
Trace-Checking Signal-based Temporal Properties:
A Model-Driven Approach

Chaima Boufaied
University of Luxembourg

chaima.boufaied@uni.lu

Claudio Menghi
University of Luxembourg

claudio.menghi@uni.lu

Domenico Bianculli
University of Luxembourg

domenico.bianculli@uni.lu

Lionel Briand
University of Luxembourg

University of Ottawa

lionel.briand@uni.lu

Yago Isasi Parache
LuxSpace Sàrl

Isasi@luxspace.lu

ABSTRACT

Signal-based temporal properties (SBTPs) characterize the behav-

ior of a system when its inputs and outputs are signals over time;

they are very common for the requirements specification of cyber-

physical systems. Although there exist several specification lan-

guages for expressing SBTPs, such languages either do not easily

allow the specification of important types of properties (such as

spike or oscillatory behaviors), or are not supported by (efficient)

trace-checking procedures.

In this paper, we propose SB-TemPsy, a novel model-driven

trace-checking approach for SBTPs. SB-TemPsy provides (i) SB-

TemPsy-DSL, a domain-specific language that allows the specifi-

cation of SBTPs covering the most frequent requirement types in

cyber-physical systems, and (ii) SB-TemPsy-Check, an efficient,

model-driven trace-checking procedure. This procedure reduces

the problem of checking an SB-TemPsy-DSL property over an ex-

ecution trace to the problem of evaluating an Object Constraint

Language constraint on a model of the execution trace.

We evaluated our contributions by assessing the expressiveness

of SB-TemPsy-DSL and the applicability of SB-TemPsy-Check using

a representative industrial case study in the satellite domain. SB-

TemPsy-DSL could express 97% of the requirements of our case

study and SB-TemPsy-Check yielded a trace-checking verdict in

87% of the cases, with an average checking time of 48.7 s. From a

practical standpoint and compared to state-of-the-art alternatives,

our approach strikes a better trade-off between expressiveness and

performance as it supports a large set of property types that can be

checked, in most cases, within practical time limits.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation; Specification languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416631

KEYWORDS

trace checking, run-time verification, temporal properties, specifi-

cation patterns, model-driven, cyber-physical systems, signals

ACM Reference Format:

Chaima Boufaied, Claudio Menghi, Domenico Bianculli, Lionel Briand,

and Yago Isasi Parache. 2020. Trace-Checking Signal-based Temporal Prop-

erties: A Model-Driven Approach. In 35th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE ’20), September 21–25,

2020, Virtual Event, Australia. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3324884.3416631

1 INTRODUCTION

Trace checking is a run-time verification [6] technique that uses

an automated decision procedure to check properties (based on a

system’s requirements) on traces representing system executions.

Trace-checking tools are used for software verification & validation

(V&V) activities as test oracles [38] and run-time monitors [46].

In this paper we consider a specific subset of trace-checking tools,

which can be defined using the concepts recently introduced in a

taxonomy for run-time verification tools [26]:

• supporting explicit, declarative, temporal specifications, i.e.,

tools that require users to formally express the requirements to be

checked, using a declarative specification formalism that allows for

expressing constraints over time;

• deployed at the offline stage, i.e., tools that run after the system

has finished its execution, which has been recorded in traces;

• yielding a verdict as output, i.e., an indication (e.g., a Boolean

value) of whether the input trace satisfies the property being checked.

In such tools, the requirements to check are expressed using a

declarative specification formalism such as (temporal) logic-based

or domain-specific languages. Temporal logic-based languages (e.g.,

LTL, MTL, MLTL [34], QTL [30]) provide mathematical-based con-

structs to express arbitrarily complex requirements using a basic

set of temporal operators. Domain-specific languages (DSLs) for

temporal specifications (e.g., PROPEL - DNL [47], Structured Eng-

lish Grammar for real-time specifications [33], Temporal OCL [32],

OCLR [18], VISPEC - graphical formalism [31], TemPsy [19], TemPsy-

AG [10], ProMoboBox - property language [39], FRETISH [29]) pro-

vide a set of predefined constructs that concisely capture certain

types of requirements that are specific to a certain domain, possibly

relying on property specification patterns [2, 13, 21]. In terms of

applicability for requirement specifications, logic-based languages

typically require a strong mathematical background, limiting their

1004

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3324884.3416631&domain=pdf&date_stamp=2021-01-27

adoption among practitioners. On the other hand, DSLs are more ac-

cessible for domain experts since they make available, as first-class

constructs in the language, concepts (or patterns) that are specific

to the domain. For example, two recent empirical studies [14, 15]

provide evidence that high-level languages based on property speci-

fication patterns result into a higher level of understandability than

logic-based languages like LTL.

Typically, for both types of specification languages, the expres-

siveness of the language is inversely related to the efficiency of

the corresponding trace-checking procedure. Therefore, the main

challenge faced when defining a trace-checking approach suitable

for industrial contexts, is finding a reasonable trade-off between

these two conflicting aspects.

In this work, we consider the problem of trace-checking re-

quirements expressed in terms of signal-based temporal properties

(SBTPs). SBTPs characterize the behavior of the system when its in-

puts and outputs are signals over time; they are used in a variety of

cyber-physical system (CPS) domains, including aerospace, automo-

tive, and defense [41]. An example of an SBTP, coming from our case

study in the satellite domain, is: “The velocity of the satellite along the

X-axis shall oscillate with a maximum amplitude of 8000 km/h and
a maximum period of 180min”, where “the velocity of the satellite
along the X-axis” is a signal. This property requires the system to

ensure that the signal exhibits an oscillatory behavior with certain

parameters (in this case, the “amplitude” and the “period”). SBTPs

are usually evaluated on traces that are collected by recording the

values of signals over time. Trace entries can be recorded at fixed

or variable sampling rates, meaning that trace entries are recorded

at time instants that are separated by fixed or variable-time inter-

vals, respectively. System and software engineers have to assess,

either manually or by means of tools, whether the recorded traces

satisfy or violate the system requirements. Although there exist

several logic-based (e.g., STL [36], STL* [12], SFO [4], RFOL [38])

and domain-specific [7] languages that have been proposed in the

literature to express SBTPs, such languages either do not support

the specification of important types of properties [11], or are not

supported by (efficient) trace-checking procedures [4, 12].

In this paper, we propose SB-TemPsy, a trace-checking approach

for SBTPs that strikes a good balance in industrial contexts as it can

be efficiently trace-checked and covers the most important types

of properties in practice across CPS domains. SB-TemPsy provides:

• SB-TemPsy-DSL, a domain-specific language that allows the

specification of SBTPs covering the most frequent require-

ment types in CPS domains;

• an efficient trace-checking procedure, implemented in a pro-

totype tool called SB-TemPsy-Check.

SB-TemPsy-DSL is a pattern-based specification language. It has

been defined in collaboration with system engineers in the satel-

lite domain and supports the specification of the most common

types of SBTPs in CPS, recently identified in a taxonomy [11]. SB-

TemPsy-DSL differs from the pattern-based specification languages

for temporal properties mentioned above, since it is tailored to

express SBTPs. Its syntax provides constructs that allow engineers

to specify in a simple and precise way complex signal-based be-

haviors such as spikes and oscillations, without requiring a strong

theoretical background in logic-based languages for SBTPs.

Our trace-checking procedure is based on the idea of model-

driven trace checking, originally proposed by Dou et al. [19] for

the verification of temporal properties based on Dwyer et al. [21]’s

specification patterns (and thus not supporting SBTPs). Using a

model-driven trace checking approach, we reduce the problem of

checking an SB-TemPsy-DSL property over an execution trace to

the problem of evaluating an Object Constraint Language (OCL)

constraint, that is semantically equivalent to the SB-TemPsy-DSL

property, on a model of the execution trace. We made this choice

since OCL is a standardized constraint specification language de-

fined by OMG [43] and, as a result, is supported by a mature con-

straint checking technology, such as the constraint checker included

in Eclipse OCL [22]. Based on these observations and the encour-

aging efficiency results reported in the literature for model-driven

trace checking approaches [10, 19], we surmised that this choice

would allow the development of a trace-checking tool able to ana-

lyze complex requirements on real-world execution traces within

practical time limits. The evaluation of this conjecture was part of

our empirical investigation.

We evaluated our solution by assessing the expressiveness of

our specification language SB-TemPsy-DSL and the applicability

of our trace-checking tool SB-TemPsy-Check to a representative

industrial case study in the satellite domain; we also compared

them to state-of-the-art approaches. Using SB-TemPsy-DSL, we

could express 98 out of 101 requirements of our case study. SB-

TemPsy-DSL was considerably more expressive than STL, which is

supported by publicly available trace-checking tools. Furthermore,

in most cases (≈ 87%), SB-TemPsy-Check completed the verification
of these requirements on industrial execution traces within a set

time-out of two hours, which we deemed practical based on the

development context of our case study. Overall, the results of our

empirical investigation show that SB-TemPsy represents a viable

trade-off between an expressive specification language for SBTPs

(SB-TemPsy-DSL) and an efficient trace-checking procedure (SB-

TemPsy-Check). Furthermore, the results suggest that SB-TemPsy

could be combined with existing approaches efficiently supporting

STL. In this way, we show we can make optimal use of a given

verification budget while avoiding most time-outs by relying on

the best tool option depending on the type of the checked property.

The rest of this paper is organized as follows. Section 2 presents

our case study in the satellite domain and discusses the motiva-

tions for this work. Section 3 explains the notation and the back-

ground concepts used in the rest of the paper. Section 4 provides

an overview of SB-TemPsy, further detailed in section 5 (which

presents SB-TemPsy-DSL) and in section 6 (which presents our

model-driven trace checking procedure implemented in SB-TemPsy-

Check). Section 7 reports on the empirical investigation of our con-

tributions. Section 8 discusses related work. Section 9 concludes

the paper and provides directions for future work.

2 CASE STUDY AND MOTIVATIONS

LuxSpace [35], our industrial partner, has developed, in collabora-

tion with ESA [24] and ExactEarth [25], a maritime micro-satellite

to collect AIS (automatic identification system) tracking informa-

tion from vessels operating on Earth and to relay those data to the

ground.

1005

Throughout the satellite development, our partner follows dif-

ferent development phases. This work is set in the context of the

design phase (i.e., phases B–C in the satellite domain [23])1, which

includes several activities, such as the definition of the system re-

quirements and interfaces, the definition of the spacecraft, payload,

launcher and ground segment, and the design and development of

the on-board satellite software (OBSW).

The OBSW is a complex mission-critical software component,

which includes several modules that control and monitor the oper-

ations and the physical behavior of the satellite. Its main modules

are the on-board data handling (controlling the satellite platform

and payload, and collecting and storing the data), the electric power

system (regulating the power of the satellite), the telemetry and tele-

command (receiving tele-commands from and sending data to the

ground), the thermal control (ensuring that each component of the

satellite remains within its operational temperature ranges), and

the ADCS - attitude determination and control system (estimating

and regulating the satellite attitude).

V&V play a crucial role during the development of the OBSW,

given the complexity of the physical behavior being controlled by

the OBSW, and the various hardware components (e.g., sensors

and actuators) and software modules involved. For example, a typ-

ical V&V step is an in-depth testing of the ADCS module of the

OBSW [37, 38].

At the very last stage of the development, testing is performed

on the actual hardware-based facilities and involves all the software

modules of the OBSW. As in many other cyber-physical domains,

our industrial partner relies on a multi-purpose simulator [44] that

supports test execution both on the actual hardware components of

the satellite and on software stubs replacing such components. This

feature allows developers to anticipate testing activities, when hard-

ware components are not yet available, and to reduce the risk of

hardware damages, by running high-risk test cases relying on sim-

ulation and thus ensuring beforehand there is no unexpected and

harmful behavior. During OBSW testing, a specific configuration of

the satellite (software/hardware components) is loaded on the simu-

lator for each test case; then, the satellite behavior over a given time

is simulated and data are collected in traces2. Due to the complexity

of the physical models involved during simulation, itself resulting

from the complex physical behavior being controlled by OBSW,

the time to complete a simulation and generate the corresponding

trace is on the order of several days.

In the current practice, LuxSpace engineers are using ad hoc

solutions to inspect whether these traces satisfy the system re-

quirements. In the case of the OBSW, requirements are complex

properties constraining the behavior of an input or output signal

(e.g., in terms of the type of oscillations allowed); we will present

examples of these properties in section 3.2.

In this context, the main challenge is to automate the checking of

system requirements (expressed as complex SBTPs) on simulation

traces, by means of an efficient offline run-time verification (i.e.,

trace-checking) procedure.

1We remark that our solution can also be applied in phases D–E.
2Note that simulation is used in its broad sense, generally indicating a simulation
scenario. As such, a simulation also considers the case in which all the hardware
components of the satellite are in place.

Although this case study is set in the satellite domain, it is in

many ways representative of other complex cyber-physical do-

mains, where the behavior being controlled involves convoluted

physical dynamics (such as the satellite attitude) and the system

requirements are therefore expressed as complex properties on the

shape of the input and output signals (e.g., spikes and oscillations).

3 BACKGROUND

3.1 Traces

A simulation trace, yielded at the end of the simulation, contains en-

tries with the value of a subset of the signals and the simulation time

at which they were recorded. More precisely, let 𝑆 = {𝑠1, 𝑠2 . . . 𝑠𝑛}
be a set of signals. We use the symbol 𝑇 to indicate the sequence

𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑚) containing the progressive simulation times

associated with the entries of a simulation trace. We also use 𝑠𝑖 = 𝑣
to denote a record assigning the value 𝑣 ∈ R to signal 𝑠𝑖 . Let A be

the universe of all possible assignments for the signals in 𝑆 . A trace

𝜋 is a tuple 〈𝑇, 𝑓 〉, with 𝑇 defined as above and 𝑓 : 𝑇 → 2A . An
entry is a tuple 〈𝑡, 𝑓 (𝑡)〉 that contains the simulation time 𝑡 ∈ 𝑇 at

which the entry was sampled, and a set of records 𝑓 (𝑡) that specify
the values of the signals at time 𝑡 . We say that a signal 𝑠 is assigned
a value 𝑣 at time 𝑡 if there exists a record (𝑠 = 𝑣) ∈ 𝑓 (𝑡), for 𝑡 ∈ 𝑇 .
We now introduce some useful notations used in the rest of the

paper. Let 𝜋 = 〈𝑇, 𝑓 〉 be a trace, 𝑠 be an arbitrary element of 𝑆
(i.e., a signal) and 𝑡 ∈ 𝑇 be a simulation time. The initial value of

𝑠 , denoted by init (𝜋, 𝑠), is 𝑣 if 𝑣 is the value assigned to 𝑠 through
the first assignment performed on 𝑠 in 𝜋 ; we assume that such an
initial assignment always exists, as part of the initialization of the

simulation. The last-seen value of 𝑠 at time 𝑡 , denoted by last (𝜋, 𝑠, 𝑡),
is the value 𝑣 if (1) 𝑠 is assigned 𝑣 at time 𝑡 or (2) 𝑠 was assigned 𝑣 in
themost recent assignment to 𝑠 in 𝜋 at a simulation time preceding 𝑡
or (3) 𝑣 is equal to init (𝜋, 𝑠) if 𝑠 still has not been assigned a value
since the initialization. The next-seen value of 𝑠 at time 𝑡 , denoted
by next (𝜋, 𝑠, 𝑡), is the value 𝑣 if (1) 𝑠 is assigned 𝑣 at time 𝑡 or (2) 𝑠
is assigned 𝑣 in the first assignment to 𝑠 in 𝜋 at a simulation time

ensuing 𝑡 .

3.2 Signal-based temporal properties (SBTPs)

CPS requirements are specified using SBTPs. In this section, we

present—with examples from our case study—the main types of

SBTP proposed in a recent taxonomy [11].

Data Assertion. It specifies a constraint on the value of a signal.

Example (pDA): The beta angle shall vary between +90° and −90°.
Spike. It is a large increase or decrease of the value of a signal.

When it represents an increase of the signal value, a spike is char-

acterized by three extrema, shown in Figure 1a: a local maximum

𝑝2 surrounded by two local minima 𝑝1 and 𝑝3. A spike behavior

can be characterized in terms of two features: the width, defined

as |t3 − t1 |; the amplitude, defined as max(𝑎1, 𝑎2), where 𝑎1 is the
amplitude of the first-half of the spike shape 𝑎1 = |𝑣2−𝑣1 | and 𝑎2 is
the amplitude of the second-half of the spike shape 𝑎2 = |𝑣3 − 𝑣2 |.
Example (pSK): The beta angle shall show a spike with an amplitude

less than 90°.
Oscillation. It is a repeated variation over time of the value of a

signal. An oscillation occurs when the signal value swings from one

extremum to the adjacent extremum of the same type, by traversing

1006

t1 t2 t3

v3

v1

v2

𝑝1

𝑝2

𝑝3

𝑎1 𝑎2

width
time

signal value

(a)

t3 t5
vl

vu
𝑝1

𝑝2

𝑝3 𝑝5

𝑝4

p2pAmp

period

time

signal value

(b)

Figure 1: Main features (adapted from [11]) used to charac-

terize (a) a spike and (b) an oscillatory behavior

an extremum of the other type. For instance, in figure 1b one can

see an oscillation when the signal goes from 𝑝1 to 𝑝3 (two peak
points) through 𝑝2 (a valley point), and another one when the signal
goes from 𝑝3 to 𝑝5 through 𝑝4. An oscillation can be characterized
in terms of the period, which is the time required to perform a

complete oscillation (e.g., 𝑡5 − 𝑡3), and the peak-to-peak amplitude
(p2pAmp), which is the difference between two adjacent extrema

(e.g., 𝑣𝑢 − 𝑣𝑙). Example (pOS): The velocity of the satellite along the
X-axis shall oscillate with a maximum amplitude of 8000 km/hour
and a maximum period of 180min.

Rise Time. It is a constraint on the (transient) behavior of a signal,

while it reaches—possibly monotonically—a target value. Its dual

is called “fall time”. Example (pRT): The X-current of the sun sensor

shall rise monotonically reaching the value of 3650 µA.
Overshoot. It specifies a maximum value, above the target value,

that a signal can reach when overshooting (i.e., when the signal

exceeds its target value); its dual is called “undershoot”.

Example (pOV): The X current of the sun sensor shall overshoot

3650 µA by at most 50 µA.
Order Relationship (Response). It captures the response pattern

proposed by Dwyer et al. [21]. It expresses a constraint over the

sequence of a pair of cause and effect events, possibly with a tem-

poral distance between the two. Example (pOR): If the Safe Mode

Convergence Status is equal to “B-dot Converged mode”, then it should

become equal to “Sun Acquired mode” within at most 20 minutes.

4 THE SB-TEMPSY APPROACH

Model-driven trace checking [19] is an approach that reduces the

problem of checking a temporal property 𝜙 over a trace 𝜋 to the

problem of evaluating an OCL constraint, that is semantically equiv-

alent to 𝜙 , on a model of the trace (equivalent to 𝜋).
In this paper, we present our model-driven approach, SB-TemPsy,

for trace checking of SBTPs. We have decided to follow a model-

driven paradigm for trace checking because OCL is a standardized

constraint specification language defined by OMG [43] and, as a

result, is supported by a mature constraint checking technology,

such as the constraint checker included in Eclipse OCL [22]. Fur-

thermore, existing approaches for model-driven trace checking (for

checking linear temporal logic properties [19] and properties with

temporal aggregations [10]) have been shown to yield encouraging

efficiency results. Hence, we surmise that choosing a model-driven

approach allows the development of a trace-checking tool able to

analyze SBTPs on real-world execution traces within practical time

limits; we report on the empirical investigation of this conjecture

in section 7.

Our SB-TemPsy approach is illustrated in figure 2; it takes as

input a trace 𝜋 and a property to check 𝜙 ; it returns a Boolean
verdict, indicating whether 𝜋 satisfies or violates property 𝜙 . The
trace 𝜋 records the values of signals sampled at different simulation

times, as discussed in section 3.1. The property 𝜙 represents a

requirement of a CPS, expressed using one of the types of SBTPs

illustrated in section 3.2.

We have defined an expressive, pattern-based domain-specific

language to ease the specifications of such requirements as SBTPs.

The language, called SB-TemPsy-DSL (Signal-Based Temporal Properties

made easy), has been defined in collaboration with LuxSpace sys-

tem engineers. It draws inspiration from TemPsy [19]—an existing

pattern-based language for the specification of temporal properties—

and supports the specification of the most common types of SBTPs

in CPS (e.g., spike, oscillation), recently identified in a taxonomy [11]

and presented in section 3.2.

SB-TemPsy-DSL differs from existing pattern-based specification

languages for temporal properties (such as PROPEL - DNL [47],

Structured English Grammar for real-time specifications [33], Tem-

poral OCL [32], OCLR [18], VISPEC - graphical formalism [31],

TemPsy [19], TemPsy-AG [10], ProMoboBox - property language [39]),

since it is tailored to express SBTPs. Furthermore, differently from

existing logic-based specification languages for SBTPs (e.g., STL [36],

STL* [12], RFOL [38], SFO [4]), SB-TemPsy-DSL enables practition-

ers to specify in a precise way key requirements of CPS (which in

many cases are not supported by the aforementioned languages,

see [11]), without requiring a strong theoretical background.

Our approach for trace checking, called SB-TemPsy-Check and

implemented in a prototype tool, includes two main steps: pre-

processing, which prepares the trace for the verification, and model-

driven trace checking, which computes the verification verdict.

Pre-processing. As discussed in section 3.1, the trace 𝜋 is obtained

by recording the values of a set of signals sampled at different

simulation times; therefore, at a given simulation time, a signal

may be unassigned. The pre-processing step analyzes the trace 𝜋 =
〈𝑇, 𝑓 〉 and generates, using an interpolation function 𝜂, a new trace

𝜋 = 〈𝑇, 𝑓 〉 that includes assignments to signals for the simulation
times at which such signals were unassigned in 𝜋 . We discuss

function 𝑓 , the interpolation function 𝜂, and the pre-processing
step in more detail in section 6.1.

Model-driven trace checking. This step (detailed in section 6.3)

checks whether property 𝜙 (expressed in SB-TemPsy-DSL) holds

over the trace 𝜋 by (a) converting the pre-processed trace 𝜋 into an

instance of a trace meta-model; (b) evaluating an OCL constraint

semantically equivalent to 𝜙 over the model of 𝜋 .

5 THE SB-TEMPSY-DSL LANGUAGE

5.1 Syntax

The syntax of SB-TemPsy-DSL is shown in figure 3; optional items

are enclosed in square brackets; the symbol | separates alternatives.
A property (non-terminal 𝜙) is defined using a scope (non-terminal
sc) or as a Boolean expression over other properties.

1007

Pre-processing

SB-TemPsy

Model-Driven
Trace-checking
M

pre-processed
trace

Verification
Verdict

Property
(SB-TemPsy-DSL)

Trace

SB-TemPsy-Check

𝝀 𝝀

𝜙

_

Figure 2: Overview of SB-TemPsy

A scope operator constrains a pattern (non-terminal p) to hold

within a given time interval delimited either by absolute time in-

stants (denoted by, t, t1, and t2) or by events, i.e., occurrences of a

pattern, (denoted by p, p1, and p2). For example, the “between t1
and t2 p” scope operator specifies that pattern p holds between

the time instants t1 and t2. The scope operators supported by SB-

TemPsy-DSL are inspired by those proposed by Dwyer et al. [21]

(globally, before, after, between and): they support not only

events (i.e., in the form of occurrences of a pattern) but also absolute

time instants as scope boundaries. Furthermore, SB-TemPsy-DSL

includes a punctual scope (at) to reference a specific time instant.

A pattern specifies a constraint on the behavior of one or more

signals. For example, pattern “exist oscillations in s with p2pAmp

v1 period v2” specifies that the value of signal s shows an oscil-

latory behavior with a peak-to-peak amplitude (denoted by the

keyword p2pAmp) equal to value v1 and a period (denoted by the

keyword period) that is equal to value v2; it corresponds to the

property type “oscillation” discussed in section 3.2.

A condition (non-terminal c) is a logical predicate on a signal s (of

the form “s ∼ v”, with ∼∈ {<, >,=,≠, ≤, ≥}) or a logical expression
over predicates.

Below we show how the example properties from our case study,

presented in English in section 3.2, can be expressed in SB-TemPsy-

DSL (for simplicity, we omitted the corresponding scopes):

pDA assert (s1 >= -90 and s1 <= 90)

pSK exists spike in s2 with amplitude < 90

pOS exist oscillations in s3 with p2pAmp <= 8000

with period <= 10800

pRT s4 rises monotonically reaching 3650

pOV s4 overshoots 3650 by 50

pOR if assert (s5 == 1) then

assert (s5 == 2) within at most 120

5.2 Formal Semantics

Figure 4 presents the formal semantics of SB-TemPsy-DSL. The

semantics is defined over a pre-processed trace 𝜋 = 〈𝑇, 𝑓 〉, with
𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑚); optional items are enclosed in square brackets
with a Greek letter subscript. We use the notation 𝑓𝑝 (𝑡, 𝑠) to denote
the value 𝑥 assigned to signal 𝑠 at time 𝑡 in the pre-processed trace
𝜋 = 〈𝑇, 𝑓 〉, if (𝑠 = 𝑥) ∈ 𝑓 (𝑡) for 𝑡 ∈ 𝑇 . We omit the semantic

definition of language elements for which the dual is available

(i.e., fall time vs rise time, Overshoot vs Undershoot) and whose

semantics can be easily derived.

Property 𝜙 ::= 𝜙1 and 𝜙2 | 𝜙2 or 𝜙1 | not 𝜙 | sc

Scope sc ::= globally p | before t p | after t p | at t p | before p1 p
after p1 p | between t1 and t2 p | between p1 and p2 p

Pattern p ::= assert c | s becomes ∼ v | if p1 then [within ⊲⊳ t] p2 |
exists spike in s [with [width ∼ v1] [amplitude ∼ v2]] |
exist oscillations in s [with [p2pAmp ∼ v1] [period ∼ v2]] |
s rises [monotonically] reaching v |
s falls [monotonically] reaching v |
s overshoots [monotonically] v1 by v2 |
s undershoots [monotonically] v1 by v2

⊲⊳ ::= exactly | at most | at least

Condition c ::= c1 and c2 | c1 or c2 | not c | s ∼ v

t, t1, t2 ∈ R; v, v1, v2 ∈ R; ∼∈ {<,>,=,≠, ≤, ≥};

s is a signal in 𝑆 or a mathematical expression over the signals in 𝑆

Figure 3: SB-TemPsy-DSL syntax

Conditions are constraints on signals that should hold punctually,

i.e., in a specific time instant 𝑡 ∈ 𝑇 . We use the notation 𝜋, 𝑡 |= c to

indicate that condition c holds in the pre-processed trace 𝜋 at time 𝑡 .
For example, the predicate s ∼ v holds at time 𝑡 if the value 𝑓𝑝 (𝑡, 𝑠)
assigned to signal s at time 𝑡 satisfies the predicate 𝑓𝑝 (𝑡, 𝑠) ∼ v.

Patterns are evaluated over a time interval [𝑡𝑙 , 𝑡𝑢], where 𝑡𝑙 , 𝑡𝑢 ∈
𝑇 and 𝑡𝑙 < 𝑡𝑢 . We use the notation 𝜋, [𝑡𝑙 , 𝑡𝑢] |= p to indicate that

pattern p holds in the pre-processed trace 𝜋 within the time interval

[𝑡𝑙 , 𝑡𝑢]. The semantics of the spike and oscillation patterns rely on
the auxiliary predicates uni_m_min, uni_sm_min, uni_m_max, and

uni_sm_max defined in Table 1. These predicates evaluate to true if,

within a given time interval, the signal has an extremum (minimum

or maximum) and its value changes in a certain way (see column

“Description” in Table 1 for the complete description). For example,

in the case of the oscillation pattern, the semantics requires the

signal to exhibit a maximum followed by a minimum followed by a

maximum, or viceversa (see also section 3.2). In addition, in the first

case, the value of the signal shall increase strictly monotonically

(1) before the first maximum and (2) between the minimum and

the second maximum, and shall decrease strictly monotonically

(1) between the first maximum and the minimum and (2) after the

second maximum.

Also scopes are evaluated over a time interval [𝑡𝑙 , 𝑡𝑢]. For ex-
ample, the semantics of the “between t1 and t2 p” scope operator

evaluates pattern p in the time interval [t1, t2].
The semantics of a property is defined by evaluating the satis-

faction of a scope sc within the time interval [𝑡1, 𝑡𝑚], where 𝑡1 and
𝑡𝑚 are, respectively, the first and last simulation time in the time

sequence 𝑇 of the pre-processed trace 𝜋 . The semantics of prop-
erties obtained by composing other properties through Boolean

operators follows the standard semantics of such operators.

Finally, we define the semantics for checking an SB-TemPsy-DSL

property over an input trace. Let 𝜋 be a trace, 𝜂 be an interpola-
tion function, and 𝜙 be an SB-TemPsy-DSL property. We say that

the trace 𝜋 satisfies the property 𝜙 (when using the interpolation

function 𝜂 in the pre-processing), denoted by 𝜋 |=𝜂 𝜙 , if the pre-
processed trace 𝜋 obtained from 𝜋 using the interpolation function

𝜂 is such that 𝜋 |= 𝜙 .

1008

Table 1: Definition of predicates uni_m_max, uni_sm_max (predicates uni_m_min, uni_sm_min are the dual)

Predicate Mathematical Formulation Description

uni_m_max (𝜋, 𝑠, 𝑡, [𝑡𝑙 , 𝑡𝑢]) 𝑓𝑝 (𝑡, s) = 𝑥 and ∀𝑡1 ∈ [𝑡𝑙 , 𝑡𝑢], 𝑓𝑝 (𝑡1, s) < 𝑥 and

∀𝑡1, 𝑡2 ∈ [𝑡𝑙 , 𝑡], if 𝑡1 < 𝑡2 then 𝑓𝑝 (𝑡1, s) ≤ 𝑓𝑝 (𝑡2, s) and
∀𝑡1, 𝑡2 ∈ [𝑡𝑙 , 𝑡], if 𝑡1 < 𝑡2 then 𝑓𝑝 (𝑡1, s) ≥ 𝑓𝑝 (𝑡2, s)

The value𝑥 of signal 𝑠 at time instant 𝑡 is theminimumvalue assigned
to 𝑠 within the interval [𝑡𝑙 , 𝑡𝑢]. Furthermore, the value of 𝑥 changes
according to a unimodal function, i.e., for every time instant in [𝑡𝑙 , 𝑡]
the value of 𝑠 is monotonically increasing and for every time instant
in [𝑡, 𝑡𝑢] the value of 𝑠 is monotonically decreasing.

uni_sm_max (𝜋, 𝑠, 𝑡, [𝑡𝑙 , 𝑡𝑢]) 𝑓𝑝 (𝑡, s) = 𝑥 and ∀𝑡1 ∈ [𝑡𝑙 , 𝑡𝑢], 𝑓𝑝 (𝑡1, s) < 𝑥 and

∀𝑡1, 𝑡2 ∈ [𝑡𝑙 , 𝑡], if 𝑡1 < 𝑡2 then 𝑓𝑝 (𝑡1, s) < 𝑓𝑝 (𝑡2, s) and
∀𝑡1, 𝑡2 ∈ [𝑡𝑙 , 𝑡], if 𝑡1 < 𝑡2 then 𝑓𝑝 (𝑡1, s) > 𝑓𝑝 (𝑡2, s)

As above, except that for every time instant in [𝑡𝑙 , 𝑡] the value of
𝑠 is strictly monotonically increasing and for every time instant in
[𝑡, 𝑡𝑢] the value of 𝑠 is strictly monotonically decreasing.

Property

𝜋 |= sc⇔ 𝜋, [𝑡1, 𝑡𝑚] |= sc

Condition

𝜋, 𝑡 |= s ∼ v⇔ 𝑓𝑝 (𝑡, 𝑠) ∼ v
𝜋 |= 𝜙1 and 𝜙2 ⇔ (𝜋 |= 𝜙1) and (𝜋 |= 𝜙2) 𝜋, 𝑡 |= c1 and c2 ⇔ (𝜋, 𝑡 |= c1) and (𝜋, 𝑡 |= c2)
𝜋 |= 𝜙1 or 𝜙2 ⇔ (𝜋 |= 𝜙1) or (𝜋 |= 𝜙2) 𝜋, 𝑡 |= c1 or c2 ⇔ (𝜋, 𝑡 |= c1) or (𝜋, 𝑡 |= c2)
𝜋 |= not 𝜙 ⇔ (𝜋 � |= 𝜙) 𝜋, 𝑡 |= not c⇔ (𝜋, 𝑡 � |= c)

Absolute

Scope

𝜋, [𝑡𝑙 , 𝑡𝑢] |= globally p⇔ 𝜋, [𝑡𝑙 , 𝑡𝑢] |= p

Event

Scope

𝜋, [𝑡𝑙 , 𝑡𝑢] |= before p1 p⇔ ∀𝑡1, 𝑡2, 𝑡𝑙 < 𝑡1 < 𝑡2 ≤ 𝑡𝑢 , 𝜋, [𝑡1, 𝑡2] |= p1
𝜋, [𝑡𝑙 , 𝑡𝑢] |= before t p⇔ 𝑡𝑙 ≤ t ≤ 𝑡𝑢 and 𝜋, [𝑡𝑙 , t] |= p and ∃𝑡3, 𝑡4, 𝑡𝑙 < 𝑡3 < 𝑡4 < 𝑡1, 𝜋, [𝑡3, 𝑡4] |= p
𝜋, [𝑡𝑙 , 𝑡𝑢] |= after t p⇔ 𝑡𝑙 ≤ t ≤ 𝑡𝑢 and 𝜋, [t, 𝑡𝑢] |= p 𝜋, [𝑡𝑙 , 𝑡𝑢] |= after p1 p⇔ ∀𝑡1, 𝑡2, 𝑡𝑙 < 𝑡1 < 𝑡2 ≤ 𝑡𝑢 , 𝜋, [𝑡1, 𝑡2] |= p1
𝜋, [𝑡𝑙 , 𝑡𝑢] |= between n and m p⇔ 𝑡𝑙 ≤ n < m ≤ 𝑡𝑢 and ∃𝑡3, 𝑡4, 𝑡2 < 𝑡3 < 𝑡4 < 𝑡𝑢 , 𝜋, [𝑡3, 𝑡4] |= p

and 𝜋, [n,m] |= p 𝜋, [𝑡𝑙 , 𝑡𝑢] |= between p1 and p2 p ⇔ ∀𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡𝑙 ≤ 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 ≤
𝑡𝑢 ,

𝜋, [𝑡𝑙 , 𝑡𝑢] |= at t p⇔ ∃𝑡 : 𝑡𝑙 ≤ t ≤ 𝑡𝑢 and 𝜋, [t, t] |= p
(
𝜋, [𝑡1, 𝑡2] |= p1 and [𝑡3, 𝑡4] |= p2

)
⇒ 𝜋, [𝑡2, 𝑡3] |= p

Data Assertion

Pattern

𝜋, [𝑡𝑙 , 𝑡𝑢] |= assert c⇔ ∀𝑡 ∈ [𝑡𝑙 , 𝑡𝑢], (𝜋, 𝑡 |= c)
𝜋, [𝑡𝑙 , 𝑡𝑢] |= s becomes ∼ v⇔ ∃𝑡 ∈ (𝑡𝑙 , 𝑡𝑢],

(
𝑓𝑝 (𝑡, s) ∼ v and ∀𝑡1 ∈ (𝑡𝑙 , 𝑡),

(
𝑓𝑝 (𝑡1, s) � v

))

Spike

Pattern

𝜋, [𝑡𝑙 , 𝑡𝑢] |= exists spike in s
[
with [width ∼ v1]𝛽 [amplitude ∼ v2]𝛾

]
𝛼 ⇔ ∃𝑡1, 𝑡2, 𝑡3 ∈ [𝑡𝑙 , 𝑡𝑢], 𝑡1 < 𝑡2 < 𝑡3,(

(uni_m_min (𝜋, 𝑠, 𝑡1, [𝑡𝑙 , 𝑡2]) and uni_sm_max (𝜋, 𝑠, 𝑡2, [𝑡1, 𝑡3]) and uni_m_min (𝜋, 𝑠, 𝑡3, [𝑡2, 𝑡𝑢])) or

(uni_m_max (𝜋, 𝑠, 𝑡1, [𝑡𝑙 , 𝑡2]) and uni_sm_min (𝜋, 𝑠, 𝑡2, [𝑡1, 𝑡3]) and uni_m_max (𝜋, 𝑠, 𝑡3, [𝑡2, 𝑡𝑢]))[
[and |𝑡3 − 𝑡1 | ∼ v1]𝛽

[
and max

(��𝑓𝑝 (𝑡1, s) − 𝑓𝑝 (𝑡2, s)
�� , ��𝑓𝑝 (𝑡2, s) − 𝑓𝑝 (𝑡3, s)

��) ∼ v2
]
𝛾

]
𝛼

)

Oscillation

Pattern

𝜋, [𝑡𝑙 , 𝑡𝑢] |= exist oscillations in s
[
with [p2pAmp ∼ v1]𝛽 [period ∼ v2]𝛾

]
𝛼
⇔ ∃𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5 ∈ [𝑡𝑙 , 𝑡𝑢], 𝑡1 < 𝑡2 < 𝑡2 < 𝑡3 < 𝑡4 < 𝑡5,(

(uni_sm_min (𝜋, 𝑠, 𝑡2, [𝑡1, 𝑡3]) and uni_sm_max (𝜋, 𝑠, 𝑡3, [𝑡2, 𝑡4]) and uni_sm_min (𝜋, 𝑠, 𝑡4, [𝑡3, 𝑡5])) or

(uni_sm_max (𝜋, 𝑠, 𝑡2, [𝑡1, 𝑡3]) and uni_sm_min (𝜋, 𝑠, 𝑡3, [𝑡2, 𝑡4]) and uni_sm_max (𝜋, 𝑠, 𝑡4, [𝑡3, 𝑡5]))[[
and

��𝑓𝑝 (𝑡2, s) − 𝑓𝑝 (𝑡3, s)
�� ∼ v1 and

��𝑓𝑝 (𝑡3, s) − 𝑓𝑝 (𝑡4, s
)
| ∼ v1

]
𝛽
[and (𝑡4 − 𝑡2) ∼ v2]𝛾

]
𝛼

)

Rise Time

Pattern

𝜋, [𝑡𝑙 , 𝑡𝑢] |= s rises [monotonically]𝛼 reaching v⇔ ∃𝑡 ∈ (𝑡𝑙 , 𝑡𝑢],
(
𝑓𝑝 (𝑡, s) ≥ v and ∀𝑡1 ∈ (𝑡𝑙 , 𝑡),

(
𝑓𝑝 (𝑡1, s) < v

)
[
and ∀𝑡2 ∈ (𝑡𝑙 , 𝑡), ∀𝑡3 ∈ (𝑡2, 𝑡],

(
𝑓𝑝 (𝑡2, s) < 𝑓𝑝 (𝑡3, s)

)]
𝛼

)

Overshoot

Pattern

𝜋, [𝑡𝑙 , 𝑡𝑢] |= s overshoots [monotonically]𝛼 v1 by v2 ⇔ ∃𝑡 ∈ (𝑡𝑙 , 𝑡𝑢],
(
𝑓𝑝 (𝑡, s) ≥ v1 and ∀𝑡1 ∈ (𝑡, 𝑡𝑢],

(
𝑓𝑝 (𝑡1, s) ≤ v1 + v2

)

[and ∀𝑡2 ∈ (𝑡𝑙 , 𝑡), ∀𝑡3 ∈ (𝑡2, 𝑡],
(
𝑓𝑝 (𝑡2, s) < 𝑓𝑝 (𝑡3, s)

)]
𝛼

)

Order

Relationship
Pattern

𝜋, [𝑡𝑙 , 𝑡𝑢] |= if p1 then [within (exactly |at most |at least) t]𝛼 p2 ⇔ ∀𝑡1, 𝑡2 ∈ [𝑡𝑙 , 𝑡𝑢], 𝑡1 < 𝑡2,
(
𝜋, [𝑡1, 𝑡2] |= p1 ⇒

∃𝑡3, 𝑡4 ∈ [𝑡2, 𝑡𝑢], 𝑡3 < 𝑡4,
(
𝜋, [𝑡3, 𝑡4] |= p2

[
and (𝑡3 − 𝑡2) �⊲⊳� t

]
𝛼

))

where ⊲⊳∈ {exactly, at most, at least} and �⊲⊳� is defined such that �exactly� ≡ ‘=’, �at most� ≡ ‘<=’, �at least� ≡ ‘>=’

t, t1, t2 ∈ R; v, v1, v2 ∈ R; ∼∈ {<,>,=,≠, ≤, ≥}; s is a signal in 𝑆 or a mathematical expression over the signals in 𝑆 ; sc is a scope; p is a pattern.

Figure 4: SB-TemPsy-DSL formal semantics

6 SB-TEMPSY-CHECK

In this section, we present the main steps of and the artifacts used

within SB-TemPsy-Check. Section 6.1 describes the pre-processing

step, Section 6.2 illustrates the meta-model of the pre-processed

trace, and Section 6.3 explains how the OCL constraint solver is

used to perform trace checking.

6.1 Pre-processing

The pre-processing step converts the original simulation trace, in

which signal values are recorded at different simulation times, to a

new trace in which signal values are recorded for every entry.

Our conversion relies on an interpolation function to generate

the missing signal values. More precisely, let 𝜂 : R × R→ R be an
interpolation function over real values, and 𝑆 and 𝜋 be, respectively,

the set of signals and the simulation trace as defined in section 3.1;

the pre-processed trace obtained from 𝜋 = 〈𝑇, 𝑓 〉 and denoted by 𝜋
is defined as 𝜋 = 〈𝑇, 𝑓 〉, where 𝑓 is a function such that for all 𝑡 ∈ 𝑇
and for all 𝑠 ∈ 𝑆 , the assignment (𝑠 = 𝜂 (last (𝜋, 𝑠, 𝑡), next (𝜋, 𝑠, 𝑡))) ∈
𝑓 (𝑡). Intuitively, in the pre-processed trace, at every time instant
𝑡𝑖 the value of signal 𝑠 is the interpolation between the last-seen
value and the next-seen value of 𝑠 at 𝑡𝑖 . Note that this definition is
compatible with the case in which signal 𝑠 is actually assigned a
value 𝑣 in the record sampled at time 𝑡𝑖 . Indeed, in such a case both
function last and function next yield 𝑣 , and we have 𝜂 (𝑣, 𝑣) = 𝑣 .

1009

* *

Trace
Entry

simulationTime: Double

Record

signalID: String

value: Double

Figure 5: UML Class Diagram of the Trace Meta-model

Users can choose different interpolation functions (e.g., piecewise

constant, linear, cubic) depending on the domain of the values of

the signals, and their expected variation over time. We discuss the

choice of the interpolation for our case study in section 7.

Before doing this conversion, our pre-processing step also per-

forms some filtering on the trace. A trace contains records for many

signals; however, a property to be checked on the trace may refer

to only a subset of these signals. Hence, we remove from the trace

all the entries that do not contain any record with a signal referred

to by the property to be checked.

6.2 Trace Meta-model

Our trace meta-model of the pre-processed trace is an extension

of the one proposed by Dou et al. [19], tailored to the CPS domain

to support (i) SBTPs and (ii) trace entries recording the values of

several signals at a certain time instant.

The trace meta-model includes the basic entities that are used

to represent a trace when a new instance is created from a trace

file. These entities are accessed by the OCL functions during the

model-driven trace checking step.

The model, depicted in Fig. 5 with a UML class diagram, contains

a Trace, which is composed of a sequence of Entrys. A Entry has

an attribute representing the simulation time at which the record

has been sampled, and contains one or more Records (one for

each signal). A Record has two attributes, representing the signal

identifier and its value.

6.3 Model-driven Trace Checking

Our model-driven trace checking procedure checks whether an

SB-TemPsy-DSL property 𝜙 holds over a trace 𝜋 by evaluating an

OCL constraint semantically equivalent to 𝜙 over a model (i.e., an

instance of the trace meta-model described in section 6.2) of the

pre-processed trace 𝜋 (derived from 𝜋). This check is done using a
standard OCL checker, such as Eclipse OCL.

Input preparation phase. First, our approach (1) builds an instance

𝜋obj of the trace meta-model from the pre-processed trace 𝜋 and

(2) translates the property 𝜙 into an OCL constraint 𝜙OCL. The
translation from SB-TemPsy-DSL properties to OCL constraints is

syntax-directed and covers all the constructs of SB-TemPsy-DSL

defined in figure 3. As an example, below we illustrate the OCL

function (shown in figure 6) corresponding to the oscillation pattern.

This function takes as input a trace, an object representing the

parameters of the oscillation pattern, and the bounds of the trace

interval on which the pattern should be evaluated. Notice that the

OCL variables tl and tu correspond to the variables 𝑡𝑙 and 𝑡𝑢 used

in the definition of the semantics of the oscillation pattern in fig-

ure 4. The function first saves the value of the pattern parameter

s (signal name) in the corresponding variable s (line 2), which is

used inside the expression at lines 6–7. This expression encodes

the semantics of the pattern presented in figure 4. For instance,

lines 3–5 constrain the existence of five trace entries el1, el2, el3,

el4 and el5 such that they have consecutive simulation times. In

addition, lines 6–7 express the presence of consecutive maxima

and minima according to the semantics presented in figure 4. Func-

tions isLMin and isLMax implement functions uni_sm_min and

uni_sm_max described in section 5.2. In addition, line 8 checks the

optional constraints (on the peak-to-peak amplitude and/or the

period) associated with the pattern.

Constraint evaluation phase. The second and final phase uses

the OCL checker to evaluate the constraint 𝜙OCL on the object

𝜋obj , denoted by eval(𝜋obj, 𝜙OCL). The result of this evaluation is a
Boolean value that corresponds to the verdict of checking property

𝜙 over trace 𝜋 . More formally, we have that 𝜋 |=𝜂 𝜙 if and only if

eval(𝜋obj, 𝜙OCL) yields true.
Correctness. The correctness of our procedure (intuitively) fol-

lows from these observations. The semantics of SB-TemPsy-DSL

presented in section 5.2 depends on the interpolation function

selected by the user. More precisely, given a user-selected interpola-

tion function 𝜂, the semantics specifies that property 𝜙 is satisfied

on trace 𝜋 , i.e., 𝜋 |=𝜂 𝜙 , if the pre-processed 𝜋 trace obtained using

the interpolation function 𝜂 satisfies the property 𝜙 , i.e., 𝜋 |= 𝜙 .
Since (i) the 𝜋obj object is built from 𝜋 , which is obtained from

the pre-processing step described in section 6.1 using the 𝜂 inter-
polation function, and (ii) the OCL constraint 𝜙OCL is obtained
from 𝜙 with a one-to-one mapping from the formal semantics de-

fined in figure 4, our procedure is correct, i.e., the verdict returned

by our trace-checking procedure is consistent with the semantics

presented in Section 5.2.

Time complexity. The time complexity of our procedure depends

on the size of the trace and on the OCL definitions for the different

constructs of SB-TemPsy-DSL. The evaluation of constructs like

“condition”, “property” and “absolute scope” does not depend on

the size of the trace since “condition” is evaluated at a specific

time instant, “property” is evaluated at the first time instant, and

“absolute scope” is evaluated by setting the values of the time bound

where the pattern is evaluated. The evaluation of the assert variant

of the “data assertion” construct is linear in the size of the trace.

The evaluation of all the other constructs is polynomial in the size

of the trace. For example, the encoding of the oscillation pattern

presented in Listing 6 contains five nested existential operators,

leading to a procedure with a time complexity of O(|𝜋 |5).
In light of these complexity results, we defined an alternative,

semantically equivalent OCL definition, which relies on an opti-

mized usage of OCL collections, specialized for each construct.

More specifically, the optimization replaces the use of first-order

quantifiers with collection operations, in particular iterate expres-

sions. Thanks to these optimizations, the complexity of evaluating

the “data assertion”, “spike”, “oscillation”, “rise/fall time”, and “over-

shoot/undershoot” patterns is linear in the size of the trace; the

complexity of evaluating the “event” scope and “order relationship”

pattern is still polynomial in the size of the trace. We used this al-

ternative OCL definition for our empirical investigation (section 7).

7 EVALUATION

In this section, we report on the evaluation of our contributions.

First, we evaluate our specification language SB-TemPsy-DSL in

1010

1 def: checkPatternOscillation(trace:OrderedSet(trace:: TraceElement), pattern :: Oscillation , tl:Real ,tu:Real): Boolean =
2 let s : String = pattern.s in
3 trace ->exists(el1 ,el2| tl <= el1.simulationTime and el1.simulationTime < el2.simulationTime
4 trace ->exists(el3 ,el4| el2.simulationTime < el3.simulationTime and el3.simulationTime < el4.simulationTime
5 trace ->exists(el5 | el4.generationTime < el5.generationTime and el5.generationTime <=tu and
6 ((isLMax(trace ,el2 ,el1 ,el3 ,s) and isLMin(trace ,el3 ,el2 ,el4 ,s) and isLMax(trace ,el4 ,el3 ,el5 ,s))
7 or (isLMin(trace ,el2 ,el1 ,el3 ,s) and isLMax(trace ,el3 ,el2 ,el4 ,s) and isLMin(trace ,el4 ,el3 ,el5 ,s)))
8 and checkFeatures(trace ,el1 ,el2 ,el3 ,el4 ,el5 ,pattern))))

Figure 6: OCL function for the oscillation pattern of SB-TemPsy-DSL

terms of expressiveness, and compare with state-of-the-art spec-

ification languages. Second, we evaluate the performance of the

implementation of our model-driven trace checking approach SB-

TemPsy-Check, and compare it to a state-of-the-art tool for trace

checking of SBTPs. In both cases, as properties to express and check,

we consider the requirements of our industrial case study (see sec-

tion 2). Summing up, we evaluated our contributions by answering

the following research questions:

RQ1 To which extent can SB-TemPsy-DSL express requirements of

real-world, industrial CPS applications and how does it com-

pare with state-of-the-art specification languages in terms of

expressiveness? (section 7.1)

RQ2 Can SB-TemPsy-Check verify SBTPs on real-world execution

traces within practical time and how does it compare with a

state-of-the-art tool? (section 7.2)

RQ1 focuses on the expressiveness of SB-TemPsy-DSL, whereas RQ2

focuses on the applicability (in industrial settings) of SB-TemPsy-

Check.

7.1 Expressiveness of SB-TemPsy-DSL

To answer RQ1, we assessed the suitability of SB-TemPsy-DSL

for expressing the requirements of our industrial case study. We

also tried to express the same requirements with state-of-the-art

specification languages for SBTPs, i.e., STL [36] and SFO [4], and

compared the result with that of SB-TemPsy-DSL.

OBSW Requirements.We defined 101 requirements, expressed in

English, through a series of meetings (cumulatively lasting about

80 hours) with a senior software engineer leading the development

of the OBSW. The engineer defined the requirements and also

validated the corresponding SB-TemPsy-DSL properties written by

two of the authors.

Results.Out of these 101 requirements, we could express 98 in SB-

TemPsy-DSL. In the vast majority of the cases, the translation from

English to SB-TemPsy-DSL was straightforward; only in two cases

we had to rephrase the original requirement into an equivalent

form that could then be mapped to SB-TemPsy-DSL. Out of the

three requirements that we could not express in SB-TemPsy-DSL,

two were constraints on the number of occurrences of a certain

signal pattern (e.g., spike behavior) and would have required a

counting/aggregate operator [45]; the other requirement was a

constraint on the signal value in two consecutive time instants,

which would have required a modality for referring to the value of

a signal in a previous time instant. We plan to extend SB-TemPsy-

DSL with these constructs as part of future work.

Table 2 shows the occurrences of the various scopes (left-hand

side) and patterns (right-hand side) of SB-TemPsy-DSL across the

requirements of our case study. The pattern distribution is in line

with the findings of a recent taxonomy of SBTP [11], in which

data assertion (assert pattern in SB-TemPsy-DSL) is the most

represented pattern type, followed by the order relationship (if

then in SB-TemPsy-DSL). The globally and at scopes are the most

used; we observed they are usually combined with data assertions

to specify invariants that should hold during the entire simulation

and conditions that should hold at specific time instants.

Using state-of-the-art specification languages, out of the 101

requirements, we could express 59 in STL and 101 in SFO. The lower

number of requirements expressible in STL is due to the lack of a

modality that allows for referring to (and comparing) signal values

at different time instants. Such a modality would be required to

specify spike, oscillation, rise/fall time, and overshoot/undershoot

patterns. On the other hand, STL can express data assertions and

also order relationship properties, when in the latter the “cause” and

“effect” sub-properties are data assertions (as it was the case in our

case study) or (recursively) other order relationship sub-properties.

SFO allows us to express all 101 requirements, thanks to its support

for first-order quantification. These expressiveness results for STL

and SFO are in line with previous findings [11], which assessed the

expressiveness of STL and SFO (and STL*) with respect to different

types of SBTPs.

The answer to RQ1 is that, when using SB-TemPsy-DSL, we

could express 98 out of 101 requirements of a real-world, indus-

trial system in the satellite domain. This result shows the high

expressiveness of SB-TemPsy-DSL for specifying SBTPs of CPS.

When compared with state-of-the-art logic-based specification lan-

guages, SB-TemPsy-DSL could express many more requirements

than STL, since STL can not express spike, oscillation, rise/fall time,

and overshoot/undershoot patterns. Nevertheless, SB-TemPsy-DSL

is slightly less expressive than SFO (98 vs. 101). However, there

is no tool support for SFO trace-checking. While we could have

implemented such a tool, it would have likely exhibited low perfor-

mance since the time complexity of trace-checking SFO formulae

is exponential in the number of quantifiers, function symbols and

length of the SFO formula, as well as in the length of the trace [4].

On the other hand, as discussed in section 6, the time complexity

of the trace-checking procedure for SB-TemPsy-DSL is polynomial

in the length of the trace for the “order relationship” pattern and

the “event” scope, and is linear in all other cases. Such a lower time

complexity is likely to result in wider applicability in industrial

contexts; we will experimentally investigate the performance of our

trace checking approach for SB-TemPsy-DSL in the next section.

1011

Table 2: Occurrences of the SB-TemPsy-DSL scopes (left) and

patterns (right) in the requirements of the case study

Scope Type #Req

globally 74
before 1
after 9
at 28
between 9

Pattern Type #Req Pattern Type #Req

assert 91 rises 3
becomes 9 falls 7
if then 31 overshoots 3
oscillations 24 undershoots 5
spike 3

7.2 Applicability of SB-TemPsy-Check

To answer RQ2, we assessed the applicability of SB-TemPsy-Check

on execution traces from our industrial case study. Furthermore,

we also compared—in terms of applicability of the trace check-

ing procedure—SB-TemPsy-Check with Breach [17], a state-of-the-

art (offline) trace checking tool for SBTPs expressed in STL. We

chose Breach among other similar tools listed in a recent survey [5]

(i.e., AMT [42] and S-TaLiRo [1]), because AMT 2.0, in contrast to

Breach, is not publicly available, and also because Breach has been

shown [17] to be faster than S-TaLiRo.

Dataset. Our dataset consists of 18 traces provided by our indus-

trial partner. These traces have been obtained by simulating the

behavior of the OBSW in different scenarios, with a simulation time

ranging approximately from one hour to 18 h. Their size (in number
of entries) ranges from 41844 to 1202241 entries (avg = 389771,
StdDev = 393718); the corresponding file size ranges from ≈1.7MB
to ≈58.9MB (avg ≈17.6MB, StdDev ≈19.4MB).
Methodology and settings. Our dataset contains traces recorded

while a satellite system was tested in different environmental con-

ditions (see section 2); the entries in each trace contain only sig-

nals whose behavior was relevant to the specific test performed.

Consequently, for each trace in the dataset, our industrial partner

indicated which properties had to be checked, based on the signals

recorded in the trace and the signals referred to in the properties.

Overall, we ran SB-TemPsy-Check over 217 distinct combinations3

of traces and properties.

The final trace size (in number of entries) ranged from 12 to 13068

entries (avg = 6187, StdDev = 4456); the corresponding file size
ranged from ≈255B to ≈4.7MB (avg ≈0.4MB, StdDev ≈0.8MB).
We configured SB-TemPsy-Check to use linear interpolation as

interpolation function for the pre-processing step (see section 6.1).

We chose this function since it is relatively simple and produces

reasonably good approximations of the signal behavior, suitable for

checking typical SBTPs (e.g., oscillation, spike).

As for the comparison with Breach, we used version 1.7 (installed

on Matlab version 2018a) and only ran the tool for the 59 properties

that could be expressed both in SB-TemPsy-DSL and in STL (see

section 7.1). Overall, we ran Breach over 110 distinct combinations

of traces and properties.

We carried out the experiments on one node (using four cores)

of the HPC facilities of the University of Luxembourg [48]. Each

run (checking a distinct combination of a trace and a property) was

repeated 10 times, to account for variations in the performance of

the HPC. We set the timeout of each run to 2 h, which is a relatively
short and practical time when compared to the time (in the order

3We also removed 13 combinations in which the trace had less than 10 entries.

of several days) taken by the OBSW simulator to generate a trace

in our dataset (see section 2). The total wall-clock time to run all

the experiments was ≈ 12 days, reduced to about three days by

exploiting the parallelization mechanisms of the underlying HPC

infrastructure.

In total, we measured the execution time over 2170 runs for

SB-TemPsy-Check and over 1100 runs for Breach. The execution

time of SB-TemPsy-Check wasmeasured using the Unix time utility

for the pre-processing step and the System.currentTimeMillis()

method (from the Java library) for the invocation of theOCL checker;

the execution time of Breach was measured using the tic and toc

functions of the stopwatch timer integrated within Matlab.

Results. SB-TemPsy-Check yielded a verdict within the timeout in

≈ 87% of the runs (1884 out of 2170). On average, SB-TemPsy-Check

took 5.98 s (min = 0.35 s, max = 103 s) for the pre-processing and
48.7 s (min = 0.18 s,max = 7076.8 s) for the trace checking through
the OCL solver. Overall, SB-TemPsy-Check took less than 10 s to
check properties (i) whose pattern is different from “order relation-

ship”, and (ii) whose scope is of type “absolute”; such properties

account for ≈ 99% of the completed runs (1870 out of 1884).

In the remaining 286 runs (≈ 13%) in which SB-TemPsy-Check
did not finish within the timeout, the property to be verified con-

tained either an instance of the “order relationship” pattern or an

“event” scope. As discussed in section 6.3, checking these types of

properties has a time complexity that is polynomial in the length

of the trace. We remark that SB-TemPsy-Check was still able to

return a verdict in 14 out of the 300 runs in which the property

contained the aforementioned pattern type or scope type; in all

these cases, the trace did violate the property and the violation was

found before the timeout.

As for the 1100 runs that checked one of the 59 properties that

could be expressed both in SB-TemPsy-DSL and in STL (and thus

could be checked by Breach), Breach finished within the time-

out in 100% of the runs, with an average execution time of 0.01 s
(min = 0.006 s, max = 0.15 s); SB-TemPsy-Check finished within
the timeout in ≈ 97% of the runs (1064 out of 1100). For these

runs, SB-TemPsy-Check took on average 85.28 s (min = 0.18 s,
max = 7076.8 s). For the remaining ≈ 3% of the runs in which

SB-TemPsy-Check did not finish within the timeout, the property

to be checked contained an “order relationship” pattern; the same

observations made above about the complexity of checking such

properties apply also here.

In terms of execution time, when considering the ≈ 97% runs in

which both SB-TemPsy-Check and Breach terminated within the

timeout, though SB-TemPsy-Check was slower than Breach, it was

able to yield a verdict within 10 s for all the properties (i) whose
pattern is different from “order relationship”, and (ii) whose scope is

of type “absolute”; such properties account for the vast majority of

the completed runs (1050 out of 1064,≈ 99%). This cost is reasonable
given that SB-TemPsy-Check supports the verification of a much

larger set of property types than Breach.

Summing up, the answer to RQ2 is that, in 87% of the runs SB-

TemPsy-Check could complete within practical time limits (i.e.,

the timeout determined based on the development context of our

case study) the verification of SBTPs (expressed in SB-TemPsy-DSL)

over industrial traces, with an average checking time of 48.7 s. We

deem this time to be reasonable for practical applications, since it is

1012

orders of magnitude lower than the time needed for simulation and

trace generation (as discussed in section 2). In other words, it allows

engineers to integrate SB-TemPsy-Check within the development

process at a negligible cost. Furthermore, though SB-TemPsy-Check

was slower than Breach, it was always able to yield a verdict within

10 s in ≈ 99% of the cases, despite supporting the verification of a

much larger set of property types.

7.3 Discussion and Threats to Validity

The results of our empirical investigation show that SB-TemPsy

represents a viable trade-off between an expressive specification lan-

guage for SBTPs (SB-TemPsy-DSL) and an efficient trace-checking

procedure (SB-TemPsy-Check). Using SB-TemPsy-DSL, we could

express 98 out of 101 requirements of an industry-grade CPS. SB-

TemPsy-DSL was considerably more expressive than STL, which is

a temporal logic for SBTPs supported by publicly available trace-

checking tools. Furthermore, SB-TemPsy-Check completed the veri-

fication of these requirements on real-world execution traces within

practical time limits (determined based on the development context

of our case study) in ≈ 87% of the runs. This also confirms our

conjecture that a model-driven approach is a viable solution for

trace checking of SBTPs.

Supporting an expressive specification language like SB-TemPsy-

DSL comes with a performance loss in terms of the trace checking

procedure. For the 59 requirements of our case study that could

be expressed in STL, in ≈ 97% of the runs in which SB-TemPsy-

Check terminated, it was slower than Breach but it was able to

yield a verdict within 10 s for ≈ 99% of the cases. Furthermore, dif-

ferently from SB-TemPsy-Check, Breach always terminated within

the timeout.

Based on the above observations, taking advantage of the com-

plementary strengths of both approaches, we propose to combine

SB-TemPsy and Breach. SB-TemPsy-DSL properties that can also be

expressed in STL (i.e., logical expressions of data assertions) should

be checked with Breach, since it yields better performance. More

complex SBTPs (which cannot be expressed in STL) should then

be checked with SB-TemPsy-Check, since it is the only tool that

can efficiently verify them. Overall, this complementary usage of

the two verification tools would significantly reduce the execution

time and number of timeouts of the trace checking procedure.

As mentioned in Section 6.3, although our model-driven trace

checking approach is correct, the interpolation function used in the

pre-processing step influences the verdicts returned by SB-TemPsy-

Check and Breach. In practical scenarios, engineers may want to

consider different interpolations functions depending on the ex-

pected signals’ behaviors. For this reason, we plan to (i) provide

additional interpolation functions, and (ii) allow the selection of

a different interpolation function for each signal. Engineers can

then choose the interpolation function based on the type and the

domain of the signal, and on their domain knowledge. Since signals

usually represent the state either of some CPS software compo-

nents or of their environment, engineers usually have a precise, yet

intuitive, understanding of how these signals will change over time.

Therefore, they can easily select the most appropriate interpolation

function given their usage scenario.

Threats to validity. In our evaluation, we used a set of require-

ments and traces coming from one industrial case study from the

satellite domain. Though the targeted system and requirements

are in many ways representative of what can be found in satel-

lite and other cyber-physical domains—where the behavior being

controlled involves convoluted physical dynamics and the system

requirements are expressed as complex SBTPs—this could influence

the generalization of our results.

Another threat to the validity of the evaluation results is the

presence of coding errors in the implementation of SB-TemPsy-

Check. We tried to mitigate it by thoroughly testing the tool.

Data availability. The supplementary material accompanying

this work is available at https://github.com/SNTSVV/SB-TemPsy.

8 RELATEDWORK

Our approach is related to work done in the areas of (i) specification

languages for SBTPs, (ii) trace-checking methods, and (iii) model-

driven approaches for trace checking.

Specification languages. STL [36] has been one of the first logic-

based languages proposed for specifying SBTPs. STL* [12] is an

extension of STL with the signal-value freezing operator, which

binds the value of a signal at a precise time instant. SFO [4] is a

first-order temporal logic for signals. Boufaied et al. [11] compared

the expressiveness of STL, STL*, and SFO analytically, based on

different formulations of the main types of SBTPs (see section 3.2);

in contrast, we have empirically compared the expressiveness of SB-

TemPsy-DSL, STL and SFO as part of our evaluation (section 7.1), us-

ing properties from a representative industrial case study. Bakhirkin

and Basset [3] proposed an extension of STL with (i) a new form of

until operator, (ii) support for computable aggregate function over a

sliding window, and (iii) formulae having the possibility of produc-

ing and manipulating real-valued output signals. These extensions

give the possibility of expressing some SBTP patterns (e.g., stabiliza-

tion, maximum/minimum value, linear increase, spike) without the

need for more expressing languages like STL* or SFO. Menghi et al.

[38] have recently proposed RFOL, a logic that is more expressive

than STL and less expressive than SFO. We did not consider RFOL

since this work is focused on offline trace-checking, whereas RFOL

is supported by an online trace checker. SB-TemPsy-DSL is also

related to other DSLs for expressing temporal properties, such as

PROPEL - DNL [47], Structured English Grammar for real-time spec-

ifications [33], Temporal OCL [32], OCLR [18], VISPEC - graphical

formalism [31], TemPsy [19], SpeAR [28], TemPsy-AG [10], Pro-

MoboBox - property language [39], FRETISH [29]. The majority

of them is based on some property specification patterns [2, 21];

none of them support SBTPs. The contract language proposed by

Bernaerts et al. [7] is the closest to SB-TemPsy-DSL, since it is

pattern-based and has been developed for the CPS domain; how-

ever, it supports only STL-like properties, and thus cannot express

more complex behaviors such as spikes and oscillations.

SB-TemPsy-DSL supports the main types of SBTPs identified in

Boufaied et al. [11]’s taxonomy, which also provides a formalization

of the properties in SFO. For SB-TemPsy, we have refined such

a formalization since our goal was to develop a trace-checking

procedure for SB-TemPsy-DSL properties, rather than providing

a mere formalization in a temporal logic. For example, our OCL

1013

definition of the SB-TemPsy-DSL semantics uses different predicates

for determining the local extrema (see table 1), since they are more

appropriate (by requiring the signal value to change according to a

unimodal function) to model the signal behavior in the context of

trace checking.

Trace-checking methods and tools. Among the temporal logics

for SBTPs discussed above, STL is supported by tools (such as

AMT [42], Breach [16], and S-Taliro [1]) for offline trace checking; a

tool is also available for the STL extension proposed in [3]. No tools

are available for STL* and SFO. RFOL is supported by an online

trace-checking procedure (SOCRaTEs [38]). The contract language

proposed by Bernaerts et al. [7] is translated into STL and then

relies on Breach for verification.

Model-driven approaches for trace checking. Model-driven trace

checking has been originally proposed by Dou et al. [19] for the ver-

ification of simple temporal properties. Dou et al.’s work has been

extended by Boufaied et al. [10] to support service provisioning

specification patterns [8, 9] using aggregate operators. In this work

we have applied Dou et al.’s idea of model-driven trace checking in

the context of SBTP through the development of the SB-TemPsy

approach. The main differences with Dou et al. [19] are:

(i) The SB-TemPsy-DSL language has constructs specific to the

domain of SBTP, based on the property types proposed in

a recent taxonomy [11]; also, the scope operators, though

inspired by Dwyer et al. [21]’s work, have been tailored to the

domain of SBTP (e.g., to support absolute time instants). On

the other hand, the TemPsy language [19] (and its predecessor

OCLR [18]) are only based on Dwyer et al. [21]’s specification

patterns (and thus do not support SBTPs).

(ii) SB-TemPsy-Check includes a pre-processing step, to deal with

trace entries with missing signal values and recorded both at

fixed and at variable sampling rates.

(iii) SB-TemPsy-Check sports an improved trace meta-model, to

support trace entries recording the values of several signals at

a certain time instant.

(iv) The mapping of the semantics of SB-TemPsy-DSL into OCL

constraints is completely new, since it is based on the seman-

tics presented in section 5.2.

To the best of our knowledge, SB-TemPsy is the first approach to

provide model-driven trace checking of SBTPs.

9 CONCLUSION AND FUTUREWORK

In this paper, we propose SB-TemPsy, a model-driven approach for

checking signal-based temporal properties (SBTPs) on execution

traces of CPSs. SB-TemPsy includes SB-TemPsy-DSL, a domain-

specific language for specifying SBTPs that cover the most frequent

requirement types in CPSs, and SB-TemPsy-Check, an efficient

trace-checking procedure that reduces the problem of checking an

SB-TemPsy-DSL property over a trace to the problem of evaluating

an OCL constraint on a model of the trace.

We evaluated SB-TemPsy by assessing the expressiveness of

SB-TemPsy-DSL and the applicability of SB-TemPsy-Check to a

representative CPS in the satellite domain. The results of our empir-

ical investigation show that our approach—when compared, from a

practical standpoint, to state-of-the-art alternatives—strikes a better

trade-off between expressiveness and performance as it supports

a much larger set of property types that can be checked, in most

cases, within practical time limits. Moreover, the results suggest

that SB-TemPsy could be combined with existing approaches effi-

ciently supporting STL. In this way, we show we can make optimal

use of a given verification budget while avoiding most time-outs

by relying on the best tool option depending on the type of the

checked property.

As part of future work, we plan to extend SB-TemPsy-DSL with

additional constructs, based on the expressiveness results of our

evaluation. Furthermore, we are going to develop alternative OCL

definitions in SB-TemPsy-Check, optimized to minimize the number

of time-outs when checking specific types of properties. Also, we

plan to investigate how different implementations of SB-TemPsy-

Check (e.g., using an SMT-based encoding or another type of logic-

based encoding relying on tools like R2U2 [40]) fare with respect

to the one based on OCL. Finally, we plan to extend the output

returned by SB-TemPsy-Check in case of violations with diagnostic

information, inspired by existing work [20, 27].

ACKNOWLEDGMENTS

This work has received funding from the European Research Coun-

cil under the European Union’s Horizon 2020 research and inno-

vation programme (grant agreement No 694277), from the Natural

Sciences and Engineering Research Council of Canada (NSERC)

under the Discovery and CRC programs, and from the University

of Luxembourg (grant “MOVIDA”).

The experiments presented in this paper were carried out us-

ing the HPC facilities of the University of Luxembourg [48] — see

hpc.uni.lu.

The authors would also like to thank the anonymous referees

for their valuable comments and helpful suggestions.

REFERENCES
[1] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-

narayanan. 2011. S-taliro: A tool for temporal logic falsification for hybrid
systems. In Proc. TACAS 2011. Springer, Berlin, Heidelberg, 254–257.

[2] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony
Tang. 2015. Aligning Qualitative, Real-Time, and Probabilistic Property Specifi-
cation Patterns Using a Structured English Grammar. IEEE Trans. Softw. Eng. 41,
7 (2015), 620–638.

[3] Alexey Bakhirkin and Nicolas Basset. 2019. Specification and efficient monitoring
beyond STL. In Proc. TACAS 2019. Springer, Cham, 79–97.

[4] Alexey Bakhirkin, Thomas Ferrère, Thomas A. Henzinger, and Dejan Ničković.
2018. The First-order Logic of Signals: Keynote. In Proc. EMSOFT2018. IEEE Press,
Los Alamitos, CA, USA, 1:1–1:10.

[5] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Ničković, and Sriram Sankaranarayanan. 2018. Specification-based
monitoring of cyber-physical systems: a survey on theory, tools and applications.
In Lectures on Runtime Verification. Springer, Cham, 135–175.

[6] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. 2018. Introduc-
tion to Runtime Verification. In Lectures on Runtime Verification - Introductory
and Advanced Topics. LNCS, Vol. 10457. Springer, Cham, Switzerland, 1–33.

[7] M. Bernaerts, B. Oakes, K. Vanherpen, B. Aelvoet, H. Vangheluwe, and J. Denil.
2019. Validating Industrial Requirements with a Contract-Based Approach. In
Proc. MODELS 2019 (Companion)). IEEE, Los Alamitos, CA, USA, 18–27.

[8] Domenico Bianculli, Carlo Ghezzi, Cesare Pautasso, and Patrick Senti. 2012.
Specification patterns from research to industry: a case study in service-based
applications. In Proc. ICSE2012. IEEE, Los Alamitos, CA, USA, 968–976.

[9] Domenico Bianculli, Carlo Ghezzi, and Pierluigi San Pietro. 2013. The Tale of
SOLOIST: a Specification Language for Service Compositions Interactions. In
Proc. FACS’12 (LNCS), Vol. 7684. Springer, Heidelberg, Germany, 55–72.

[10] Chaima Boufaied, Domenico Bianculli, and Lionel C. Briand. 2019. A Model-
driven Approach to Trace Checking of Temporal Properties with Aggregations.
Journal of Object Technology 18, 2 (2019), 15:1–15:21. https://doi.org/10.5381/
jot.2019.18.2.a15

1014

[11] Chaima Boufaied, Maris Jukss, Domenico Bianculli, Lionel Claude Briand, and
Yago Isasi Parache. 2019. Signal-Based Properties: Taxonomy and Logic-based
Characterization. CoRR abs/1910.08330 (2019), 1–39. arXiv:1910.08330 http:
//arxiv.org/abs/1910.08330

[12] Lubos Brim, Petr Dluhoš, David Šafránek, and Tomas Vejpustek. 2014. STL∗:
Extending signal temporal logic with signal-value freezing operator. Information
and computation 236 (2014), 52–67.

[13] Kalou Cabrera Castillos, Frédéric Dadeau, Jacques Julliand, Bilal Kanso, and
Safouan Taha. 2013. A compositional automata-based semantics for property
patterns. In Proc. iFM 2013. Springer, Heidelberg, 316–330.

[14] Christoph Czepa, Amirali Amiri, Evangelos Ntentos, and Uwe Zdun. 2019.
Modeling compliance specifications in linear temporal logic, event process-
ing language and property specification patterns: a controlled experiment on
understandability. Software and Systems Modeling 18, 6 (2019), 3331–3371.
https://doi.org/10.1007/s10270-019-00721-4

[15] C. Czepa and U. Zdun. 2018. On the Understandability of Temporal Properties
Formalized in Linear Temporal Logic, Property Specification Patterns and Event
Processing Language. IEEE Trans. Softw. Eng. 46 (2018), 1–13. doi: 10.1109/TSE.
2018.2859926.

[16] Alexandre Donzé. 2010. Breach, a toolbox for verification and parameter synthesis
of hybrid systems. In Proc. CAV2010. Springer, Berlin, Heidelberg, 167–170.

[17] Alexandre Donzé, Thomas Ferrère, and Oded Maler. 2013. Efficient Robust
Monitoring for STL. In Proc. CAV 2013. Springer, Berlin, Heidelberg, 264–279.

[18] Wei Dou, Domenico Bianculli, and Lionel Briand. 2014. OCLR: a More Expressive,
Pattern-based Temporal Extension of OCL. In Proc. ECMFA 2014 (LNCS), Vol. 8569.
Springer, Heidelberg, Germany, 51–66.

[19] Wei Dou, Domenico Bianculli, and Lionel Briand. 2017. AModel-DrivenApproach
to Trace Checking of Pattern-based Temporal Properties. In Proc. MODELS2017.
IEEE Computer Society, Los Alamitos, CA, USA, 323–333.

[20] Wei Dou, Domenico Bianculli, and Lionel Briand. 2018. Model-Driven Trace
Diagnostics for Pattern-based Temporal Specifications. In Proc. MODELS 2018.
ACM, New York, NY, USA, 278–288. https://doi.org/10.1145/3239372.3239396

[21] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in
property specifications for finite-state verification. In Proc. ICSE ’99. ACM, New
York, NY, USA, 411–420.

[22] Eclipse. 2020. Eclipse OCL Tools. https://projects.eclipse.org/projects/modeling.
mdt.ocl.

[23] ESA. 2020. Building and testing spacecraft. https://www.esa.int/Science_
Exploration/Space_Science/Building_and_testing_spacecraft

[24] ESA 2020. The European Space Agency (ESA). https://www.esa.int/
[25] exactEarth 2020. exactEarth. https://www.exactearth.com/
[26] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. 2018. A Taxonomy

for Classifying Runtime Verification Tools. In Proc. RV 2018 (Lecture Notes in
Computer Science), Vol. 11237. Springer, Cham, 241–262.

[27] Thomas Ferrère, Oded Maler, and Dejan Ničković. 2015. Trace Diagnostics Using
Temporal Implicants. In Proc. ATVA 2015 (LNCS), Vol. 9364. Springer International
Publishing, Cham, 241–258.

[28] Aaron W. Fifarek, Lucas G. Wagner, Jonathan A. Hoffman, Benjamin D. Rodes,
M. Anthony Aiello, and Jennifer A. Davis. 2017. SpeAR v2.0: Formalized Past
LTL Specification and Analysis of Requirements. In Proc. NFM 2017. Springer
International Publishing, Cham, 420–426.

[29] Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, and Johann
Schumann. 2020. Generation of Formal Requirements from Structured Natural
Language. In Proc. REFSQ 2020. Springer International Publishing, Cham, 19–35.

[30] K. Havelund, D. Peled, and D. Ulus. 2017. First order temporal logic monitoring
with BDDs. In Proc. FMCAD 2017. IEEE, Los Alamitos, CA, USA, 116–123.

[31] Bardh Hoxha, Nikolaos Mavridis, and Georgios Fainekos. 2015. VISPEC: A
graphical tool for elicitation of MTL requirements. In Proc. IROS2015. IEEE, Los
Alamitos, CA, USA, 3486–3492.

[32] Bilal Kanso and Safouan Taha. 2013. Temporal Constraint Support for OCL. In
Proc. SLE 2012 (LNCS), Vol. 7745. Springer, Berlin, Heidelberg, 83–103.

[33] Sascha Konrad and Betty H. C. Cheng. 2005. Real-time specification patterns. In
Proc. ICSE ’05. ACM, New York, NY, USA, 372–381.

[34] Jianwen Li, Moshe Y Vardi, and Kristin Y Rozier. 2019. Satisfiability checking for
mission-time LTL. In Proc. CAV2019. Springer, Cham, 3–22.

[35] Luxspace 2020. Luxspace. https://luxspace.lu/
[36] Oded Maler and Dejan Nickovic. 2004. Monitoring temporal properties of con-

tinuous signals. In Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems. Springer, Berlin, Heidelberg, 152–166.

[37] Claudio Menghi, Shiva Nejati, Lionel C. Briand, and Parache Yago Isasi. 2020.
Approximation-Refinement Testing of Compute-Intensive Cyber-Physical Mod-
els: An Approach Based on System Identification. In Proc. ICSE 2020. ACM, New
York, NY, USA, 1–12.

[38] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019.
Generating Automated and Online Test Oracles for Simulink Models with Con-
tinuous and Uncertain Behaviors. In Proc. ESEC/FSE 2019. ACM, New York, NY,
USA, 27–38.

[39] B. Meyers, H. Vangheluwe, J. Denil, and R. Salay. 2020. A Framework for Temporal
Verification Support in Domain-Specific Modelling. IEEE Trans. Softw. Eng. 46, 4
(2020), 362–404.

[40] Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. 2017. R2U2:
Monitoring and Diagnosis of Security Threats for Unmanned Aerial Systems.
Formal Methods in System Design 51 (April 2017), 31–61. https://doi.org/10.1007/
s10703-017-0275-x

[41] Shiva Nejati, Khouloud Gaaloul, Claudio Menghi, Lionel C. Briand, Stephen
Foster, and David Wolfe. 2019. Evaluating model testing and model checking
for finding requirements violations in Simulink models. In Proc. ESEC/FSE 2019.
ACM, New York, NY, USA, 1015–1025.

[42] Dejan Ničković, Olivier Lebeltel, Oded Maler, Thomas Ferrère, and Dogan Ulus.
2018. AMT 2.0: Qualitative and Quantitative Trace Analysis with Extended Signal
Temporal Logic. In Proc. TACAS 2018. Springer International Publishing, Cham,
303–319.

[43] OMG. 2012. ISO/IEC 19507 (OCL v2.3.1). http://www.omg.org/spec/OCL/ISO/
19507/PDF.

[44] Yago Isasi Parache, Aleix Pinardell, Antonio Márquez, Christophe Molon-Noblot,
Alexander Wagner, Marc Gales, and Miroslav Brada. 2019. The ESAIL Multi-
purpose Simulator. Poster at the Workshop on Simulation and EGSE for Space
Programmes (SESP 2019).

[45] Nicolas Rapin. 2016. Reactive Property Monitoring of Hybrid Systems with
Aggregation. In Proc. RV2016 (LNCS), Vol. 10012. Springer, Cham, 447–453.

[46] César Sánchez, Gerardo Schneider, Wolfgang Ahrendt, Ezio Bartocci, Domenico
Bianculli, Christian Colombo, Yliès Falcone, Adrian Francalanza, Srdan Krstic,
João M. Lourenço, Dejan Nickovic, Gordon J. Pace, José Rufino, Julien Signoles,
Dmitriy Traytel, and Alexander Weiss. 2019. A survey of challenges for runtime
verification from advanced application domains (beyond software). Formal
Methods Syst. Des. 54, 3 (2019), 279–335. https://doi.org/10.1007/s10703-019-
00337-w

[47] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil. 2002. PROPEL: an
approach supporting property elucidation. In Pro. ICSE 2002. IEEE, Los Alamitos,
CA, USA, 11–21.

[48] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an
Academic HPC Cluster: The UL Experience. In Proc. of the 2014 Intl. Conf. on High
Performance Computing & Simulation (HPCS 2014). IEEE, Los Alamitos, CA, USA,
959–967.

1015

