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Abstract

In this paper we discuss the problem of relating machine instruc-
tions to source level constructs, and how it has been addressed in
the domains of Virtual Prototyping (VP) and Worst-Case Execu-
tion Time (WCET) analysis. It has been handled in different ways,
although the goals and requirements between both domains are
not far from another. This paper shows that there exists a mutual
benefit in exchanging solutions between the two research domains,
by demonstrating the applicability and utility of VP methods for
WCET analysis, and highlighting their shortcomings.

After an evaluation of existing methods, we carefully rework
and combine them to a sound and generic mapping algorithm for
source-level WCET analysis. As a result, we obtain WCET estimates
that outperform classic binary analyzers especially under moder-
ate compiler optimization. Our approach is based on hierarchical
flow matching, control-dependency- and dominator-homomorphic
maps, and dominator lumping to soundly fill the gaps in the map-
ping. WCET estimation is performed using Model Checking, which
maximally exploits the information available in the source, and
highlights remaining weaknesses in the mapping methods.

Last but not least, we discuss further chances of synergy between
both research communities which could enable support for more
complex microarchitectures with caches, pipelines and speculative
execution in both source-level WCET analysis and VP.
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1 Introduction

Relating machine instructions to source code is an often-needed
capability in software engineering, that has been repeatedly ad-
dressed in different problem contexts, most famously to enable
source-level debugging of software [10], so that programmers can
follow a program’s behavior at the easier-to-understand source
code level, instead of instruction level.

The research domains of Virtual Prototyping [22] and Worst-
Case Execution Time analysis [34] are also concerned with this
problem. This paper is motivated by the history and current body
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Figure 1: A common problem in Virtual Prototyping and
WCET Analysis: matching flow graphs and back-annotation
of timing from machine instructions to the source code.

of work in these two domains, since we noticed that the problem
has been encountered at different points in time, and handled in
different ways. Early work in the WCET community started off
with a source-level approach to timing analysis (e.g., [25]), but
has quickly been discarded in favor of instruction-level analysis,
circumventing the mapping problem in the presence of compiler
transformations [34]. However, the price which had been paid ever
since, is that of a harder analysis and overestimation. Semantic
properties, such as type and range information of variables, are
obfuscated or “compiled away”, and need to be reconstructed to
obtain precise estimates [4, 13, 18]. Today, despite its advantages,
source-level WCET analysis, is rarely applied due to this mapping
problem. However, when it is applied, timing annotations are gener-
ated by tools that reverse-engineer the transformations of a specific
compiler version [2, 17], or even require compiler extensions [24].

On the other hand, Virtual Prototyping [22] has the definitive
need to model the timing behavior at source-code level, and can
accept slight errors. The central goal there is to simulate a program’s
timing behavior when executed on a specific target, as quickly and
accurately as possible, and without the need to set up the target
hardware or running painfully slow cycle-accurate instruction set
simulators [6, 8]. Instead, the time-annotated source code reflects
the target’s timing, but is executed on a much faster simulation
host. Towards this, automated methods for source-level timing
annotations have been proposed in recent years [6, 23, 27]. These
can be carried over to WCET analysis, and vice versa, VP can learn
from methods that meanwhile have evolved in the WCET domain.

In this paper we specifically argue that WCET analysis can ben-
efit from methods in VP. If the mapping problem can be solved
sufficiently precise, then recently emerged technology enables pow-
erful source-level analyses (e.g., model checking [9] and theorem
proving), which can exploit the semantic information in the source
to produce a tighter WCET estimate than instruction-level analysis.
This paper presents strong evidence for this claim when methods
from VP are carefully applied.

Our contributions are as follows: (1) We compare the require-
ments and goals of timing annotations in VP and WCET, (2) we
evaluate the applicability of VP methods in WCET applications, and
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propose ways to fix them and increase their precision, (3) we pro-
pose a generic instruction-to-source mapping algorithm for WCET
analysis of simple processors, competitive to classic approaches,
and (4) we discuss further synergy in both research communities.

1.1 Problem Setting, Challenges and Goals

The overall goal is to annotate the source code of a program with
statements keeping track of its execution time, as experienced on a
specific target. Fig. 1 illustrates the overall workflow: The program
is first cross-compiled for the target processor, which results in a
binary/executable with the machine code. We analyze this binary to
obtain (1) the control flow of the machine instructions, and (2) the
timing behavior of the elements in the control flow. Analogously,
we obtain the control flow from the source code.
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Figure 2: Example of the mapping problem.

The core of the timing annotation problem then is the following:
Given two control flow graphs, G, for the binary and G; for the
source code, we want to establish a mapping

M:Vb—)VS (1)

between the nodes V3, and V; of the respective control flow graphs,
and then annotate the nodes Vs with timing statements, to make
the timing behavior visible in the source code. In other words, we
want to associate blocks of machine instructions to blocks of source
statements. Even without any compiler optimization, Gs and Gy,
can exhibit differences due to calls to library functions for which
no source code exists, but also stemming from architectural con-
straints. For example, consider the two flow graphs in Fig. 2. The
additional node v; in G must be produced on a 16-bit processor
whenever a 32-bit comparison is required. Consequently, the graphs
cannot even be considered isomorph in the absence of compiler
optimization, and must be expected to differ significantly when
optimization is enabled. It follows that the searched-for mapping
is in general not bijective, nor even a mathematical function. Ad-
ditionally, some nodes might be indistinguishable (e.g., v3 and vy
in Fig. 2) when only the graph structure is considered. Therefore,
debugging information is often consulted to obtain more insights.

Since the two flow graphs are rarely isomorph, the mapping
has to consolidate flow differences between them. In general, such
differences could be addressed by decompiling the machine instruc-
tions back to source code [7]. However, we do not consider this
option here, because it not always safe, and undercuts the goals of
source-level timing annotations, as discussed later.

Once a mapping has been established, the timing of the binary
blocks can be back-annotated to the source code, which subse-
quently can be used in various ways. In VP, it is compiled and
executed on a simulation host, to get an estimate of the execution
time during early design, i.e., a form a dynamic analysis. Ina WCET
context, it can be used to conduct a static analysis that yields an es-
timate, which is evidence whether the system can obey its real-time
requirements. Both contexts show commonalities and differences
as follows.
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Common goals:

e annotations shall be as precise as possible,

e maintain structure of the source code to retain readability,

e abstract as much detail of the target as possible, to keep
complexity low and speed up analysis,

o leave the compiler untouched, and support a range of them,

e avoid reverse-engineering of compiler transformations, and

e tolerate compiler optimization.

Specifics in WCET analysis:

o underestimation is forbidden, but overestimation acceptable,

¢ no need to support maximum optimization levels, as systems
subject to WCET analysis are often verified by additional
means, where optimization can be considered a threat to
soundness, and is only applied in small doses [11], and

e it is acceptable to forbid certain code constructs to enable
analysis [11].

These differences are enough to dictate what methods can be ap-
plied. For example, in WCET analysis unmapped nodes cannot be
resolved by heuristics, as often done in VP [23, 27]. Furthermore,
substituting such blocks by their local WCET is not always possi-
ble either, since the WCET of unmapped flow parts may become
unbounded without its execution context.

In summary, the goals, requirements and benefits for a source-
level timing analysis are slightly different in both communities, but
close enough to find synergies in their methods.

2 Background
2.1 Control Flow Graphs and Basic Blocks

Each function in the program — source or binary - can be repre-
sented by a control flow graph (CFG). This directed graph G is
defined by the tuple

G := (V,E,LF) 2)
where V is the set of nodes, E = V X V the set of edges between
them, I is the set of entry nodes and F the set of exit nodes. Without
loss of generality, we assume that ||I|| = ||F|| = 1.

We use the notation v > u (or u < v) to denote that v is a succes-
sor of u, possibly via intermediate nodes. Furthermore, throughout
this paper, we use subscript “s” for elements in the source CFG, and
“b” for those in the binary/instruction CFG.

The nodes V represent basic blocks. These are maximal sequences
of instructions or statements, with at most one entry and one exit
point. Consequently, basic blocks are terminated by branches or
indirect jumps, which in turn are represented by the edges E. There-
fore, we will use the terms node and basic block (BB) interchangeably.
Last but not least, we assume BBs are also terminated at function
calls and returns, so that the callee can be analyzed separately.

2.2 Dominators

In directed graphs G, a node u dominates another node v - in short,
udomw - if all paths from I that reach v must also go through u.
In other words, the execution of v implies the (prior) execution of
u, but not vice versa. Further, a node u strictly dominates another
node v if udomov and u # v. Analogously, y postdominates x —
in short, y pdom x — if all paths from x towards F must also go
through y. Pre- and postdominator trees are data structures that
can be computed with standard methods from graph theory, and
capture such domination relationships for all nodes in G [15].



T RO T

WCET Analysis meets Virtual Prototyping

int main () { int main () [{
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Figure 3: Discrepancies of basic block ranges (min="[’,
max="]") between compiler frontend and debug info.

2.3 Debugging Information

Debugging information, such as the DWARF [10] format, has been
introduced as means to relate instructions to source statements
during source-level debugging. In principle, the compiler performs
a translation from source code to machine instructions while main-
taining a logbook, showing which source locations are causing each
instruction, and eventually includes this information in the binary.

Unfortunately, maintaining precise and complete debug informa-
tion is nontrivial, especially under optimization. Not all optimizers
maintain full traceability between source and machine code, which
may result in incomplete (some instructions have no source equiv-
alent and vice versa), ambiguous (multiple relations) and imprecise
(slight mismatches) information [20, 26, 31].

Debug info vs. Basic blocks: Although debug information re-
lates instructions to source locations, it does not explicitly specify
equivalent source ranges for the binary BBs. Instead, potentially
each instruction may have its own location info, or may share it
with instructions that immediately precede or follow itself in the
address space. Therefore, the source range of basic blocks must be
reconstructed from the potentially multiple locations in the debug
info that belong to its instructions. Let locs(v) be the list of debug
locations associated with a BB v, sorted by execution order (which
is not necessarily instruction address). Then we can obtain at least
two types of ranges: (1) begin leg(v) to end lend(v): denotes the
location info of the instructions that are the first and last in locs(v),
and (2) min lyiy (v) to max Imax(v): captures the extremes of the of
source locations in locs(v). These may or may not be identical. For
example, the compiler may choose to schedule instructions first
that are not at the beginning of the source block, and thus begin
can be greater than min. Furthermore, the last instruction of the
block may share location info with prior instructions, and thereby
not precisely capture the precise end of the basic block (and in fact,
might point to the beginning of a source token, and thus not be
column-precise either). Consider the example in Fig. 3 lifted from
the nsichneu benchmark. There are malign differences in lines 3 and
4, where the source has only one BB in each line, but the binary has
two. Another reason for more binary BBs on the same line as in the
source may come from inlined compiler intrinsics or implicit library
calls. We address all of these issues in our mapping algorithm.

Discriminators have recently been introduced into the debug
format, to distinguish between multiple binary basic blocks that
fall into the same source code line. For every control transfer that
is detected during compilation, the according target instructions
are labeled with a new discriminator value if they fall into the same
source line as their predecessors. Unfortunately, the DWARF specifi-
cation allows arbitrary enumeration of the binary basic blocks [10],
which means that neither enumeration order nor maximum value
have to agree with source locations and block counts (and indeed
do differ in practice). As a consequence, it is not safe to pair up
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the nth source BB on a given line with the binary BB that is la-
beled with discriminator n. In principle the column information
could be used to match binary discriminators to source blocks, but
column data is imprecise, as we have seen just before. In fact, we
have witnessed cases where column numbers even contradict the
semantics of the assembly. Further, having more source BBs than
binary discriminators carries no useful information either, since
source BBs could have been optimized out.

Last but not least, source code layout has an influence on the
debug info, but only to some extent. For example, writing a loop
header such that its three parts occupy three different source lines,
still results in only one line number for all parts. Consequently, the
correctness of debug information may also depend on the source
layout, and multiple BBs on one line cannot be avoided in general.

2.4 Source-Level WCET Analysis

The goal of WCET analysis is to estimate the longest time a subpro-
gram takes to terminate, while considering all possible inputs and
control flows that might occur, but excluding any waiting times
caused by sleep states or interruption by other processes. There
exist various methods to obtain such an estimate, with the majority
working at instruction level [34]. A source-level WCET analysis
can be very precise and provide safe (i.e., never smaller than what
can be observed when running the program) and tight (i.e., as close
as possible to observed execution) estimates, and towards that it
requires timing annotations in the source code.

The source-level analysis method used here is based on our
earlier work presented in [2], and similar to the approach of Kim et
al. [17], both based on Model Checking. The tool CBMC [9] is used
to determine the WCET of the program by repeatedly proposing
a WCET candidate X at the end of the program, and letting the
model checker decide whether X can be violated. If so, then a
larger candidate must be proposed. If not, then a smaller X can
be proposed. The searched-for WCET estimate is the largest X for
which a violation can be detected. CBMC builds on SAT/SMT solver
technology, and evaluates all program paths precisely. For this
reason, the precision of the WCET estimate only depends on the
precision of the timing annotations. Naturally, the computational
complexity for such precision is higher compared to binary-level
approaches, but can be addressed as demonstrated in [2]. Note that,
unlike in a VP context, no host compilation takes place, since the
time-annotated sources are analyzed directly.

3 Review of Existing Work

We start by reviewing the mapping algorithms from the VP commu-
nity. Towards this, we define the following two properties needed
for WCET analysis: lower-bounding of execution count f(v) under

all traces, i.e.,

Yv e Vp. f(v) < f(M(v)) ®3)
and preservation of execution order in the annotations, i.e.,
Yu,vo e V. v >u e M) > Mu) Av<u & M) < M(u). (4)

Equation (3) ensures that there is no underestimation caused by the
mapping, and Eq. (4) is relevant for processors with caches, since
there the access order influences temporal behavior.

All mapping algorithms, directly or indirectly, are based on the
source locations contained in the debug info. Binary BBs which
have similar locations as source BBs are considered to be related to
each other. However, since debug locations can be incomplete and
ambiguous, further BB properties have been proposed.
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3.1 Basic Block Properties

In [6, 23, 28], BBs are eventually matched pair-wise to maximize
similarities between their source location, loop membership, struc-
tural properties (control dependency and dominators) and the last
branching decision. We ignore the last branching decision here,
since it only facilitates a "more synchronous" annotation, but has
no impact for WCET analysis. Loop membership can be implicitly
captured as a side effect of a hierarchical decomposition, which we
discuss in the following. Finally, structural properties have proven
effective in VP, and are reviewed in detail after the decomposition.

3.2 Hierarchical Flow Partitioning

Several groups have proposed to partition the control flows hier-
archically into smaller subgraphs [20, 33]. This limits the impact
of annotation errors and ambiguities in the debug information,
and reduces the problem size for the node matching algorithm.
Specifically, loops and branches were used as partition boundaries.
Unmatched regions are eventually lumped into single nodes, and
substituted by their local WCET. As a side effect, such a hierarchical
matching implicitly captures loop memberships, which has been
shown to improve the final node matching [23].

Safety: It is unclear how in general it can be ensured that binary
and source partitioning do not diverge during a hierarchical decom-
position. In principle it could happen that a difference in the control
flow leads two different splits in source and binary, which prevents
the optimal mapping from taking place. However, under one of the
following assumptions, such an approach can be justified: 1) the
boundaries which are used for decomposition are guaranteed to be
preserved, or 2) external information about structural changes, e.g.,
extended debug information, can be taken into account.

In the following, we look at two in VP commonly used properties
beyond debug info that are used for matching the individual nodes.

3.3 Dominator Homomorphism Mapping

A dominator homomorphism [27] is a partial mapping M between
two digraphs that preserves dominator relationships between pairs
of nodes. The idea is that such a mapping preserves execution order.
Specifically, if the mapping is defined for two binary nodes u and
v, then it must hold that
Youi,v2 € Vp,. v1 domy, vy & M(v1) domg M(vz). (5)

Several details should be noted about the dominator homomor-
phism, which may refute Equations (3) and (4) if not considered.

First, the mapping is not unique. Thus, the algorithm construct-
ing the homomorphic map has a large influence on the annotation
precision. The algorithm in [27] is meant to preferably match dom-
inated binary nodes with dominating source nodes, but we found
that it cannot guarantee that. Since multiple map entries are added
simultaneously during the iterative map construction, false con-
flicts may be detected: The homomorphism is checked for all pairs
in the current map, including the (not yet verified) entries that have
just been added. Checking is done one by one in an unspecified
order. Whichever inconsistency w.r.t. Eq. (5) is found first, is noted
as a conflict. If one of the newly added entries is a bad pick and
breaks the dominance homomorphism for another newly added,
but correct entry, then we reject both the correct and incorrect
entries, although one of would have been the optimal choice. To-
gether with the fact that picking dominated nodes first represents a
topological order (which is not uniquely defined), conflicts are won
by whichever dominated node is picked first.

To fix this algorithm, we must extend the map by one entry at
a time. This impacts the run-time negatively, but it yields a better
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mapping and makes the result independent of the (also unspecified)
node iteration order. With these changes, the algorithm indeed
preferably ends up in pairing nodes in the chosen preference.

Second, the mapping differs depending on whether strict domina-
tion is used or not. Using strict domination, two nodes with u dom v
cannot be mapped to the same source node s, since M(u) dom M(v) #
sdoms, because s does not strictly dominate itself. Two unrelated
binary nodes can however still be mapped to the same source node.
This means execution order is preserved, as far as it is captured
by the dominator relationship. On the other hand, when using a
non-strict dominator relationship, preservation of execution order
depends on whether dom is seen as a property or as an operator.

Mathematically, equation (5) requires us to also evaluate the
reverse relationship, ie., if v4 domy, vy, then both of the following
conditions must hold

vg domy, vf = true & M(vg) doms M(vy) = true (6)
vy domy vg = false & M(vy) doms M(vg) = false.  (7)

The algorithm in [27] only tests for the first condition. As a conse-
quence, the execution order between vy and vy can be lost. This can
lead to body nodes in loops to be mapped to loop headers, which
produces overestimation. On the other hand, if Eq. (7) is checked,
then such binary nodes are competing for the source node in ques-
tion. That is, only one of multiple nodes can then be mapped to a
single source node, leaving the others unmapped. This again can
lead to overestimation in cases where v; dom vy, and v; being the
only predecessor of v, and v, the only successor of v;. Here vy
steals the source node, leaving v; unmapped. This happens quite of-
ten in the binary CFG due to jump threading. To mitigate this issue,
such nodes should be fused in both CFGs to prevent overestimation.

Execution order: Dominator relationships cannot capture all
execution orders, thus this method cannot guarantee the preser-
vation of order in the mapping. For example, consider the code
fragment if(u) {v;} z;, where we have u domv A u dom z, and but
not v dom z. If v executes, then it must still happen before z in the
associated flow, yet, the dominator tree does not carry this infor-
mation. In practice, this becomes a problem only when debug info
between such nodes is ambiguous, which is the case for multiple
source blocks on the same line (see Section 2.3).

Execution count: In general, every time multiple BBs are not
distinguishable by their debug info nor their their dominance re-
lationships, BBs can be mapped arbitrarily, which may or may
not underestimate the execution counts. Consider the one-liner
if (a) {b} else {c} z. Further, let a and z have the same dominator
relationship to the surrounding flow (in both source and binary),
such that all of b, ¢, z are siblings in the dominator tree. Thus, one
arbitrarily selected node among b, ¢,z will map to the source of a,
and the others have to be overapproximated later on. This does not
violate our execution count property. Now assume z is absent. The
mapping of b and ¢ is now arbitrary, possibly violating Eq. (3).

Apart from that, counts are only weakly constrained. If u dom v,
then the only guarantee is that f(v) > 0 = f(u) > 0, and oth-
erwise their count is unrelated (u can be a loop header which v
is not a member of, thus f(u) > f(v) is possible, and vice versa,
v may be member of a loop that u is not, such that f(v) > f(u)
is possible). Consequently, a dominator homomorphism does not
maintain much of the execution count relations.

Under optimization: As the experiments in [28] have shown,
the dominance relationship can be changed when the compiler
splits complex conditional statements in the source into multiple
binary branches. Confusion of BBs cannot be provably avoided.
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3.4 Control Flow Dependency Mapping

Miiller-Gritschneder et. al [23] proposed an alternative property
to match BBs. The idea is to match up those BBs in source and
binary that execute under the same condition. Towards this, the
first step is to identify control edges and controlled nodes in both Gy,
and Gs. An edge e = (u,v) is a control edge if not v pdomu, i.e., if
this edge enables the execution of v. Vice versa, the set of nodes
C(e) immediately controlled by an edge e is computed as

C(e) = {w | w € path(v,Ica(u,v))} \A, (8)
o if u = lca(u,v)
A= {{u} otherwise ©)

where lca(u,v) is the least common ancestor of u and v in the
postdominator tree, and path(u,v) is the sequence of nodes on the
path between (and including) u and v in said tree.

In a second step, they assign labels to all control edges in source
and binary, such that edges representing the same decision and
outcome obtain the same label. Let cx (q) be a label representing
“decision X, outcome q”, and MCq, (4) be the set of edges that
fall into this label. Given any node v, the new control dependency
property is formally defined as

Pen(v) = {ex(q) [v € Cle) ne € MCeyqf - (10)

In other words, the property p.1(v) holds all labels representing
the necessary conditions for the immediate execution of the basic
block v, whereas multiple labels describe a logical disjunction. Thus,
BBs in binary and source which have been assigned the same labels
are executing under the same conditions. Note, however, that the
mapping is not fully defined, since we may have multiple source
nodes matching each binary node.

The key in this approach lies in how the labels X and q are
assigned to the edges. Since we want to assign common labels
for edges representing the same decision and outcome in binary
and source, some form of edge matching is required. The authors
propose to use the debug locations of the blocks that are at the
outgoing and incoming end of branching edges. That is, both X and
q are essentially defined by their source line numbers. Note that
this allows multiple binary edges to obtain the same label, as long
as they all jump to/from the same lines.

Execution count: Under the assumption that the edge labels
represent the decisions and outcomes correctly, each binary node
maps to a source node that executes under the same immediate
condition. If each of the decision nodes itself maps to their correct
conditions, we fulfill Eq. (3) by transitive property. However, using
source lines to label the decisions and outcomes as in [23], is unsafe.
Edges can be confused when multiple BBs share the same line info.
Furthermore, there are multiple ways to select the line number,
since there is more than one way to define source ranges (see
Sec. 2.3). By definition of what constitutes a basic block, we could
be tempted to use the location of the entry/exit of the binary BB,
which however does not necessarily coincide with the begin/end of
the source BB. Apart from that, execution count is well-defined in
relation to the controlling edges and co-controlled nodes. Except for
loop header nodes, for a control-dependent node v, we know that
f(@) = Youec(e) f(e). In other words, control-dependent nodes
execute as often as their controlling edges, except loop headers,
which execute more often. In summary, there is no execution count
guarantee with the proposed edge labeling.

Execution order is only ensured towards the node that precedes
the immediate control edge, and that node in turn is either mapped,
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thereby obeying its own execution order, or unmapped, and must
be overapproximated later. Execution order towards other nodes
controlled by the same edge and enclosing conditionals is undefined.

Under optimization: This method can tolerate more compiler
optimization than the homomorphism, as shown in [23]. Since the
mapping is semantically tied to execution conditions, this method
should not produce false mappings under optimization, if labels can
be assigned correctly. However, it may still fail to map some blocks.
Further, it is in principle possible to detect invariant conditions that
have been been optimized out.

3.5 Handling Optimization

Since the mapping methods may either make errors or produce
fewer map entries under optimization, several specific optimiza-
tions have been addressed in the VP community. For example,
in [20, 32], structural loop changes are addressed by mimicking the
transformation rules of a certain compiler. This way they handle
loop splitting, do-while transformations, unswitching, and blocking.
In [28], full loop unrolling is handled in a similar way.

However, a myriad of effects on the CFG is possible, since the
optimizers can interact with each other in unexpected ways. It
is therefore tedious and likely unsafe to reconstruct them on a
case-by-case basis. While some unsupported optimizations could
be forbidden to alleviate this problem, it is often not possible to
prevent all of them, even when optimization is turned off. Therefore,
a generic mapping method must still be able to handle some effects.

In general, all optimization can be seen as either (1) change of
execution order (e.g., instruction, trace and superblock scheduling;
note that this is different from the annotation order required in
Eq. (4)), (2) change of execution conditions (e.g., hoisting), (3) dupli-
cation (e.g., tail duplication) or (4) complete omission (“optimized
out”). These need to be supported in a generic way, to avoid reverse-
engineering compiler-specific patterns.

4 A generic mapping algorithm for WCET

This section describes our compiler-independent instruction-to-
source mapping algorithm for WCET analysis. Our algorithm builds
on all the mapping strategies described in the previous section, but
carefully adapts and extends them to prevent underestimation and
ensure tight results. The source code is made publicly available at
https://github.com/tum-ei-rcs/vigilant-insn2src-mapper.

Our mapping workflow is comprising the following major steps:

(1) Parse binary and source, and compute CFGs.

(2) Annotate binary CFG with debug information.
(3) Process inlining and loop transformations.

(4) Hierarchical decomposition and matching.

(5) Computation of partial mapping.

(6) Overapproximative completion of mapping.

(7) Back-annotation of instruction timing to source.

Detailed elaborations follow now.

4.1 Building annotated control flow graphs

4.1.1 Source code. The control flow graph of an imperative lan-
guage can be obtained by parsing the source code and processing
the abstract syntax tree. This processing is language-specific, since
the semantics of the statements define what constitutes a source
block. While the CFG is constructed, the nodes must be annotated
with the counterpart of the debugging information. In this paper,
we use the C language, and the control flows are obtained using
the LLVM/clang frontend [19]. The nodes of the resulting CFG are
annotated with the following information: 1) range (begin, end) of
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source code location and 2) list of function calls (referenced CFGs).
The resulting annotated sources are ready to be mapped to the
binary CFG, which we obtain next.

4.1.2  Machine code. The binary CFG is reconstructed by first cross-
compiling the program for the intended target, and then analyzing
the semantics of the contained machine instructions. Towards this,
we build on existing tools that decode the binary into the individual
assembly instructions. We then compute the CFG on an abstrac-
tion of the machine instructions, to allow a uniform processing
for different targets. In particular, it is only necessary to identify
instructions that impact the shape of the CFG, whereas others can
be ignored. Specifically, we only discover 1) function calls, 2) jumps
and branches, and 3) return instructions. Special care is required for
indirect jumps and anonymous function calls (where one instruc-
tion may be part of more than one function). Finally, we annotate
nodes in the CFG with the debug information, specifically source
code locations, and inlining stacks [10]. The resulting annotated
binary CFGs are now agnostic to target- and compiler-details, and
ready to be mapped to the annotated source CFGs obtained earlier.

4.2 Preprocessing

To prepare both the source and binary CFGs for the upcoming
mapping, we pair them by identifier, take note of user-specified loop
transformations, and process inlining stacks by copying nodes of
inlined functions into their caller, as in [23, 28]. These steps are not
further detailed here for space reasons. Next, we solve the problem
of multiple BBs per source line by matching the discriminators.

4.2.1 Discriminator Matching. To avoid that the mapping algorithm
confuses BBs located at the source line (neither discriminators nor
columns are sufficient, see Sec. 2.3), we establish a mapping between
binary and source discriminators using their structural informa-
tion in the CFG. Towards this, we first compute discriminators for
the source code by enumerating sets of BBs at each source line
individually. Next, we establish a mapping from source to binary
discriminators using the corrected dominator homomorphism. Let
Dy(l) = {dllj,di,. .. } be the set of binary discriminators at line /,
and D (I) the source counterpart. Note that binary discriminators
dp, may be shared by multiple binary BBs, unlike source discrim-
inators. Therefore, we arbitrarily pick one binary BB from each

dy € Dy (1), denoted as pick(dy). Further, let G} (1) = (V.Ej.I.F)
be a reduced graph as follows:

= {v | v =pick(dy()) Adp € Dp(1)} U {Ip,Fp},  (11)

Eb = {(u,v) | path(u,v) € Gp} . (12)

This graph contains the original entry I and exit nodes F of the
whole binary flow, all BBs from the current line / to be mapped,
and edges between them iff there exists a path between them in Gy,.
For the source code, G}(I) is obtained similarly. We finally apply
the dominator homomorphism to compute a map M’(l) : Vb’ - V!
between the reduced graphs (and thus between the discriminators).
The mapping algorithm was corrected as proposed in Sec. 3.4, and
additionally we removed ambiguous map entries (siblings in the
dominator tree and have an indistinguishable dominator relation-
ship to the surrounding code). The matching preference we use is
dominated binary blocks to dominated source blocks.

We only accept complete maps for discriminators. Otherwise,
we explicitly mark all binary and source BBs of the given line [
as incompatible, forcing overapproximations later on. Although a
proof for the correctness of discriminator matching is still pending,
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we have not seen any BB confusions in our benchmarks. Alterna-
tively, one could use other parts of the debug info to match the
discriminators (i.e., accessed variables), or compare the semantics
of source and binary blocks.

Finally, we group matching discriminators under a common label
D; (1) that is unique per line /, based on the mapping M’(l), i.e.

Di(l) = {di} U ldy | M'()(dp) = ds) fori=1...1IDs (D)l (13)

4.3 Hierarchical decomposition & matching

Before the mapping algorithm starts, we apply a hierarchical de-
composition of the CFGs to reduce the overall mapping problem
into a number of smaller ones, as described in Sec. 3.2. As a side
effect, this enables a safe WCET analysis, as shown later. We recur-
sively partition the CFG into subflows along its loops. That is, if a
graph G contains a loop, then we replace the loop by a surrogate
node, and create a new subflow for the loop, which becomes a child
of G. Towards that, we compute a loop nesting tree [15], in which
each node represents a loop, and child nodes are contained loops.

The decomposition process is repeated recursively on all sub-
flows, until no further loops are found. This decomposition results
in two per-subgraph properties that we can leverage: 1) udomv
implies f(u) > f(v), ie., dominating nodes execute at least as
often as dominated ones, 2) entries nodes are either loop headers
or initial nodes in the top-level CFG, both of which can be taken as
fixed-points in the upcoming node mapping.

Loop optimization: In this algorithm, we only require that
existing loops are not vanishing, or that otherwise the user can pro-
vide that information during the preprocessing. This requirement is
usually satisfied at all except the highest optimization levels. Since
those usually clash with WCET analysis, this is not considered a
limitation. If support for such aggressive loop optimization is still
needed, this could be realized using the optimization reports gener-
ated by modern compilers, which indicate which loops have been
peeled, blocked and unrolled [12, 29]. Nevertheless, some loops
might still vanish if the compiler detects their infeasibility, or even
get introduced [2]. To be safe, we check for loop preservation and
consult the user for any deviations between source and binary.

4.4 Precise & partial mapping

The actual mapping between nodes in binary and source graphs is
now applied independently on pairs of subflows in the hierarchy.
We establish a precise but partial mapping, containing only those
nodes which have an unambiguous and safe match, as discussed
in detail before. Additionally, the map is pre-populated with the
fixed-points obtained during the previous step, ensuring that each
subflow has at least one mapped node (its entry).

We use the control dependency mapper as described in Sec. 3.4,
since it can be modified to preserve execution counts and order
(Eq. (3) and (4)), as described in the following. First, a correct edge
labeling is ensured by making some corrections to the original
control dependency mapping algorithm. Towards this, we require
that the lines (excluding columns and discriminators) in the debug
info are correct, but missing information is still allowed. Edges
(u,v) in binary and source are grouped under labels MC, (4) as

MCey(q) = {(w,0) | au) = X Ab(v) = q} (14)

where functions a() and b() enumerate code locations of both source
and binary nodes v according to

a(u) = (line(lmax(u)),1), s.t. disc(lmax(u)) € Dj(line(lmax(u)))
b(v) = (line(lmin(v)),1),  s.t. disc(lmin(v)) € Di(line(lyin(v))),
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with line and disc yielding only the line number respectively discrim-
inator of a debug location, lnin (v), Imax (V) being these locations as
defined in Sec. 2.3, and D; (I) is the discriminator label from Eq. (13).
Using discriminator labels ensures that only edges between basic
blocks that are equivalent in source and binary get the same label,
removing the BB confusion that appears in [23]. The BB properties
are then computed as defined by Eq. (10).

Furthermore, when computing the controlled nodes of an edge,
we exclude self-dependencies of loop headers by always applying
the second condition in Eq. (9). This is justified by the hierarchical
decomposition, since entries of subgraphs are always loop headers,
and the information is therefore not lost. This results in precisely
constrained execution counts, and allows us to map a binary BB to
any of the matching source BBs whilst guaranteeing preservation
of execution count. If execution order shall also be maintained (de-
pends on the microarchitecture, see Sec. 3), this can be established
using our modified dominator homomorphism.

4.5 Overapproximative completion of mapping

At this point, some binary BBs may remain unmapped, e.g., due
to missing debug information. However, for WCET analysis we
must still annotate their timing. We therefore lump their timing
into the closest mapped binary BB, where it gets annotated in the
corresponding source block.

In particular, we first check for “simple paths”. Let P be a path in
Gy, with u being one unmapped node in P, and such that P can only
be entered at the first node, and only left at the last. Assume further,
that P is loop-free, which is guaranteed by our decomposition.
Consequently, all nodes on P have the same execution frequency.
Given the unmapped node u, we walk along P in both directions. If
we encounter a mapped node v, then the timing of u is lumped into
v. If none can be found, we lump the timing into the closest ancestor
of u in the dominator tree. Note that this is safe only in our mapping,
since in the worst case the entry of each subflow is reached, which
is a fixed-point in the mapping and therefore guaranteed to be
represented in the source code. Furthermore, the graph hierarchy
also ensures that dominators are always guaranteed to execute at
least as often as their dominated nodes, and thus underestimation
is also avoided in the latter case. Execution order can be maintained
by lumping iteratively in reverse topological order on Gy,

4.6 Back-annotation of timing to source code

The final step to enable source analysis, is to annotate each source
BB with the timing of the mapped binary BBs. How this timing is
obtained is beyond the scope of this paper, and we refer the reader
to [2, 6]. Since our WCET analysis is a static one, we cannot use
dynamically resolved timing control statements as in VP [8].
Additionally, we also propose a different timing annotation for-
mat. We make use of C’s comma operator, which allows making
annotations in the middle of complex expressions, and in particular
solves the problem with first loop iterations in [23] and the impre-
cision under complex conditional statements encountered in [28].
Consider the following example, with time annotations as TIc(x):

| #define TIC(X) __t += (X);
| for (int k = @; TIC(7), k < 100; TIC(2), k++) {
| if ((TIC(2), p != @) &8

\ (TIC(40), strcmp(p, "list") == 0@)) {

The timing for the loop check can be annotated directly to where
it belongs (line 2), such that a split is not necessary. Furthermore,
short-circuit expressions can be handled in the same way, as shown.
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Table 1: Tightest WCET estimates per method and bench-
mark. Entries marked in bold where our approach is within
1% of binary-level WCET estimate or better.

Binary Level Source Level

Sim. ILP/IPET Generic Map Precise Map
benchmark opt. WCET> WCET< A% WCET< A% WCET< A%
adpem 00 44,045 88,872 +101.8 84,744 +99.2 63,710 +44.6
01 31,699 75,370 +137.8 73,512  +131.9 - -
cnt 00 8,318 8,376 +0.7 8,915 +6.4 8,376  +0.7
01 1,621 1,663 +2.6 1,983 +22.3 - -
cover-50 00 3,524 4,100 +16.3 58,029 +1,546.6 3,524 =0
01 1,369 2,205 +61.0 10,985  +702.4 - -
cre 00 130,325 143,646 +10.2 137,163 +5.2 131,652 +1.0
01 40,612 43,953 +8.2 48,052 +18.3 - -
fdct 00 22,097 22,097 ~ 0 25,013 +13.1 22,097 =~
01 7,691 8,628 +12.2 8,648 +12.4 - -
fibcall 00 1,820 1,830  +0.5 1,904 +4.6 1,830 +0.5
01 6 6 ~ 6 ~0 - -
insertsort 0o 5,476 5,476 ~ 0 6,236 +13.8 5,476 =0
01 943 1,519  +61.1 1,142 +21.1 - -
jfdctint 00 14,143 14,143 ~0 15,906 +12.4 14,143 ~ 0
01 7,427 7,427 ~ 0 8,361 +12.5 - -
matmult 00 984,816 984,816 ~0 1,040,705 +5.6 984,816 ~0
01 294,413 294,413 ~0 309,571 +5.1 - -
ns 00 56,434 56,450 ~0 58,473 +3.6 56,438 ~ 0
01 9,757 11,410 +16.9 14,133 +44.8 - -
nsichneu 00 33,203  75383" +127.0 53,130 +60.0 35,195  +5.9
01 21,625 44,341 +105.0 35,024 +40.7 - -
ud 00 34,153 87,560 +156.4 49,907 +46.1 37,304  +9.2
01 24,885 58,452 +134.9 38,429 +54.4 - -

A: upper bound WCET tightness; "const. & arith. analysis disabled to avoid timeout

4.7 Experiments

We evaluated our mapping algorithm on the widely-used Malardalen
WCET benchmarks [14], using the WCET estimation method de-
scribed in Section 2.4. Our target processor is an Atmel Atmegal28,
which implements a cache-less, in-order, pipelined microarchitec-
ture. As a compiler, we used gec 7.3 without any changes.

As baselines for our WCET estimates we have performed both
random simulations with a cycle-accurate simulator, and WCET
estimations with a traditional binary-level WCET analyzer, the
Bound-T tool [16]. This tool is based on the widely-used IPET/ILP
approach [34], but additionally tries to exclude infeasible paths by
a combination of call context separation, constant propagation, and
arithmetic analysis. The simulation is performed with known worst-
case inputs and thus close to the WCET path, which highlights
overestimation caused by the mapping, as well as unsafe results.

Moreover, we compare the results of the here-proposed general,
compiler-independent mapping with our existing mapper from [2],
which was crafted specifically for one compiler version and flag
setting, and is thus referred to as precise mapping. Since that mapper
cannot handle other compiler versions or flags than the ones being
reverse-engineered, it can only serve as a reference for optimization
level O0. As we will shortly show, the results indicate that our
generic mapping is in fact close to that precise mapper, but naturally
a generic mapping does not need to be re-developed for every triple
of target, compiler (version) and its flags.

The results are summarized in Table 1. For each of the three
WCET estimation methods we also give an upper bound on the
tightness of the estimate, which is obtained comparing the estimate
to the simulated value. Note that this can only be an upper bound,
since there is no guarantee that the simulation indeed has reached
the WCET case at instruction level. In other words, column A gives
a possibly pessimistic overestimation error for each method.

Notes on Benchmarks The programs have been selected to
stress-test various aspects of the mapping. (1) The benchmarks cre,
fdct, fibcall, jfdctint, matmult and ud are single-path programs in
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the source code. That is, there are no flow dependencies on exter-
nal variables. Therefore, the binary-level analyzer should produce
tight results, and mapping imprecisions become obvious. (2) The
benchmark fibcall shows what happens if a function is completely
optimized out, due to constant propagation and inlining. (3) The
benchmark nsichneu is a smoke test for BB confusion, missing hier-
archy and further also scalability. It consists of 378 nested, often
multi-clause if-statements, wrapped in a single loop. The compiler
can optimize aggressively here, and debug information is often am-
biguous. (4) The benchmark cover-50 consists of a loop containing
a switch-case statement with 50 consequents. We have turned off
jump tables, to force the compiler to implement a binary search
which differs heavily from the source in its CFG structure. (5) The
benchmarks adpcm, jfdcting, matmult and ud contain implicit li-
brary calls caused by arithmetic operations, which source-level
analysis can only over-approximate.

Overall impressions: As Tab. 1 shows, the generic mapping is
unsurprisingly less precise than a custom-built mapping. Neverthe-
less, it is only little worse in most cases. Some benchmarks seem
to be mapped too coarsely, e.g., cover-50, with more than thousand
percent overestimation, but also adpcm, where the precise mapper
had at most 44% overestimation, but the generic mapping more
than twice as much. This is analyzed in detail in the next section.

More importantly, the generic mapper also works with optimiza-
tion, unlike the precise/custom one. It is interesting that half of the
time, despite its apparent weaknesses, the generic mapping still out-
performs the binary-level WCET analyzer. This suggests that map-
ping imprecision can be compensated by virtue of detecting more
infeasible paths, and makes the generic and compiler-independent
strategy, as presented here, attractive for WCET analysis.

Results for original VP mapping: Although the unmodified
homomorphism and control dependency mappers are potentially
unsafe as discussed during our review in Section 3, they seem to
work in practice, as well, performing even better. Since this might
be useful for VP applications, we give their results in the appendix.

5 Discussion

Although the results show room for improvement, they support
the feasibility and usefulness of implementing a generic, compiler-
independent mapping and timing annotation method. As we argue
in the following, methods from VP can already be beneficial in
source-level WCET analysis, but there are opportunities for im-
proving them for both VP and WCET analysis.

5.1 Imprecision of estimates

Since the results of our WCET analysis are maximally precise w.r.t.
the source annotations (see Section 2.4), any imprecision of the
generic mapping can be attributed to either a bad mapping quality,
context beyond the analysis domain, or a combination thereof.

5.1.1 Mapping imprecision. When source and binary CFGs start
to diverge, handling of flow differences becomes the key factor
for precise results, often enforcing approximations. Unlike applica-
tions in virtual prototyping, WCET analysis is required to always
overapproximate, therefore approximation errors do not cancel out,
and lead to greater deviations from cycle-accurate simulations.
Consider the two benchmarks nsichneu and cover-50, which we
had chosen because they were considered likely candidates for
overapproximation. Indeed, the results show large overestimation
compared to the binary-level analyzer and the simulation. How-
ever, nsichneu is still better than the binary-level analyzer, possibly
caused by the overestimation of the latter. A clear case presents
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itself with cover-50. The switch-case was implemented as binary
search, and the control-dependency mapping failed to map any of
the cases. Consequently, all timing has been lumped in the switch
header, accumulating a large error due to the surrounding loop. As
a side note, the pure dominator homomorphism (see appendix) was
able to map the final case nodes, but also failed for all the binary
search decision nodes. In contrast, our precise mapper implements a
special switch-case handling and ends up with zero overestimation.
The strategy used there is to attribute the timing of all decision
nodes that lead to a case, to the case itself. Note that this evades any
dominator relationship, and therefore cannot be handled by either
of the mappers. In fact, such handling could be easily generalized
for the completion of the partial mapping.

Another weakness of the mapping are Y-structures in the CFG.
Neither of the two joining paths is a dominator of the following
code, therefore not a control dependency. Consequently, nodes
after such joins remain unmapped. This could be enhanced using
dominator fronts.

5.1.2  Context beyond analysis domain. Source level analysis suffers
a fundamental limitation when it comes to complex control flows
that have no source code equivalent, as happening for library calls.
For this, consider the adpcm benchmark. Although the results are
better than the binary-level analyzer, it still is far off the simula-
tion. This program performs many numeric operations that cannot
directly be done in hardware, such as multiplication of numbers
larger than the architectural word size and arithmetic shifts. Such
functionality is provided by the target’s C and math libraries, and
implemented in assembly language for better performance. A pure
source-level analysis thus cannot track the control flow and data
dependencies for such functions, and thus must assume the worst-
case timing for such library calls. In fact, the same effect occurs in
the binary-level analyzer, but for different reasons. Other bench-
marks subject to the same limitation are cnt, jfdctint, matmult and
ud, although those estimates are acceptable in their WCET tightness
and still mostly close or better than the binary-level analysis.

Tab. 2 quantifies the overestimation in adpcm caused by non-
source functions. Here we show the observed WCETs for some
functions in the simulation (not necessarily occurring together in
the same run), and compare them with their WCET estimates. It first
should be noted that simulation and worst-case paths are very close
together, as indicated by the call counts. However, the number of
processor cycles substantially differs for the functions __ash*di3,
which implement arithmetic shifts using loops. Their execution time
is proportional to the shift distance, and thus substituting these calls
by a context-agnostic WCET does introduce large overestimation
errors. Although it would be possible that the simulation did not
include a trace in which these functions were called with their
individual worst-case inputs, we know from the source code of
this program that the majority of shift operations are invoked with
parameters that do not result in their individual WCET. Clearly,
this explains why the simulated value is well below the estimates,
and confirms that this is not caused by mapping imprecision.

5.1.3 Chances of source-level analysis. On the other hand, Tab. 2
also shows that source-level analysis is able to bound the number
of some calls more precisely than the binary-level analyzer. This
suggests that source-level analysis can identify more infeasible
paths, and thereby does not need to assume that the global WCET
is the sum of the WCETs of the individual functions.
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Table 2: Upper bound on WCET overestimation A due to
functions without source code in adpcm.

Sim.max. WCET Binary-Level WCET Source-Level
function time (calls)  time (calls) A time (calls) A
_ashrdi3 1,887 (17) 27,013(17) 25,126 27,013 (17) 25,126
ashldi3 880 (10) 15230 (10) 14,350  15.230 (10) 14,350
" muldi3 18,420 (60) 19,467 (63) 1,047 15141 (49)  -3,279
sum 21,187 (87) 61,710 (90) 40,523 57,384 (76) 36,197

5.2 Threats to safety

In this work, we require the debug information to be correct, yet it
is allowed to be incomplete and imprecise. Otherwise map entries
become incorrect, which might result in an underestimation of the
WCET. In the context of WCET analysis this seems an acceptable
prerequisite, as usually tools have to be certified whenever timing
analysis requires a certain level of assurance [11].

Under optimization: Assuming the labels are correct, the four
general optimization effects identified earlier seem to be covered:
Change in execution order is tracked by debug locations, and oth-
erwise safely overapproximated. A change of execution conditions
can either lead to missing precise maps, or, if debug info is available,
detected and carried to the new binary location. Blocks that are
optimized out are obviously not part of the mapping domain, and
thus supported. Last but not least, duplication can be detected if
debug info allows, and is otherwise overapproximated. Despite this
verbal argument, a formal proof is still pending and required to
qualify this mapping for WCET analysis.

5.3 Further improvements

Beyond the already mentioned refinements in completing the map-
ping and handling Y-structures, further improvements are possible.
For example, this mapping assumes the worst case for time-variable
instructions. This mainly concerns branch instructions, which often
vary in their timing depending on which edge was taken. To pre-
cisely annotate such behavior, the branching instruction needs to
be analyzed for its polarity, and considered during edge matching.
However, the bigger challenge is to annotate this in the source code,
since not all binary edges have equivalent source edges/locations.

More improvements can be made by allowing to alter the source
code. Flow differences which cannot be handled, could always be
“lifted back” into the source, by modeling the unmappable instruc-
tions using source statements. This, in principle, is decompilation.
It increases the source complexity, but reduces the overestimation,
thereby offering an opportunity for a trade-off.

5.4 Open issues in both research communities

5.4.1 Execution contexts for non-sources. We have illustrated in
Sec. 5.1.2 that call contexts should be considered for better timing
models. In general, this problem is also present in binary-level anal-
ysis and is notoriously difficult, since it traces back to the Halting
Problem. Still, this is not only a theoretic issue, but some functions,
especially library routines, can be truly unbounded without execu-
tion context. Thus, WCET analyzers usually are forced to consider
execution contexts to some extent [16, 34].

Here, we want to bring the attention to the specifics of execution
context in source-level analysis. Further research should focus on
establishing an interface between source-level and binary analysis.
A mixed analysis might in fact have the best properties from both
sides, so that it can exclude more infeasible paths, and eventually
provide a tighter WCET estimate than either of them individually.

But neither the VP nor the WCET community have a ready-to-
use solution to this problem at the moment. One possible approach
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could be to calculate parametric WCET estimates, as proposed
in [30], and use parametric annotations in the source. We have
qualitatively evaluated this approach in [3].

5.4.2  Path-Dependent Timing. Although not the focus of this pa-
per, obtaining the timing for the individual binary BBs can create
a henn-and-egg problem. In general BB timing can depend on the
execution path, which is however only known after the analysis.
Thus, determining the timing of each BB individually cannot always
be done with precision. This issue especially needs to be consid-
ered in the presence of caches, as discussed below. The limitations
otherwise are elaborated in [2].

5.4.3 Conditional instructions. Compilers may perform “if conver-
sions” if the target supports conditionally executed instructions.
These cannot be efficiently handled with the presented methods,
since they do not appear as branches in the binary CFG. Such in-
structions can be found in the ARM ISA, and the compiler may use
those even when optimization is turned off.

5.4.4  Broader architectural spectrum. Mapping approaches in the
VP domain have covered solutions for complex processors with
features such as caches, branch prediction and buses [22]. While
some of them might be transferable to WCET analysis, others are
missing. For example, there are models for data caches, we but are
not aware of any instruction cache models. The latter are more
problematic, because the exact flow of the binary CFG dictates the
timing behavior, and annotations might deviate from that. We are
currently working on a source-level instruction cache model which
can handle such differences soundly, however at the cost of reduced
precision. For maximum precision, it seems inevitable to resort to
the decompilation approach.

Furthermore, both domains are currently limited to in-order
architectures and bare-metal platforms, at least in deterministic
analysis. It seems that these limitations will stay, since out-of-order
processing is likely intractable (if even a microarchitectural model
exists), and since the use of operating systems implies virtual mem-
ory, which would leave memory addresses and thus caching behav-
ior undefined prior to run-time.

6 Related work

Before concluding, we briefly mention further work that was not
already referenced earlier.

Compiler modifications: There are many approaches that rely
on extensions to the compiler. Some modify existing optimization
passes to maintain better debug information [18], whereas oth-
ers propose methods to transform meta-information among dif-
ferent levels of program representation, such as in the T-CREST
project [26].

Simplifying the mapping problem itself: Some approaches
modify the compiler such that source and binary flows are guar-
anteed to be isomorph [5]. Others, in both the WCET and VP ar-
eas [6, 26], change the original program by inserting markers that
propagate through to the binary. These approaches are orthogonal
to this work, since the effect of markers is conceptually similar to
having better debug information.

IR-level back-annotation: Several groups have proposed map-
pings from binary to compiler IR (thus, only considering backend
optimization) [8, 21, 32], or only from IR to source (thus, only consid-
ering high-level optimization), as in [31]. Both of these approaches
have their place next to a full binary-to-source mapping as pro-
posed here, since they can be used as fallback solutions, and are
likely necessary to realize precise source-level cache models.
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Model identification: Another line of work avoids solving the
mapping problem for each program individually by deriving a
source-level model once, and subsequently obtaining timing annota-
tions from this model only [1]. The timing behavior is measured on
a set of training programs, and then used to derive a timing model
for source constructs. Only the model is subsequently used to ana-
lyze and annotate new programs. Similarly, there are approaches
based on machine learning [22]. We did not consider them for
WCET analysis, because there is no guarantee for the correctness
of such timing models.

7 Concluding remarks

We have shown that instruction-to-source mapping and timing
annotation methods from the Virtual Prototyping (VP) domain can
be used for WCET analysis, if applied carefully. The results are quite
promising, suggesting that a generic, compiler-independent back-
annotation with sufficient precision is possible, especially under
moderate optimization, where source-level analysis can identify
more infeasible paths than binary analyzers.

During our experiments, we have found several weaknesses that
exist for both the VP and WCET domains. Some are easy to address
and promise even better annotations. However, others remain unan-
swered in both domains, namely complete cache models — which
is part of our ongoing work — and execution contexts for library
calls. Addressing these issues provides further chances of synergy
between both research domains.
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Results with unsafe VP mapping

Sim. Hom. Map Ctrl Dep Map
benchmark opt. WCET> WCET< A% WCET< A%
adpcm 00 44,045 82,490 +87.2 84,744 +99.2
01 31,699 71,812  +126.5 73,512 +131.9
cnt 00 8,318 8,586 +3.2 8,915 +6.4
01 1,621 2,377 +46.6 1,943 +19.8
cover-50 00 3,524 41,107 +1,066.4 58,029 +1,546.6
01 1,369 14,369  +949.5 10,985  +702.4
cre 00 130,325 137,073 +5.1 137,163 +5.2
01 40,612 47,799 +17.6 48,052 +18.3
fdct 00 22,097 22,257 +0.7 25,013 +13.1
01 7,691 8,644 +12.3 8,648 +12.4
insertsort OO0 5,476 5,530 +0.9 6,236 +13.8
01 943 1,142 +21.1 1,142 +21.1
jfdctint 00 14,143 14,159 +0.1 15,906 +12.4
01 7,427 8,357 +12.5 8,361 +12.5
matmult 00 984,816 993,236 +0.8 1,040,705 +5.6
01 294,413 309,382 +5.0 309,571 +5.1
ns 00 56,434 57,839 +2.4 58,473 +3.6
01 9,757 13,673 +40.1 14,133 +44.8
nsichneu 00 33,203 70,945  +113.6 53,130 +60.0
01 21,625 43,798  +100.2 35,024 +40.7
ud 00 34,153 37,888 +10.9 49,907 +46.1
01 24,885 30,314 +21.8 38,429 +54.4
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