skip to main content
research-article

Algorithm 998: The Robust LMI Parser—A Toolbox to Construct LMI Conditions for Uncertain Systems

Published:08 August 2019Publication History
Skip Abstract Section

Abstract

The ROLMIP (Robust LMI Parser) is a toolbox specialized in control theory for uncertain linear systems, built to work under MATLAB jointly with YALMIP, to ease the programming of sufficient Linear Matrix Inequality (LMI) conditions that, if feasible, assure the validity of parameter-dependent LMIs in the entire set of uncertainty considered. This article presents the new version of the ROLMIP toolbox, which was completely remodeled to provide a high-level user-friendly interface to cope with distinct uncertain domains (hypercube and multi-simplex) and to treat time-varying parameters in discrete- and continuous-time. By means of simple commands, the user is able to define polynomial matrices as well as to describe the desired parameter-dependent LMIs in an easy way, considerably reducing the programming time to end up with implementable LMI conditions. Therefore, ROLMIP helps the popularization of the state-of-the-art robust control methods for uncertain systems based on LMIs among graduate students, researchers, and engineers in control systems.

Skip Supplemental Material Section

Supplemental Material

References

  1. C. M. Agulhari, A. Felipe, R. C. L. F. Oliveira, and P. L. D. Peres. 2019. Manual of “The Robust LMI Parser”: Version 3.0. Retrieved from: https://github.com/rolmip/rolmip.github.io/raw/master/manual_rolmip.pdf.Google ScholarGoogle Scholar
  2. C. M. Agulhari, R. C. L. F. Oliveira, and P. L. D. Peres. 2012. Robust LMI parser: A computational package to construct LMI conditions for uncertain systems. In Proceedings of the 19th Brazilian Conference on Automation. 2298--2305. Retrieved from: http://rolmip.github.io.Google ScholarGoogle Scholar
  3. E. D. Andersen and K. D. Andersen. 2000. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang (Eds.). Applied Optimization, Vol. 33. Springer US, 197--232. Retrieved from: http://www.mosek.com.Google ScholarGoogle Scholar
  4. D. Avis and K. Fukuda. 1992. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8, 3 (Sept. 1992), 295--313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski. 2009. Robust Optimization. Princeton University Press, Princeton, NJ.Google ScholarGoogle Scholar
  6. D. Bertsimas, D. B. Brown, and C. Caramanis. 2011. Theory and applications of robust optimization. SIAM Rev. 53, 3 (Aug. 2011), 464--501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. H.-G. Beyer and B. Sendhoff. 2007. Robust optimization—A comprehensive survey. Comput. Meth. Appl. Mech. Eng. 196, 33 (July 2007), 3190--3218.Google ScholarGoogle ScholarCross RefCross Ref
  8. P.-A. Bliman. 2004a. A convex approach to robust stability for linear systems with uncertain scalar parameters. SIAM J. Cont. Optim. 42, 6 (2004), 2016--2042. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P.-A. Bliman. 2004b. An existence result for polynomial solutions of parameter-dependent LMIs. Syst. Cont. Lett. 51, 3--4 (Mar. 2004), 165--169.Google ScholarGoogle ScholarCross RefCross Ref
  10. P.-A. Bliman, R. C. L. F. Oliveira, V. F. Montagner, and P. L. D. Peres. 2006. Existence of homogeneous polynomial solutions for parameter-dependent linear matrix inequalities with parameters in the simplex. In Proceedings of the 45th IEEE Conference on Decision and Control. 1486--1491.Google ScholarGoogle ScholarCross RefCross Ref
  11. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. 1994. Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia, PA.Google ScholarGoogle Scholar
  12. M. Chamanbaz, F. Dabbene, D. Peaucelle, and R. Tempo. 2015. R-RoMulOC: A unified tool for randomized and robust multiobjective control. In Proceedings of the 8th IFAC Symposium on Robust Control Design (ROCOND’15).Google ScholarGoogle Scholar
  13. G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2003a. Homogeneous Lyapunov functions for systems with structured uncertainties. Automatica 39, 6 (June 2003), 1027--1035. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2003b. Solving quadratic distance problems: An LMI-based approach. IEEE Trans. Automat. Cont. 48, 2 (Feb. 2003), 200--212.Google ScholarGoogle ScholarCross RefCross Ref
  15. G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2004. Parameter-dependent homogeneous Lyapunov functions for robust stability of linear time-varying systems. In Proceedings of the 43rd IEEE Conference on Decision and Control. 4095--4100.Google ScholarGoogle Scholar
  16. G. Chesi, A. Garulli, A. Tesi, and A. Vicino. 2005. Polynomially parameter-dependent Lyapunov functions for robust stability of polytopic systems: An LMI approach. IEEE Trans. Automat. Cont. 50, 3 (Mar. 2005), 365--370.Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Chesi and D. Henrion. 2009. Guest editorial: Special issue on positive polynomials in control. IEEE Trans. Automat. Cont. 54, 5 (May 2009), 935--936.Google ScholarGoogle ScholarCross RefCross Ref
  18. M. C. de Oliveira, J. C. Geromel, and L. Hsu. 1999. LMI characterization of structural and robust stability: The discrete-time case. Linear Algebra and Its Applications 296, 1--3 (June 1999), 27--38.Google ScholarGoogle ScholarCross RefCross Ref
  19. L. El Ghaoui, F. Oustry, and H. Lebret. 1998. Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 9, 1 (Nov. 1998), 33--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. Feron, P. Apkarian, and P. Gahinet. 1996. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Trans. Automat. Cont. 41, 7 (July 1996), 1041--1046.Google ScholarGoogle ScholarCross RefCross Ref
  21. P. Gahinet, A. Nemirovskii, A. J. Laub, and M. Chilali. 1995. LMI Control Toolbox User’s Guide. The Math Works, Natick, MA.Google ScholarGoogle Scholar
  22. J. C. Geromel, M. C. de Oliveira, and L. Hsu. 1998. LMI characterization of structural and robust stability. Lin. Alg. Appl. 285, 1--3 (Dec. 1998), 69--80.Google ScholarGoogle ScholarCross RefCross Ref
  23. G. H. Hardy, J. E. Littlewood, and G. Pólya. 1952. Inequalities (2nd ed.). Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  24. D. Henrion and A. Garulli (Eds.). 2005. Positive Polynomials in Control. Lecture Notes on Control and Information Sciences, Vol. 312. Springer-Verlag, Berlin, Germany.Google ScholarGoogle ScholarCross RefCross Ref
  25. D. Henrion and J. B. Lasserre. 2003. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw. 29, 2 (June 2003), 165--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari. 2013. Multi-parametric toolbox 3.0. In Proceedings of the European Control Conference. 502--510.Google ScholarGoogle Scholar
  27. A. Hjartarson, A. Packard, and P. Seiler. 2015. LPVTools: A toolbox for modeling, analysis and synthesis of parameter varying control systems. In Proceedings of the 1st IFAC Workshop on Linear Parameter Varying Systems (LPVS’15). 139--145.Google ScholarGoogle Scholar
  28. J. B. Lasserre. 2001. Global optimization with polynomials and the problem of moments. SIAM J. Cont. Optim. 11, 3 (Feb. 2001), 796--817. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. J. B. Lasserre. 2015. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  30. J. Löfberg. 2004. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design. 284--289. Retrieved from: http://yalmip.github.io.Google ScholarGoogle ScholarCross RefCross Ref
  31. R. C. L. F. Oliveira, P.-A. Bliman, and P. L. D. Peres. 2008a. Robust LMIs with parameters in multi-simplex: Existence of solutions and applications. In Proceedings of the 47th IEEE Conference on Decision and Control. 2226--2231.Google ScholarGoogle ScholarCross RefCross Ref
  32. R. C. L. F. Oliveira, M. C. de Oliveira, and P. L. D. Peres. 2008b. Convergent LMI relaxations for robust analysis of uncertain linear systems using lifted polynomial parameter-dependent Lyapunov functions. Syst. Cont. Lett. 57, 8 (Aug. 2008), 680--689.Google ScholarGoogle ScholarCross RefCross Ref
  33. R. C. L. F. Oliveira and P. L. D. Peres. 2005a. A simple and less conservative test for D-stability. SIAM J. Matrix Anal. Appl. 26, 2 (Jan. 2005), 415--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. C. L. F. Oliveira and P. L. D. Peres. 2005b. Stability of polytopes of matrices via affine parameter-dependent Lyapunov functions: Asymptotically exact LMI conditions. Lin. Alg. Appl. 405 (Aug. 2005), 209--228.Google ScholarGoogle Scholar
  35. R. C. L. F. Oliveira and P. L. D. Peres. 2007. Parameter-dependent LMIs in robust analysis: Characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations. IEEE Trans. Automat. Cont. 52, 7 (July 2007), 1334--1340.Google ScholarGoogle ScholarCross RefCross Ref
  36. R. C. L. F. Oliveira and P. L. D. Peres. 2008. A convex optimization procedure to compute H<sub>2</sub> and H ∞ norms for uncertain linear systems in polytopic domains. Optim. Cont. Appl. Meth. 29, 4 (July/Aug. 2008), 295--312.Google ScholarGoogle Scholar
  37. P. A. Parrilo. 2000. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. Dissertation. California Institute of Technology, Pasadena, CA.Google ScholarGoogle Scholar
  38. P. A. Parrilo. 2003. Semidefinite programming relaxations for semialgebraic problems. Math. Prog.: Series B 96, 2 (2003), 293--320.Google ScholarGoogle ScholarCross RefCross Ref
  39. D. Peaucelle and D. Arzelier. 2006. Robust multi-objective control toolbox. In Proceedings of the IEEE International Symposium on Computer Aided Control Systems Design. 1152--1157.Google ScholarGoogle Scholar
  40. D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou. 2000. A new robust -stability condition for real convex polytopic uncertainty. Syst. Cont. Lett. 40, 1 (May 2000), 21--30.Google ScholarGoogle ScholarCross RefCross Ref
  41. D. Peaucelle and M. Sato. 2009. LMI tests for positive definite polynomials: Slack variable approach. IEEE Trans. Automat. Cont. 54, 4 (Apr. 2009), 886--891.Google ScholarGoogle ScholarCross RefCross Ref
  42. D. Peaucelle, A. Tremba, D. Arzelier, A. Bortott, G. C. Calafiore, G. Chevarria, F. Dabbene, E. Gryazina, B. T. Polyak, P. S. Shcherbakov, M. Sevin, Ph. Spiesser, and R. Tempo. 2014. R-RoMulOC : Randomized and Robust Multi-Objective Control toolbox. Retrieved from: http://projects.laas.fr/OLOCEP/romuloc.Google ScholarGoogle Scholar
  43. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. 2004. SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB—User’s Guide. Retrieved from: http://www.cds.caltech.edu/sostools.Google ScholarGoogle Scholar
  44. D. C. W. Ramos and P. L. D. Peres. 2001. A less conservative LMI condition for the robust stability of discrete-time uncertain systems. Syst. Cont. Lett. 43, 5 (Aug. 2001), 371--378.Google ScholarGoogle ScholarCross RefCross Ref
  45. D. C. W. Ramos and P. L. D. Peres. 2002. An LMI condition for the robust stability of uncertain continuous-time linear systems. IEEE Trans. Automat. Cont. 47, 4 (Apr. 2002), 675--678.Google ScholarGoogle ScholarCross RefCross Ref
  46. M. Sato. 2005. Robust performance analysis of linear time-invariant parameter-dependent systems using higher-order Lyapunov functions. In Proceedings of theAmerican Control Conference. 615--620.Google ScholarGoogle ScholarCross RefCross Ref
  47. C. W. Scherer. 2005. Relaxations for robust linear matrix inequality problems with verifications for exactness. SIAM J. Matrix Anal. Appl. 27, 2 (June 2005), 365--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. C. W. Scherer and C. W. J. Hol. 2006. Matrix sum-of-squares relaxations for robust semi-definite programs. Math. Prog.: Series B 107, 1--2 (June 2006), 189--211.Google ScholarGoogle Scholar
  49. J. F. Sturm. 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Meth. Softw. 11, 1--4 (1999), 625--653. Retrieved from: http://sedumi.ie.lehigh.edu/.Google ScholarGoogle ScholarCross RefCross Ref
  50. A. Tremba, G. C. Calafiore, F. Dabbene, E. Gryazina, B. T. Polyak, P. S. Shcherbakov, and R. Tempo. 2008. RACT: Randomized algorithms control toolbox for MATLAB. In Proceedings of the 17th IFAC World Congress, Vol. 41. 390--395. Retrieved from: http://ract.sourceforge.net.Google ScholarGoogle Scholar
  51. A. Trofino. 1999. Parameter dependent Lyapunov functions for a class of uncertain linear systems: An LMI approach. In Proceedings of the 38th IEEE Conference on Decision and Control, Vol. 1. 2341--2346.Google ScholarGoogle Scholar
  52. A. Trofino and C. E. de Souza. 2001. Biquadratic stability of uncertain linear systems. IEEE Trans. Automat. Cont. 46, 8 (Aug. 2001), 1303--1307.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Algorithm 998: The Robust LMI Parser—A Toolbox to Construct LMI Conditions for Uncertain Systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 45, Issue 3
      September 2019
      357 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/3349340
      Issue’s Table of Contents

      Copyright © 2019 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 August 2019
      • Revised: 1 February 2019
      • Accepted: 1 February 2019
      • Received: 1 December 2017
      Published in toms Volume 45, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format