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ABSTRACT
Designing efficient and robust beam alignment strategies for mil-
limeter wave (mmWave) systems is important for overcoming train-
ing overheads and practical hardware impairments. In this work,
we leverage side information in the form of prior knowledge of
the angular support of the propagation channel (direction informa-
tion) to design a compressive sensing (CS) based beam alignment
algorithm. Existing CS based channel estimation approaches as-
sume perfect phase information of the measurements, which is not
the case with the low-cost off-the-shelf mmWave phased arrays.
Instead, we develop a two-stage algorithm where we use the mag-
nitude of measurements (aka non-coherent measurements); using
phase retrieval (PR) followed by sparse recovery, we estimate the
channel gain across various (quantized) spatial angles. To validate
the proposed algorithm, we develop a fully reconfigurable mmWave
testbed with custom-made 2-bit phased arrays. We perform a care-
ful calibration to the phased arrays, thus enabling generations of
precise desired beam patterns. Our implementation and real experi-
ments validate both the proposed algorithm and calibration process
by demonstrating consistency between the experimental results
and the theoretical analysis.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting; • Hardware→ Beamforming; Digital signal processing;
• Networks → Mobile ad hoc networks.
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1 INTRODUCTION
MmWave communication now enables flexible transmission with
its large available spectrum resources [23]. The small wavelengths
at mmWave frequencies and the recent developments in the semi-
conductor industry are able to compact large antennas to form
electronically-steerable phased arrays with small physical sizes.
This provides more flexibility to configure antenna elements to get
favorable received signal power and desired radiation patterns [30].
Configuring these phased arrays, however, have significant chal-
lenges. First, the use of highly directional beams results in large
beam training overhead [18]. Second, it is challenging to develop
silicon-based antenna systems that can generate perfect beam pat-
terns without any irregularities [25] and fulfill the other perfor-
mance requirements posed by the existing compressive channel
estimation algorithms [30]. Therefore, designing efficient beam
training algorithms that are compatible with low-cost hardware is
crucial for enabling mmWave communication in practice.

To reduce the beam training overhead, one promising solution
is to leverage side information from available sensors to infer the
channel prior to performing any training [12]. This helps to avoid
probing the potentially ineffective beams. Among various sensor
data, position information can be obtained by positioning systems
like commercial GPS, or out-of-band communication systems [18,
27]. In the line-of-sight (LOS) scenarios, the location information
of the transmitter (Tx) and receiver (Rx) can be directly used to
infer the angle of departure (AoD) and angle of arrival (AoA) of the
LOS path. In the non-line-of-sight (NLOS) scenarios, a mechanism
similar to the sector level sweep (SLS) in IEEE 802.11ad can be
used to infer the AoD and AoA of a dominant path [17]. In this
work, we will use side information to help to estimate the direction
of the dominant channel path, hence reducing the beam training
overhead.

Several mmWave beamforming and channel estimation algo-
rithms have been developed without considering the imperfection
of practical devices or hardware impairments [4, 31]. The real per-
formance of these algorithms is thus rarely examined by practical
experiments. For low-cost phased arrays, large phase noise and
irregularities of beam patterns do not satisfy the assumption of
perfect coherence across all training slots (packets), that is typically
required by current compressive designs. This was experimentally
confirmed by [21]. It was reported in [14] that an accumulated
random and unknown phase corrupts the phase information of the
measurements across packets. Due to the unstable oscillators of
low-cost devices, there exists an unknown carrier frequency offset
between the local oscillators at the transceivers, which is dynami-
cally changing [20, 21, 25]. These unstable oscillators result in an
accumulated phase noise which destroys the phase information
of the measurement. In particular, for low-bandwidth mmWave
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communication, e.g. IoT application, the impact of phase noise will
be even stronger. Given these hardware limitations, we propose to
only leverage the magnitude of measurements, which is termed as
non-coherent measurements, to design a beam alignment algorithm.

Motivated by these observations, in this work, we leverage prior
knowledge of the dominant channel path direction to design a non-
coherent mmWave beam alignment algorithm that is compatible
with the low-cost off-the-shelf mmWave phased arrays. To experi-
mentally validate the proposed algorithm, we develop a MATLAB-
based software defined radio (SDR) platform for fast prototyping
with fully reconfigurable phased arrays which are carefully cali-
brated. Our algorithms and experiments focus on a narrowband
mmWave setting (5 MHz bandwidth in our experiments) that is
especially well-suited to emerging low-cost IoT applications. The
major contributions of this work are summarized as follows:

1. Side-information-aided non-coherent beam alignment
algorithm design. we develop a two-stage compressive phase
retrieval (CPR) algorithm to estimate the channel only with the
magnitude of training measurements. In particular, we incorporate
side information in the form of prior knowledge of the angle infor-
mation of the dominant path, to reduce the beam training overhead.
With our side-information-aided non-coherent beam alignment
algorithm, a better estimation of the direction of the dominant
path is achieved in comparison with the traditional beam sweep-
ing strategy. To the best of our knowledge, this is the first work
that demonstrates the feasibility of the CPR technique in estimat-
ing the mmWave channel with side information and non-coherent
measurements.

2. ReconfigurablemmWave testbed and experimental val-
idation. To examine the proposed side-information-aided non-
coherent beam alignment algorithm,we develop a low-costmmWave
testbed using SiBEAM 60 GHz phased arrays and USRPs. We use
MATLAB to develop a phased array control interface and to perform
baseband signal processing. With this testbed, we experimentally
validate the proposed algorithm. Our experiments demonstrate
consistency between the experimental results and the theoretical
analysis of the proposed algorithm. In addition, the related code is
publicly accessible in [35], which can provide a starting point for
researchers interested in developing mmWave testbeds or proto-
typing advanced mmWave algorithms.

3.MmWave phased array calibration.As is well known, com-
pressive channel estimation and beamforming relies on knowing
the exact radiation patterns. Therefore, a small irregularity in beam
pattern generation can result in unpredictable and undesired er-
rors in compressive channel estimation, further worsening the link
performance through beam misalignment. Indeed, prior mmWave
prototyping studies have specifically reported the unexpected irreg-
ularity of the beam patterns generated by the off-the-shelf phased
arrays [24, 25]. Therefore, phased array calibration is necessary
to guarantee that the desired beam patterns are applied. In this
work, we develop a one-time phase array calibration. Our experi-
ments show that the performed calibration improved the received
signal-to-noise ratio (SNR) by 4 dB. To the best of our knowledge,
this is the first mmWave prototype with phased array calibration,
which makes the beam pattern generation flexibly reconfigurable
and accurate.

2 SYSTEM MODEL
We consider a mmWave system consisting of a single transmitter
equipped with a uniform linear array (ULA) of NTx antennas and
a single receiver equipped with a ULA of NRx antennas. We let s
be the transmitted training symbol such that E[|s |2] = 1 and let
a NRx × NTx matrix H represent the channel between the Tx and
Rx. For the n-th beam training slot (n-th measurement), the Tx
uses a NTx × 1 RF precoder fn and the Rx applies a NRx × 1 RF
combiner wn . Due to the low-cost fabrications of the off-the-shelf
phased arrays and the unstable oscillators between transceivers,
there exists stochastic phase noise across different training packets,
which we denote as ϵn . By adopting a frequency-flat channel model,
the received signal ỹn can be expressed as

ỹn = w∗
nHfne

jϵn s +w∗
nn, (1)

where n is additive noise which follows CN(0,σ 2INRx ). Since this
accumulated phase noise e jϵn corrupts the phase information of
the measurement, we only use the magnitude of ỹn to estimate the
channel, hence transforming (1) into

yn = |ỹn | =
��w∗

nHfns +w
∗
nne

−jϵn
�� . (2)

Since multiplying n by e jϵn does not change its distribution, we use
n to represent ne−jϵn in the following. Therefore, the non-coherent
measurement observed in the n-the training slot is given by

yn =
��w∗

nHfns +w
∗
nn

�� . (3)

In this work, we adopt a geometric channel model with L inde-
pendent propagation paths between the Tx and Rx. We assume that
all scattering happens in azimuth and only 1-D beamforming is im-
plemented in the studied system. Then, l-th path is parameterized
by {дℓ ,ϕℓ ,θℓ}, where дℓ is the complex channel gain (including
path loss) of the ℓ-th path, ϕℓ ∈ [−90◦, 90◦] and θℓ ∈ [−90◦, 90◦]
are the physical azimuth AoD and AoA of the ℓ-th path. In particu-
lar, ϕℓ and θℓ are the angles with respect to the broadside of ULA.
Under this model, the NRx × NTx channel matrix H can be written
as

H =
√
NTxNRx

L∑
ℓ=1

дℓaRx(θℓ)aHTx(ϕℓ), (4)

where aTx(ϕℓ) and aRx(θℓ) represent the antenna array response
vector at the Tx and Rx side, respectively. The expression of aTx(ϕℓ)
is given as

aTx(ϕℓ) =
1

√
NTx

[
1, e−j2π

d
λ sin(ϕℓ ), . . . , e−j(NTx−1)2π d

λ sin(ϕℓ )
]T
,

(5)
where d is the spacing distance between two neighboring antenna
elements and λ is the wavelength of the signal. The array response
vector of the Rx is defined in a similar manner.

3 PROBLEM FORMULATION
In this section, we first recap the sparse representation of the generic
mmWave channel estimation problem with non-coherent measure-
ments. Then we introduce our way of incorporating side informa-
tion into the formulated problem.
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3.1 Sparse representation of non-coherent
mmWave channel estimation

Based on the signal model provided in Section 2, we now derive a
sparse formulation of the non-coherent channel estimation prob-
lem. Suppose that the Tx transmits the energy-normalized training
symbol {sp }MTx

p=1 withMTx different precoders {fp }
MTx
p=1 , and for each

precoder, the Rx appliesMRx distinct combiners {wq }
MRx
q=1 to receive

the signal, then the measurement can be rewritten as

yq,p =
���w∗

qHfpsp +w
∗
qn

��� . (6)

We denote F = [f1, ..., fMTx ] and W = [w1, ...,wMRx ]. We let the
AoD and AoA be uniformly quantized by GTx and GRx levels, re-
spectively. Then we let AD represent an NTxNRx × GTxGRx dic-
tionary matrix consisting of GTxGRx column vectors of the form(
a∗Tx(ϕ̄u ) ⊗ aRx(θ̄v )

)
, where ⊗ is the Kronecker product operator,

ϕ̄u and θ̄v denote the u-th and v-th uniform quantization level of
AoD and AoA, respectively. Based on these, according to [4], we
can vectorize theMTxMRx training measurements in (6) as

yv =
���(FT ⊗ W∗)ADz + nV

��� , (7)

where yq,p is the [(p − 1)MRx + q]-th element of yv, nV is the
vectorized noise, and z represents the complex-valued path gain of
the corresponding quantized spatial angles. The formulation in (7)
demonstrates a sparse representation of the mmWave channel since
z has L non-zero elements [4] and L ≪ GTxGRx, which further leads
to a CPR problem.

3.2 Application of side information
In this subsection, we discuss the form of side information and apply
it to revising the non-coherent measurements in (7). We assume that
with existing positioning services or out-of-band communication
modules, the AoD andAoA of the dominant channel path are known
to lie in searching regions Sϕ ≜

[
ϕ̂, ϕ̂ + ∆ϕ

]
and Sθ ≜

[
θ̂ , θ̂ + ∆θ

]
,

respectively. Here Sϕ and Sθ are subsets of [−90◦, 90◦], and ∆ϕ and
∆θ are termed as searching range of the AoD and AoA.

We now denote z̃ as a vector which is composed of the elements,
from z, that correspond to the searching regions of the AoD and
AoA. Then we denote z̃c as a vector consisting of the remaining
elements of z. Similarly, we can denote ÃD and Ãc

D as the sub
dictionary matrices corresponding to z̃ and z̃c, respectively. Then
(7) is written as

yv =
���(FT ⊗ W∗)ÃDz̃ + (FT ⊗ W∗)Ãc

Dz̃
c + nV

��� . (8)

Under the assumption that the dominant path is much stronger
than the other paths, we can treat the term (FT ⊗W∗)Ãc

Dz̃
c as part

of noise, which yields

yv =
���(FT ⊗ W∗)ÃDz̃ + ñV

��� , (9)

where ñV = (FT ⊗W∗)Ãc
Dz̃

c+nV. Actually, focusing on z̃ rather than
z means that we only consider the dominant path of the channel.
This is reasonable since we are performing analog beamforming
and only one path will be used for data transmission. It is worth
pointing out that the incorporation of side information, i.e. from
(8) to (9), is closely related to the performance of the following

proposed non-coherent algorithm because this helps to reduce the
training overheads as the dimensionality of z̃ is not greater than z.
We denote the size of z̃ as N × 1.

4 NON-COHERENT BEAM ALIGNMENT
ALGORITHM

In this section, a two-stage algorithm is proposed to estimate the
sparse vector z̃ (the complex-valued path gain of the quantized
angles in the searching regions) in (9) with the non-coherent mea-
surements yv. For notation simplicity, we define a sensing matrix
Ψ ≜ (FT ⊗W∗)ÃD for (9). The proposed algorithm is inspired by a
state-of-the-art CPR algorithm provided by [5] and [15], in which
there are no restrictions for their sensing matrices. In the context
of mmWave systems, the sensing matrix Ψ is constrained by the
features of phased arrays, such as low-resolution phase shifters, a
limited number of RF chains, and etc. Accordingly, we will design a
particular sensing matrixΨwhich fits our formulated non-coherent
estimation problem and meanwhile maintains the benefit of the
state-of-the-art CPR algorithm.

4.1 CPR based channel estimation
In this subsection, we will present a two-stage algorithm to recover
z̃. Suppose that the sensing matrix Ψ can be decomposed into a
product of a PR matrix of sizeMRxMTx×MCS, denoted by ΨPR, and
a CS matrix of sizeMCS × N , denoted by ΨCS, which is expressed
as

Ψ = ΨPRΨCS. (10)
In particular, we require that MRxMTx > MCS and MCS < N ,
namely that the sensing matrix Ψ is decomposed into a product
of two low-rank matrices. When Ψ is not directly decomposable,
a low-rank approximation will be performed to it, which will be
detailed in the next subsection. We further denote the noise, with
respect to yv, introduced by the low-rank approximation as r. Then
the measurement vector yv in (9) can be written as

y = |ΨPRΨCSz̃ + ñV + r|2 , (11)

where y ≜ y2
v. To avoid calculating the squared magnitude with

the added noise terms, we remodel y as

y = |ΨPRΨCSz̃|2 + e, (12)

where e is an overall noise term bounded as ∥e∥2 ≤ ε . This error
model was proposed by [7] and it is suitable for our case. This is
because our measurements are corrupted by multiple random noise
sources consisting of the signal from the paths out of the searching
region, i.e. Ψz̃c, the residual from the low-rank approximation, and
the thermal noise nV.

We now introduce an intermediate vector yCS ≜ ΨCSz̃, of size
MCS × 1. Then the CPR estimation problem in (12) can be decom-
posed into two concatenated problems given by

y = |ΨPRyCS |2 + e, (13a)
yCS = ΨCSz̃. (13b)

First of all, (13a) represents a PR problem without requiring yCS
to have a sparse property. In addition, we have MRxMTx > MCS,
which fits the requirement of solving a classic PR problem, that
the number of measurements should be larger than the problem’s
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dimensionality. The rule of thumb is that the number of measure-
ments is more than 4 times as the problem’s dimensionality [2].
Thus, we can retrieve yCS by solving (13a) givenMRxMTx > MCS.
Secondly, it can be seen that (13b) is a traditional CS problem with
MCS < N , namely that the sparse vector z̃, of size N × 1, is to be re-
covered via a smaller number of measurements yCS, of sizeMCS×1.
As a result, the decomposition in (10) reduces the original CPR
problem in (12) into a PR problem with a smaller dimensionality
of MCS and a traditional CS problem. The newly generated two
problems in (13) are solved sequentially in two stages illustrated in
the following.

Stage 1 Phase retrieval: In this work, we use the PhaseLift
approach proposed in [7, 8] to solve the PR problem formulated in
(13a). By lifting the target sparse vector yCS as YCS = yCSy∗CS, (13a)
can be transformed as a regularized convex optimization problem
given as [7]

min
YCS

1
2
y − diag

(
ΨPRYCSΨ∗

PR
)2

2 + ηTr (YCS) (14a)

s.t. YCS ⪰ 0, (14b)

where η is a positive scalar that is chosen depending on the level of
noise. After solving the problem (14), we use the largest eigenvector
of YCS as an estimate of yCS.

Stage 2 Sparse estimation:With the estimated yCS from stage
1, the next step is to recover the sparse vector z̃ in (13b), corre-
sponding to the complex-valued path gains along the quantized
angles in the searching regions. Classic CS algorithms can be ap-
plied to estimate z̃, such as the OMP method [28] or the EMBGAMP
method [32].

4.2 Generation and low-rank decomposition of
sensing matrix

We now discuss the generation of ΨPR and ΨCS. Overall, we pro-
pose to use a sensing matrix generated by overlapped directional
beams (instead of a random sensing matrix that is more typical
in literature). The motivations of this are: (1) With side informa-
tion, the Tx and Rx can probe directional beams within the known
searching region, which provides a higher receiver SNR than the
traditional CS-based channel estimation where random beam pat-
terns are used. (2) Directional beams are easier to calibrate and
thus the regularity of their radiation patterns is easier to guarantee,
in comparison with randomly generated beams. Accordingly, for
low-cost devices, even with a fixed codebook of directional beams,
better beam alignment can be performed. (3) It also turns out nu-
merically that the proposed two-stage algorithm does not work
well with a random sensing matrix.

Taking the generation of the precoder matrix F as an example,
the idea is to generateMTx directional beams that fully covers the
searching region of AoD. To this end, we uniformly partition Sϕ into
MTx sub-regions and then theMTx physical pointing directions are
set to the centers of theMTx sub-regions. Then F is constructed by
MTx array response vector corresponding to these MTx directions.
This is further quantized according to the resolution of the phase
shifters. In the following, we use F to represent the precoder after
quantization. To fully cover the searching region, a certain overlap
between neighboring beams is required. Since the beamwidth of

the directional beams generated by a ULA with NTx elements can
be roughly estimated as 102

NTx
(in degrees), we set that 102MTx

NTx
>

∆ϕ to guarantee the performance of the proposed algorithm. The
quantized combiner W is calculated in a similar manner.

Given the precoder and combiner, we can have the sensingmatrix
Ψ = (FT ⊗ W∗)ÃD. To obtain the PR matrix Ψ and the CS matrix
Ψ, we perform the SVD to Ψ, which yields

Ψ = UΣV∗. (15)

We then keep the topMCS left and right singular vectors and the
top MCS singular values of Ψ, namely we compute a low-rank
approximation of Ψ via SVD given as

Ψ ≈ UMCSΣMCSV
∗
MCS
= UMCS

√
ΣMCS

√
ΣMCSV

∗
MCS
, (16)

which yields

ΨPR = UMCS

√
ΣMCS , (17a)

ΨCS =
√
ΣMCSV

∗
MCS
. (17b)

ChoosingMCS is crucial because a larger value for MCS would
make a better approximation of the sensing matrix Ψ but results
in worse performance in recovering yCS as the problem’s dimen-
sionality of the PR problem in (13a) is MCS. The choice of MCS is
expected to be as small as possible subject to obtaining a useful
approximation. To evaluate the performance of the low-rank ap-
proximation ofΨ, we define γ as the ratio of the sum of the singular
values being kept to the sum of all the singular values, which is

expressed as γ =
Tr

(
ΣMCS

)
Tr(Σ) . Intuitively, γ is a metric that indicates

how much principal component of the target matrix is captured
by SVD. In our application, we choose γ within [0.8, 0.9]. The pro-
posed side-information-aided non-coherent estimation algorithm
is summarized in Algorithm 1.

Algorithm 1 Side-information-aided Non-coherent Beam Align-
ment Algorithm
Input: Tx and Rx know NTx, NRx,MTx,MRx, Sϕ , Sθ and γ .
Output: z̃ that consists of the path gain of quantized spatial angles

within the searching regions.
Calculation:

1: Reduce the dictionary matrix AD to ÃD with Sϕ and Sθ
2: Construct the precoder and combiner matrices F and W
3: Perform SVD to the sensing matrix Ψ as in (15)
4: Compute low-rank matrices ΨPR and ΨCS following (17)

Estimation:
5: Solve the PR problem in (14) by using PhaseLift and obtain an

estimate of yCS
6: Solve the CS problem in (13b) by using OMP (or EMBGAMP)

and obtain an estimate of z̃
End

5 EXPERIMENTAL SETUP
In this section, we present our mmWave testbed. Firstly, the hard-
ware components are summarized. Secondly, the hardware setup
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Figure 1: Block diagram of the mmWave testbed

and a software-controlled system are introduced. Finally, the pro-
cedure of data collection is illustrated.

5.1 Key hardware components
Two USRP N210 each is used at both the Tx and the Rx sides to
connect one phased array and one host computer. In addition, we
use SiBEAM Sil6342 60 GHz phased arrays, donated by Google Inc.
They are 12-element 2-bit phased arrays operating at 60.48/62.64
GHz with the antenna spacing 3.055 mm. This setup supports nar-
rowband mmWave communications, with a bandwidth of 5 MHz.

5.2 Hardware setup
A block diagram with the hardware connection is given in Fig. 1.
Taking the connection at the Tx side as an example: (1) The Tx USRP
generates the baseband signal, which is fed into the Tx phased array
via 2 way-180◦ power splitters. (2) The phased arrays are mounted
onto camera tripods, which allows azimuthal rotation. This makes
the arrays stand at a height of 1.7 meters above the ground. (3)
The phased arrays are connected to the corresponding host com-
puters via USB cables and are further controlled via virtual serial
ports. The universal asynchronous receiver-transmitter (UART)
protocol is applied to read the status of phased arrays and more
importantly to reconfigure them (antenna switching on/off, phase
shifters’ states/codebook and RF gain). A similar assembly is done
at the Rx side.

5.3 Software setup
There are two software modules. One is a general purpose proces-
sor (GPP) based SDR platform. We use MATLAB to connect and
configure USRPs for data exchange. This module includes baseband
signal processing as well. The other module is the control interface
for the phased arrays. This interface is developed using serial port
programming (C language), which is called by MATLAB. Since
a GPP based SDR and the phased array control is used together
during the experiment, it is important to ensure a successful recon-
figuration of the phased arrays before taking the measurements.
Thereby, the control interface waits for a certain period (3ms in our
case) after sending each command for reconfiguration.

𝛼𝑒 #×% 	

𝛼𝑒 '() 	

𝛼𝑒 '( 	

𝛼𝑒 '*() 	

𝛼+,-𝑒 './ ,0 	
𝛼+,)𝑒

' (
)1./ ,2 	

𝛼+,*𝑒 ' (1./,3 	 𝛼+,4𝑒
' *(

) 1./ ,5 	

Figure 2: Ideal and real radiation properties of each nomi-
nal phase state of n-th antenna. The solid arrows represent
the real magnitudes and phases of the nominal phase states
while the dashed arrows are the ideal ones.

5.4 Procedure of data collection
To begin the data collection process, the Tx program is started by
configuring the Tx USRP. Then the Tx phased array is reconfigured,
which involves setting the on/off state of each antenna and the
phase state of each phase shifter, i.e. applying the desired codebook.
After having successfully reconfigured the Tx phased array, we
feed the training data to the Tx USRP and start the transmission.
Afterward, the Rx program is started and similar operations are per-
formed. It is important to point out that the reconfiguration of the
Tx (Rx) phased array is always prior to starting signal transmission
(reception). This is to ensure that the collected measurements are
correctly transmitted and received under the desired configurations
of the phased arrays. In our experiments, one measurement refers
to the averaged result of one received packet consisting of 10000
samples under QPSK modulation with 5Ms/s sampling rate.

6 PHASED ARRAY CALIBRATION
In this section, we briefly describe a one-time calibration process
that is performed to our mmWave testbed. Calibrating a phased
array refers to determining the magnitude and phase behaviors of
each antenna. Only with carefully calibrated phased arrays, we can
produce desired beam patterns accurately. The SiBeam’s phased
array provides each antenna element with four phase states 0◦, 90◦,
180◦ and 270◦. The real phases, however, are not precisely the nom-
inal values due to the low-cost fabrication of its PCB. Specifically,
Fig. 2 depicts the potential imperfection of a 2-bit phased array.
Therein, four nominal phase states are shown by the dashed arrows
and the real phase states with undesired magnitudes and shifted
phases are represented by the solid arrows.

6.1 Phase match based calibration
In this part, we describe our phase match based calibration (PMBC).
We refer to Fig. 2 for notation.We denote the magnitude of radiation
pattern when only the r -th phase state of the n-th antenna element
is activated as αn,r and its phase as e j(r−1) π2 +ϵn,r , where ϵn,r is
the phase error with respect to the nominal phase (r − 1) π2 . Note
that αn,r and e j(r−1) π2 +ϵn,r are relative magnitude and phase with
respect to those of a reference phase state (RPS) of a reference
antenna (RA). Without loss of generality, we set the 1-st antenna as
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Figure 3: Schematic of the mechanical alignment, where d is
the antenna element spacing and D is the distance between
two phased array boards. This schematic is not proportional
as D is much larger than d . In addition, this schematic also
serves as an example of calibrating the 4th Tx antenna,
where the color green indicates that the antenna is activated.

the RA and its 1-st phase state as the RPS. For simplicity, we further
set that α1,1 = 1.

A sequential calibration process of our proposed PMBC is sum-
marized as follows: (1) The mechanical alignment must be first
conducted to make the planes of Tx and Rx phased array board
perfectly face to each other, as shown in Fig. 3. (2) The magnitude
calibration can be easily accomplished by switching an antenna
on one at a time and measuring its antenna gain. (3) The phase
calibration is performed by activating two antenna elements: one
antenna is serving as a reference antenna (RA) and the other one is
the antenna to be calibrated (ATC), for which an example is given in
Fig. 3. By enumerating all the nominal phase states of the ATC, four
measurements are collected. Given the far-field model and that the
RA is set to the 1-st antenna with the reference phase state (RPS)
set to the 1-st state, the magnitude of the measurement, denote as
mn,r , can be expressed as

mn,r = β
���α1,1 + αn,r e

j[ϵn,r+ π2 (r−1)]
��� , 1 ≤ r ≤ 4, (18)

where β is an unknown factor related to the non-linearity of ampli-
fiers when two antenna elements are activated simultaneously. We
model the phase errors being antenna-dependent, but consistent
among different phase states, i.e. {ϵn,r }4

r=1 = ϵn . Then ϵn repre-
sents the phase error of the n-th antenna element. This model is
reasonable since the phase error of the antennas are generally intro-
duced by imperfect circuit designs and coarse PCB fabrications, and
moreover all phase states of the same antenna suffer from the same
hardware impairments, making the phase error depend on the an-
tenna but be consistent among different phase states. Accordingly,
the measurements in (18) can be rewritten as

mn,r = β
���α1,1 + αn,r e

j[ϵn+ π2 (r−1)]
��� , 1 ≤ r ≤ 4. (19)

By choosing two arbitrary measurements of different phase states
r1 and r2, we can eliminate the unknown factor β by taking their

ratio and then obtain

m2
n,r1

m2
n,r2

=

���α1,1 + αn,r1e
j[ϵn+ π2 (r1−1)]

���2���α1,1 + αn,r2e
j[ϵn+ π2 (r2−1)]

���2 , (20)

which can be further transformed into a solvable quadratic equa-
tion. Then, the phase error ϵn is found. To be more robust against
inaccurate operations during data collections and the imperfectness
of the model {ϵn,r }4

r=1 = ϵn , we vary r1 and r2 to get six differ-
ent equations of the form in (20) and take the average over all the
possibilities of ϵn .

6.2 Discussions on calibration result
First, the received SNR with each antenna individually activated is
shown in Fig. 4. As we can see, each antenna element provides a
different antenna gain, even when a different phase state is applied.
This observation confirms that it is necessary to determine the
antenna gain for each element so that the desired radiation pattern
can be generated accurately.

More importantly, we validated our calibration performance for
directional beam patterns in terms of receiver SNR, which is shown
in Fig. 5. The experimental validation of the phased array calibra-
tion is detailed as follows. Taking the Tx side as an example: firstly,
the Tx and Rx phased arrays are mechanically aligned. Secondly,
the Tx phased array is manually rotated towards a direction, i.e.
a predefined AoD, while the Rx phased array is kept fixed for the
whole validation process. Thirdly, all the Tx antenna elements are
activated and the phase shifters are configured to generate a di-
rectional beam pointing to this AoD while only one Rx antenna
is turned on for receiving the signal. Similarly, to validate the cal-
ibration at the Rx side, the antenna activation settings of these
two phased arrays are switched so that the Tx transmits the signal
with a single antenna turned on while all the 12 Rx antennas are
activated and configured to certain AoAs.

For both Tx and Rx sides, 19 directions, varying from −45◦ to
45◦ in steps of 5◦, are tested. As we can see from Fig. 5, an averaged
SNR improvement of around 4 dB is achieved for both Tx and
Rx sides, which indicates that much better link performance can
be achieved by using the calibrated directional beams. Moreover,
by comparing the receiver SNRs after calibration among different
directional beams, we can observe that different directional beams
result in a similar receiver SNR. This indicates that a similar antenna
gain is provided by these calibrated directional beams, which further
verifies our calibration process.

7 EXPERIMENTAL VALIDATION
In this section, we examine the proposed non-coherent beam align-
ment algorithm on our mmWave testbed. Note that the algorithm
is developed based on ULAs. Our phased arrays, however, are not
perfect ULAs since the antenna elements have non-isotropic gain
patterns shown in Fig. 4 and the elevation beam width is 20◦. Nev-
ertheless, we can still use them to evaluate our algorithm for the
following two motivations: (1) our phased array calibration helps
to compensate the non-isotropic behaviors to some extends, which
is shown in Fig. 5. (2) both the arrays are placed at the same height
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Figure 4: Element gain measurement
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Figure 5: Performance improvement achieved by calibration

Figure 6: Experimental environment

during the experiments, making them work within the applicable
vertical range.
Experimental environment and validationmethodology:The
experiments were performed at several different places which all
provide a LOS path and do not have too much reflection like shown
in Fig. 6. It is thus reasonable to assume that the ground truth of
the channel can be modeled as (4). Accordingly, we can imitate a
channel H = h1aRx(θTest)a∗Tx(ϕTest) by rotating the Tx phased ar-
ray by ϕTest degrees and rotating Rx phased array by θTest degrees.
Based on this imitated real channel, we validate our algorithm and
compare it to the corresponding numerical results. We validated
the proposed non-coherent beam alignment algorithm in terms
of the mean angle estimation error (MAEE, see Appendix A for a
mathematical definition) and receiver SNR. Two tests with different
numbers of measurements were performed. In Test 1, six training

beams were used with the searching regions of AoD and AoA set
as [−22.5◦, 22.5◦]. In Test 2, eight training beams were used with
the searching regions set as [−25◦, 25◦]. For both tests, the devel-
oped algorithm was examined under 18 different channel settings
by either fixing θTest = 0◦ and varying ϕTest from −20◦ to 20◦ in
steps of 5◦ or fixing ϕTest = 0◦ and varying θTest from −20◦ to 20◦
in steps of 5◦. In the experiments, the algorithm was first used to
estimate the AoD and AoA of the LOS path and then the phased
arrays were steered to the estimated angles by reconfiguring the
phase shifters.
Result discussions: The MAEE performance is shown in Fig. 7a
and Fig. 7c, two major observations can be concluded as follows: (1)
as expected, the proposed non-coherent estimation algorithm out-
performs the beam sweeping strategy by providing much smaller
MAEE for the AoA/AoD of the dominant path. Besides, in some
cases such as shown in the left sub-figure of Fig. 7a, the experimen-
tal results are close to the simulated ones. (2) It can be observed
that, for the beam sweeping strategy, there are some unexpected
beam misalignments when comparing the experimental results and
the simulated ones. These misalignments could be due to several
possibilities and one potential factor should be the residual errors
from the calibration process. In particular, for Test 2 (shown in
Fig. 7c), we can see that a more significant misalignment in beam
sweeping strategy and a poorer MAEE performance of the non-
coherent estimation happen concurrently. This not only shows the
imperfectness of the performed calibration but also reveals that the
calibration of phased arrays is of great importance, even for the
simplest beamforming method.

In Fig. 7b and Fig. 7d, the performance of receiver SNR after
beam alignment are further demonstrated. Overall, a better SNR is
achieved by our proposed non-coherent beam alignment algorithm
in comparison with the best SNR obtained by the beam sweep-
ing strategy. This confirms the superiority of the proposed algo-
rithm. Nevertheless, we can see that the SNR improvement be-
comes smaller when more measurements are employed. This is
because a larger number of measurements will result in more over-
lapped beam patterns, which makes the beam sweeping strategy
become closer to the optimal performance. Hence, the improvement
achieved by the developed algorithm is relatively less significant.

8 RELATEDWORK
Side information: Sharing position information will be an indis-
pensable feature for future wireless systems, e.g. vehicular commu-
nications [9]. In [9, 11, 16], the idea of using the position information
from GPS was initially proposed to reduce the beam pointing over-
head of the LOS mmWave channels in vehicular communication
settings. In [1], a multi-level beam search strategy was designed
by considering location uncertainty. In [22], a compressive chan-
nel estimation and tracking strategy was developed by leveraging
position and trajectory information of users. Both [1] and [22], how-
ever, assumed the perfect phase information of the measurements.
In NLOS conditions, the data-driven approaches such as machine
learning [33] and database [10, 29] were further combined with
position information to improve the beam prediction accuracy with
little overheads. In addition to position information, many other
sensor systems are ready to provide side information to help infer
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Figure 7: Experimental validation of non-coherent estimation. Test 1: (a) and (b). Test 2: (c) and (d)

mmWave channel [12]. For example, the communication modules
operating at the frequencies out of mmWave bands can be poten-
tially leveraged. In [3] and [18], the dominant spatial directions of
the mmWave channel were extracted from the sub-6 GHz signals to
accelerate the beam training. The prior work showed that a signifi-
cant overhead reduction is achievable by using side information, in
comparison with the exhausted beam sweeping strategy given by
IEEE 802.11ad [1, 3, 11, 18, 29].
MmWave prototypes: The mmWave testbed development has
been initiated by the industry. In [23], one of the pioneeringmmWave
testbeds was demonstrated by Samsung Electronics Co., Ltd., in
which a large number of measurements were taken to show the
feasibility of mmWave with low-complexity analog beamforming
algorithms. In academia, some researchers started by usingmechani-
cally steerable horn antennas to emulate the electronically-steerable
phased arrays [13, 26]. More recently, the electronically-steerable
phased arrays have been exploited in mmWave prototyping. In [34]
and [24], two 60 GHzmmWave testbeds were developed with recon-
figurable phased arrays but fixed beam codebooks. The OpenMili
developed in [34] is based on the off-the-shelf FPGA processors and
the X60 developed in [24] is based on NI Phased Arrays Toolkit.
These two testbeds are constrained by their fixed codebooks, high
price and limited flexibility for fast prototyping. In contrast to the
existing prototypes, our developed mmWave testbed has benefited
from our one-time calibration procedure, hence being able to gen-
erate precise directional beams.
Non-coherent algorithms: A few non-coherent algorithms have
been proposed to tolerate the phase noise among measurements.
In [14], a random hashing and voting mechanism was developed

to perform the beam training in full angular space, hence resulting
in a large training overhead. In [21], a non-coherent compressive
path estimation was developed, in which the correlation between
the nominal received signal strength (RSS) and the experimental
RSS was used to determine the dominant channel path. This work
focused on a single-sided beam training model and used pseudo-
random training beacons, which however limits the communica-
tion range and degrades the SNR for the training phase as well.
In [25], based on the compressive path estimation algorithm pro-
posed in [21], a 3D beam training prototype with commodity IEEE
802.11ad router (Talon AD7200) was developed. However, all the
employed beam patterns in [25] had to be carefully measured before
being used to calculate the correlation, which greatly degrades the
flexibility of its developed testbed. In a very recent work [19], an
adaptive codebook optimization (ACO) method was proposed to
optimize the beamforming patterns with multiple non-coherent
measurements. However, the ACO method requires at least four
probes per antenna for every training phase, which results in large
overhead. Instead, our one-time calibration enables compressive
channel estimation, hence avoiding training each phase state per
antenna as in [19]. The CPR technique was studied in [20] for es-
timating the mmWave channel with non-coherent measurements.
This work has similar limitations of [21] in adopting the omnidirec-
tional reception mechanism and pseudo-random beams. Different
from [20], our developed algorithm works for both single-sided
and double-sided beam training frameworks and leverages side
information as well as directional beams to improve the beam train-
ing performance, which has been furthermore justified by the real
measurements.
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9 CONCLUSIONS
In this work, we have shown the feasibility of using the CPR tech-
nique to estimate the sparse mmWave channel with non-coherent
measurements. The proposed two-stage CPR algorithm has ex-
ploited the properties of phase retrieval (PR) and the classic com-
pressive sensing (CS). Alongside the theoretical formulation, we
have developed a fully reconfigurable mmWave testbed by effec-
tively calibrating low-cost custom-made phased arrays. The pro-
posed non-coherent algorithm has been successfully implemented
on the testbed and the consistency between the experimental results
and theoretical analysis have well validated our proposed algorithm.
We believe that our non-coherent algorithm and mmWave testbed
can not only bring us closer to the more complicated mmWave
algorithm designs but also provide more insights into the potential
difficulties in realizing practical mmWave systems.
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A NUMERICAL SIMULATIONS
In this Appendix, we numerically evaluate the average performance
of the proposed non-coherent beam alignment algorithm. In the
numerical simulation, both the Tx and Rx employ a ULA with d =
3.055 mm and the carrier frequency is 60.48 GHz. Each numerical
result is obtained by solving the estimation problem in (13) for
2000 times and then taking the average, with randomly generated
channel realization following a Rician channel model given as

H =

√
K

K + 1
h1aRx(θ1)a∗Tx(ϕ1)︸                ︷︷                ︸

Dominant path

+

√
1

K + 1

L∑
ℓ=2

hℓaRx(θℓ)a∗Tx(ϕℓ),

where L = 5 and the Rician K-factor is set to 7 dB. The AoD and
AoA of the dominant path is assumed to be uniformly distributed
in the searching region Sϕ and Sθ , while the other L − 1 paths are
uniformly distributed in the full angular space. Without loss of
generality, we set Sϕ and Sθ to the same value and to be symmetric
with respect to the broadside of ULA, i.e., Sϕ = Sθ = [−∆θ

2 ,
∆θ
2 ]. In

addition, we let an equal number of beam patterns be applied at
both Tx and Rx sides, which yieldsMTx = MRx ≜ M and thus the
total number of measurements isM2. The gird size of spatial angles
are set to the same value, i.e. GTx = GRx ≜ G. The regularized
parameter η is set to 0.05 and the threshold γ used in the low-
rank decomposition is set to 0.8. Other required parameters will be
specified in the corresponding simulation. To solve the PR problem
in (14), we use the Templates for First-Order Conic Solvers (TFCOS)
software package [6]. Regarding the CS problem in (13b), we choose
the EMBGAMP [32] as our solver.

For comparison, we also provide the simulation results of three
typical benchmarks: the first one is an ideal case where the coher-
ent measurements with perfect phase information are available
and EMBGAMP is directly applied to estimate the channel, which
is labeled as Perfect Phase CS. The second one is a more practical
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the tendency of M2 versus ∆θ for achieving different levels
of MAEE δ .

scenario where randomly generated phase noises are assigned to
the simulated coherent measurements and then EMBGAMP is di-
rectly applied to estimate the channel, which is labeled as Noisy
Phase CS. The third benchmark is the beam sweeping strategy that
directional beam patterns are probed within the searching regions,
which is labeled as Beam Sweeping. Our proposed algorithm is label
as Non-Coherent Estimation. All the above algorithms use over-
lapped directional beams. This is because random beam patterns
inevitably disregard the side information, hence degrading the SNR
and boosting the measurement number.

The nature of the proposed non-coherent beam alignment algo-
rithm is to estimate the AoD and AoA of the dominant path, and
steer the analog transmit and receive beams towards the estimated
angles. Thus, we evaluate the algorithm in terms of spectral effi-
ciency (SE) and mean angle estimation error (MAEE) in comparison
with the aforementioned benchmarks. Herein, the MAEE is defined
as E [|ζTrue − ζEst |], where ζTrue represents the exact AoD or AoA
of the dominant path in degree, while ζEst is its estimate.

The SE performance is shown in Fig. 8a and the MAEE perfor-
mance is demonstrated in Fig. 8b. The searching regions of AoD
and AoA are both set as [−20◦, 20◦]. The SNR before beam training
is 0 dB. First, from both Fig. 8a and Fig. 8b, we can see that given a
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reasonable number of measurements, the proposed non-coherent
beam alignment achieves almost the same performance as the ideal
scenario where perfect phase information is available. Second, it
can be seen that the direct usage of the classic CS solver to the non-
coherent measurements will result in a worse estimation perfor-
mance compared with other strategies. This observation confirms
the importance of using the non-coherent estimation method when
the perfect phase information of measurements is not available.

In Fig. 9, we further show the benefits of side information in
reducing the beam training overhead by evaluating the MAEE
performance of our algorithm under the different searching range
∆θ . The SNR before beam training is set as 0 dB. As we can see from
Fig. 9, the required number of measurements decreases significantly
as the searching range∆θ shrinks. This is because themore accurate
the side information is, the fewer is the number of directional beams
required to find the angles of the dominant path.
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