compressed bytes after comp-
ressing the function fi ;

(4) Since the size of the SPM is limited, the total code size of
the decompressed functions must not be greater than the
predefined value SPMl imit .

N∑
i=1

CSi · xi ≤ SPMl imit . (10)

This constraint has to be added to the ILP model due to
Assumption 2.

The final minimization problem is

min F (x)
subject to (6), (8), (9), (10)
and x = (x1, ..,xN ),

xi ∈ {0, 1} ∀i ∈ {1, 2, ..,N }.

(11)

The ILP model contains 4 parameters in total. However, DSl imit
and SPMl imit model the restrictions of the target architecture and
are computed by a compiler automatically. ∆WCETl imit and C are
values that on the one hand control the possible WCET increases
and on the other hand model the dependence between the code
size decrease and WCET increase as shown in Section 5 for the
benchmark ndes, MRTC.

4.2 Compression
In the compression phase, the functions that are selected as de-
scribed in Section 4.1 are compressed as shown in Figure 2.

First, the start address in the original binary file and the code
size of a function are used to extract bytes corresponding to the
function from the executable file of the original program. The start
address and code size of the functions are known within WCC.

Next, the extracted bytes are passed to the FastLZ [8] compres-
sion algorithm as input data and the compressed data is returned
to the WCC compression routine.

After the bytes corresponding to the function are compressed,
they are stored as a data object in the original code and thus can be
used by the decompressor at execution time.

The compression of the code is done only at compile time in our
model, hence, the code of the compression routine is not included
in the final executable.

4.3 Decompression
Decompression takes place at execution time and since we consider
the software-based approach in our model, the decompression code
has to be included in the final binary file. Moreover, static WCET
analysis for the decompression code can be performed within WCC
and the estimatedWCET is used in the ILP from Section 4.1 to model
the WCET increases per compressed function (cf. equation (2)).
For these reasons, in contrast to the compression, the C file with
the decompression routine is automatically included in the code
generation process by WCC.

WCC takes the original source code and the code of the decom-
pression as input parameters. Then, functions for compression are
selected and the compressed bytes corresponding to the selected
functions are stored in the original code as described in Sections 4.1
and 4.2. At this point, the compressed data is already available in
the code and is ready to be used by the decompression routine at
execution time.

Then, the preparation phase for the run-time decompression can
be started (cf. Figure 3). First, for every compressed function, the
calls of the decompression routine are inserted into the code with
the compressed data passed as a parameter. Next, the decompression
code has to be analyzed in terms of WCET, namely the necessary
loop bounds being computed and annotated in the decompression
code to enable a static WCET analysis as described in the next
Section. Finally, the estimated WCET can be computed and used
for the optimization.

As described in Assumption 3 from Section 3, the compressed
bytes corresponding to the functions are decompressed at the be-
ginning of the entry point of the original program into a buffer.
Recall that we consider SPM as a buffer, since after compressed data
being decompressed into SPM, the function can be called directly
from there.

4.4 WCET Estimation
To estimate the WCET of the final program, not only is the WCET
of the original code needed but the WCET of the decompression
code must also be taken into account, since we consider a run-time
software-based decompression in our approach.

As already mentioned, WCC is coupled to the static WCET ana-
lyzer aiT [1]. The ANSI-C source code has to be annotated with
flow facts in order to enable the WCET analysis by aiT. R. Kirner
defined flow facts in his Ph.D thesis [10] as follows:

Definition 4.2. Flow facts are meta-information which provide
hints about the set of possible control flow paths of a program.

Moreover, there are two types of flow facts:
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Figure 2: Compression phase.

Figure 3: Preparation phase for the run-time decompression.

Definition 4.3. Flow facts which exist due to the structure and
semantics of the program code are called implicit flow facts. Flow
facts which are provided by the user are called annotated flow facts.

User-provided flow facts are important for a precise WCET-
analysis, because the implicit flow facts are usually only of limited
quality and the control flow of a program depends on the input
data, which is not considered in the computation of implicit flow
facts.

We consider the flow facts of the original program as given,
since it is out of scope of this work, while the flow facts of the
decompression code are computed automatically by WCC due to
the fact that they depend on the input data, namely compressed
bytes, that are not known by a user.

The flow facts that are attached to the decompression code at
compile time are so-called loop bounds. They provide an upper and
lower bound for number of iterations of the annotated loop. Let

1 int FASTLZ_DECOMPRESSOR(const void* input , int
length , void* output , int maxout)

2 {
3 ...
4 int ctrl = (*input ++) & 31;
5 ...
6 _Pragma("loopbound min Num1 max Num2")
7 for( --ctrl; ctrl; ctrl++ ){
8 *op++=*ip++;
9 }
10 ...
11 }

Listing 1: Example of parametric loop bounds

us consider as an example the part of the decompression code that
is shown in Listing 1. It contains a loop at line 7 that has loop
bounds that depend on the variable ctrl which, in turn, depends
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on the input data passed to the decompression function. In other
words, the values of the loop bounds depend on the compressed
data that has to be decompressed. Hence, for every data object that
represents the compressed function in the final binary file, the loop
bounds are computed and updated within WCC, so that the WCET
of the decompression calls can be calculated precisely.

5 EVALUATION
Evaluations are conducted using the WCET-aware C compiler
framework WCC for the Infineon TriCore TC1797 micro-controller
which is commonly used in the automotive domain. All computa-
tion runs, ILPs and WCET analyses are executed on a dual CPU
Intel XEON server with 96 GB RAM on Ubuntu 18.04.1 LTS. Each
CPU consists of 20 cores with a nominal speed of 2.30 GHz. aiT
18.04 is used within WCC to enable a static WCET analysis. The
ILPs were solved using Gurobi 8.1.0. For checking the correctness
of the final binary file the Synopsys CoMET platform simulator [9]
was used.

In the selection phase (cf. Section 4.1), we assume weight C is
equal to 1 in the objective function (5) in order to get balanced
results, i.e., the WCET increase is not greater than the code size
decrease. Moreover, we assume that 50 % is an admissible increase
in the WCET from the original one, consequently, ∆WCETl imit
is set to 0.5 in the ILP Constraint 1. The constants DSl imit and
SPMl imit from Constraints 3 and 4 are set to the available free
space of the data memory and SPM, respectively. The size of data
memory of the considered target architecture is 88K and the size of
the SPM is 39K.

The benchmarks of the test suites MRTC [6], JetBench [18] and
MediaBench [11] with annotated loop bounds from the TACLe-
Bench project [4] were used to evaluate the proposed compression
and decompression technique.

Figure 4 shows the total number of functions in the benchmarks
from MRTC with the excluded function main by Assumption 3
from Section 3. Moreover, Figure 4 shows the number of functions
that were selected as candidates in the selection pre-phase and the
number of functions that were finally compressed after solving the
ILP as described in Section 4.1.

In MRTC, there are 3 benchmarks that contain functions which
are compressed during the optimization, namely adpcm_decoder,
adpcm_encoder and lms. For these three benchmarks, the WCET,
code size and the code size of the decompression routine are pre-
sented in Figure 5, where 1 corresponds to the initial WCET and
code size. We observe for the benchmarks adpcm_decoder and
adpcm_encoder that the increase in the WCET is less than 25 %
and the decrease in the code size is about 60 %. At the same time,
for the benchmark lms the decrease in code size that is achieved,
is just 18.6 %, however, the WCET increases also only by 3%. The
code size of the decompression routine is about 11% of the initial
code size for the benchmarks adpcm_decoder and adpcm_encoder,
while for the benchmark lms is 23 %.

In the ILP selection model, the decision variables xi , i = 1, 2, ..,N
are binary variables. Moreover, as already mentioned we assumed
that C = 1 in the objective function (5) which is to be minimized.
This means that solving the ILP variable xi can be potentially set

Figure 4: MRTC: Statistics of the functions.

Figure 5: MRTC: Change in the WCET and code size for the
selected benchmarks. 1.0 corresponds to the initial WCET
and code size.

to 1 only if for the function fi

(decrease in the code size) ≥ (increase in the WCET). (12)

Otherwise, xi will always be set to 0 in order to minimize the
objective function (5).
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Figure 6: MRTC: Change in the WCET and code size for the
benchmark ndes with C = 10. 1.0 corresponds to the initial
WCET and code size.

Table 1: MRTC: Change in the WCET and code size for the
function-candidates from benchmark ndes.

Benchmark WCET Increase Code Size Decrease
(%) (%)

ks 25.72 22.22
des 50.85 36.7
cyfun 47.3 27.27

As shown in Figure 4, during the optimization of the benchmark
ndes, 3 out of 5 functions are selected as candidates for compression
in the selection pre-phase. However, after solving the ILP, none
of them are finally selected for compression, since as shown in
Table 1, for every candidate function the increase in the WCET
is higher than the decrease in the code size and inequality (12)
is violated. However, if we assume that the decrease in the code
size is more important, from the designer point of view, than the
WCET increase, then it can be controlled by changing the value of
constantC in the objective function (5). For instance, settingC = 10
for the benchmark ndes leads to the compression of function cyfun
meaning that by compressing the function we allow the WCET
increase be 10 times faster than the code size decrease. However,
due to Constraint 1 theWCET still has to be smaller than theWCET
limit. As shown in Figure 6 the final WCET increase that is achieved
is 47.3 %, while the code size decreases by 11 %. The code size of
the decompression routine constitutes 3 % of the initial WCET.

Analogously to MRTC, Figures 7 and 8 show the results for the
JetBench benchmarks suite. All benchmarks contain 18 functions
without the function main which is excluded from consideration
by Assumption 3. In every benchmark, 13 functions are selected
and finally compressed during the optimization. This leads to the
similar results for all 3 benchmarks: the increase in the WCET is
only about 0.04 %, while the code size decreases by about 85 % and
the code size of the decompression routine is less than 10 % of the
initial code size.

MediaBench contains 9 benchmarks in total and in 6 of them,
functions are compressed during the optimization as shown in Fi-
gure 9. The changes in the WCET and code size for the benchmarks
are presented in Figure 10.

Figure 7: JetBench: Statistics of the functions.

Figure 8: JetBench: Change in the WCET and code size for
the benchmarks. 1.0 corresponds to the initial WCET and
code size.

Figure 9: MediaBench: Statistics of the functions.
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Figure 10: MediaBench: Change in the WCET and code size
for the benchmarks. 1.0 corresponds to the initialWCET and
code size.

Table 2: MediaBench: Change in theWCET and code size for
the function-candidates from benchmark gsm_decoder.

Benchmark WCET Increase Code Size Decrease
(%) (%)

gsm_decode 14.14 30.9
Decoding_of_the
_coded_Log
_Area_Ratios

22.82 21.29

LARp_to_rp 4.72 3.51

For the benchmark gsm_decoder, we observe a 14.14 % increase
in the WCET, while the code size decreases only by 27 %. According
to Figure 9, in this benchmark 3 functions out of 34 are selected
as candidates for compression, nevertheless, only one function is
finally compressed.

In Table 2 the increase in the WCET and the decrease in the code
size for these 3 function candidates are presented. All 3 function
candidates cannot be compressed simultaneously, since this would
lead to the violation of Constraint 1 in the ILP model. Moreover,
only compressing the function gsm_decode the code size decreases
more quickly than the WCET increases. For the reasons mentioned
above only the function gsm_decode is selected for compression by
solving ILP.

In the benchmark cjpeg_jpeg6b_wrbmp according to Figure 9,
1 function out of 4 is a candidate for compression. However, in
Figure 11 it is easy to see that even if the function is compressed,
the code size will increase due to the fact that the decompression
code has to be inserted into the final binary to enable the run-time
decompression. Consequently, Constraint 2 of the ILP model is
violated and the function is not compressed.

For the benchmarks discussed above, Table 3 lists the initial code
size, the size of the compressed data, the run-time of the optimiza-
tion and the free space of SPM that is needed to decompress all
compressed functions during the execution as described in Assump-
tion 2. For the examined benchmarks, Figure 12, shows that as the
initial code size grows, the decrease in the code size that can be

Figure 11: MediaBench: Change in the code size for the
benchmark cjpeg_jpeg6b_wrbmp. 1.0 corresponds to the ini-
tial code size.

Figure 12: The final code size and WCET depending on the
initial code size.

Figure 13: The final code size and WCET depending on the
initial WCET.

achieved is higher, while the increase in the WCET is much lower.
According to Figure 13, we observe almost the same behavior con-
sidering the code size decrease and WCET increase as a function
of the initial WCET. However, it should be mentioned that more
tests for other benchmark suites are needed to understand the real
behavior of the curves discussed above.
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Table 3: Statistics of the benchmarks.

Benchmark Benchmarks Suite Initial code size Compressed Data SPM size Optimization Runtime
(bytes) (bytes) (bytes) (secs)

adpcm_decoder MRTC 2502 1263 1884 119.265
adpcm_encoder MRTC 2614 1290 1892 125.564
lms MRTC 1268 461 582 51.867
jetbench1 JetBench 18948 8967 16886 2260.597
jetbench2 JetBench 19082 8987 16938 2321.138
jetbench3 JetBench 21682 9829 19538 2931.964
cjpeg_jpeg6b_transupp MediaBench 2070 1405 1614 76.364
epic MediaBench 3158 1290 3718 107.786
gsm MediaBench 17070 5920 12346 1255.449
gsm_decode MediaBench 7056 1040 4014 402.368
gsm_encode MediaBench 13108 4878 10134 817.846
mpeg2 MediaBench 15108 8495 13656 1086.763

6 CONCLUSION
In this paper, a framework for the WCET-Aware compression of
functions has been presented. We demonstrate a compiler-based
compression/decompression approach such that the compression
takes place at design time in the compiler/linker, but decompres-
sion is performed at execution time. An asymmetric compression
method, namely FastLZ, was chosen, since it is characterized by
the fact that compression is time-consuming but achieves good
compression rates, while decompression is fast.

We presented an ILP-based approach for selecting functions for
compression. The ILP model describes the restrictions due to the
limitations of the target architecture. Moreover, it is shown that
the selection process can be controlled by changing parameters in
the objective function. The decompression algorithm was adjusted
in such a way that it can be analyzed to compute the WCET of the
final program at compilation time. Additionally, the WCET of the
decompression code was safely estimated.

The experimental results show that a good compression rate
with only a little WCET penalty can be achieved for the tested
benchmarks suites.

Further investigation will look at developing a model to find the
positions in the source code where to perform the code extraction
before calling a function. Another improvement is to consider a
more sophisticated method to choose functions for the compression.
The problem is multi-objective and appropriate methods could
be utilized to discover a wider variety of solutions. Furthermore,
additional criteria could be considered, e.g., energy consumption.
Moreover, the current approach can be also applied at other levels
of abstractions, e.g., to consider basic blocks instead of functions as
candidates for compression.
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