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ABSTRACT
The next generation of weather and climate models will have an
unprecedented level of resolution and model complexity, and run-
ning these models efficiently will require taking advantage of future
supercomputers and heterogeneous hardware.

In this paper, we investigate the use of mixed-precision hard-
ware that supports floating-point operations at double-, single- and
half-precision. In particular, we investigate the potential use of the
NVIDIA Tensor Core, a mixed-precision matrix-matrix multiplier
mainly developed for use in deep learning, to accelerate the cal-
culation of the Legendre transforms in the Integrated Forecasting
System (IFS), one of the leading global weather forecast models. In
the IFS, the Legendre transform is one of the most expensive model
components and dominates the computational cost for simulations
at a very high resolution.

We investigate the impact of mixed-precision arithmetic in IFS
simulations of operational complexity through software emula-
tion. Through a targeted but minimal use of double-precision arith-
metic we are able to use either half-precision arithmetic or mixed
half/single-precision arithmetic for almost all of the calculations in
the Legendre transform without affecting forecast skill.
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1 INTRODUCTION
High-performance computing architectures are currently undergo-
ing a paradigm shift, prompting a reconsideration of how we design
scientific computing applications [9]. Future supercomputers will
be heterogeneous, employing a variety of computing hardware,
and will place more emphasis on data transfer between individ-
ual computing units, including memory-to-processor and node-
to-node communication, compared with the traditional focus on
raw floating-point computation. This presents a challenge to archi-
tects of numerical weather prediction (NWP) models and threatens
the continual climb of weather forecast skill, maintained over the
past few decades, which provides significant economic benefits to
society [1].

Of the alternatives to traditional central processing units (CPUs),
graphics processing units (GPUs) are likely to see an increasing
presence in supercomputing centres. These devices allow a far
greater degree of parallelism over a multi-core CPU and have seen
a surge in popularity within science over the past few years. Notable
achievements within NWP include Fuhrer et al. [5] and Yashiro et al.
[19], who both successfully ported existing non-hydrostatic models
to run on several thousand GPUs. The latest GPUs come with
several features aimed at accelerating common computationswithin
deep-learning applications, notably matrix-matrix multiplications.
The NVIDIA V100, for example, features a separate matrix-matrix
multiplier known as a “Tensor Core” for which they claim a speed-
up factor of 16 times compared with a standard double-precision
matrix-matrix multiply [13]. However, this device can only operate
on half-precision floating-point numbers (the output can be half-
precision or single-precision) so any potential application must be
tolerant to the relatively large rounding-errors incurred by putting
the input matrices into half-precision containers. In this paper, we
consider an application for these reduced-precision matrix-matrix
multipliers within numerical weather prediction models.
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A number of other studies have investigated the use of floating-
point arithmetic below single-precision in weather and climate
models. For simple models it is feasible to run the entire model at
a significantly reduced precision. Thornes et al. [16] and Hatfield
et al. [7], for example, both used half-precision for all or almost all
calculations. For intermediate or high complexity models, however,
it is usually necessary to secure certain portions of the model at
the standard double-precision to avoid deleterious errors, such as
overflows and catastrophic cancelling errors. Nevertheless, Düben
et al. [4] were able to perform 84% of the floating-point calculations
in a low resolution atmospheric dynamical core with only 6 bits for
the floating-point significand. While the use of single-precision has
recently been tested successfully in several weather and climate
models, the uses for half-precision floating-point numbers are lim-
ited because of the small exponent width and therefore small range
of representable numbers.

There are different methods to discretise the equations of motion
of the atmosphere for weather and climate models. The “spectral
transform technique” has been themethod of choice at the European
Centre for Medium-Range Weather Forecasts (ECMWF) almost
since its inception [15]. In a spectral model, a three-dimensional
scalar meteorological field, such as temperature, is discretised ver-
tically into a series of spherical shells extending from the Earth’s
surface to the upper atmosphere. Each spherical shell is then formu-
lated as a weighted sum of spherical harmonic basis functions. The
applied discretisation is similar to a Fourier decomposition on the
plane and we refer to the space spanned by these basis functions
as “spectral space”. The use of a spectral model opens opportuni-
ties for the use of mixed-precision. Chantry et al. [2] developed
a “scale-selective” approach to reducing-precision, in the spectral
space calculations of the Integrated Forecasting System (IFS) of
ECMWF: they used a high precision for large-scale atmospheric
variables and a low precision for small-scale atmospheric variables.
Overall this allowed them to use far fewer bits than the baseline,
global double-precision, without affecting the weather forecasting
skill.

Time-stepping and computation of derivatives, among other
things, are efficiently computed in spectral space. Computation
of the Laplacian of a field, for example, is trivial in spectral space.
However, some quantities, such as tendencies due to parametrised
physical processes, must still be computed on the grid points of a
common grid in physical space, referred to as “grid point space”.
This requires a transform of several fields from spectral space to
grid point space and back every timestep. Each transform requires
the use of a fast Fourier transform and a Legendre transform. In
the past, the transforms did not constitute a significant fraction of
the total computational cost of the model and so this seemingly
unwieldy process paid off. However, the Legendre transform scales
poorly and the cost of this process tends to dominate the total cost
of the system as horizontal resolution is increased [17]. At the high-
est operational resolution (9 km), the transforms back and forth
between spectral and grid point space already constitute around
40% of the total computational cost (atmosphere only and without
I/O). This problem has motivated the development of more efficient
Legendre transform algorithms than the standard matrix-matrix
multiplication, which scales as O(n3), where n is proportional to
the number of latitudes and longitudes and therefore denotes the

model’s horizontal resolution. The “fast Legendre transform”, for
example, scales as O(n2 logn) [18]. However there is a large mini-
mum cost to this algorithm such that it only becomes competitive
at very high resolutions and therefore the fast Legendre transform
is still not used in operational forecasts at ECMWF.

In this paper, we explore the potential of GPUs to accelerate
the traditional Legendre transform. In particular, we assess the
impact of using half-precision matrix-matrix multiplications and
the aforementioned Tensor Core on the meteorological skill of the
ECMWF model, the IFS. With a few simple treatments we find that
both half-precision arithmetic and the Tensor Core can be used
successfully. We focus on the Legendre transform for the aforemen-
tioned reasons but also because it has been identified as one of the
key “dwarfs” that should be targeted for optimisation when port-
ing existing weather models to future heterogeneous architectures
(specifically, the Fourier transform and the Legendre transform
constitute the dwarf) [12]. However, the techniques outlined in
this paper could in principle be used to accelerate any matrix mul-
tiplication, which is a standard operation used in many different
components of weather forecast models.

In Section 2 we introduce the Legendre transforms mathemati-
cally and algorithmically, in Section 3 we discuss the implications
for reducing precision in the Legendre transforms, in Section 4 we
evaluate the impact of this procedure on the skill of weather fore-
casts, both deterministic and probabilistic, in Section 5 we estimate
the computational cost of reduced-precision Legendre transforms
and finally we conclude in Section 6.

2 THE LEGENDRE TRANSFORM
Any real horizontal scalar field on the sphere f p (λ,θ ), where λ is
longitude, θ is latitude andp indexes the field (i.e. which model level
and meteorological variable), can be written as a sum of spherical
harmonics, Ym,n (λ,θ ):

f p (λ,θ ) =
∞∑

m=−∞

∞∑
n= |m |

ψ
p
m,nYm,n (λ,θ ) (1)

whereψpm,n is the complex amplitude of the (m,n) spectral mode for
field p,m is the zonal (or “Fourier”) wavenumber and n is the total
wavenumber. Spherical harmonics are the eigenfunctions of the
Laplacian in spherical coordinates and can be written as a product
of a function of latitude and a function of longitude:

Ym,n (λ,θ ) = Pm,n (µ)e
imλ , (2)

where Pm,n (µ) is an associated Legendre polynomial of the first
kind and µ = cos(θ ). In practice, the sums in Equation 1 are trun-
cated at some total wavenumber N and zonal wavenumber M ,
which are the same in the case of the typical “triangular truncation”.
The truncation wavenumber N determines the model resolution
which is referred to by the TXN labelling convention, “T” meaning
“triangular” and “X” referring to the type of grid used in grid point
space. We consider both the linear reduced Gaussian grid (TLN )
and the cubic octahedral reduced Gaussian grid (TCoN ), the latter
now being used operationally at ECMWF. A spectral resolution of
TCo639 corresponds to a grid point resolution of approximately 18
km at the Equator, whereas TCo3999 corresponds to a resolution
of approximately 2.5 km. To transform from grid point space to
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spectral space, a one-dimensional Fourier transform is applied to
generate a Fourier representation of the fields along each longitude.
In a second step, a Legendre transform is applied to obtain the
spectral coefficientsψpm,n for the global representation in spectral
space. To transform from spectral space to grid point space, an in-
verse Legendre transform is applied followed by an inverse Fourier
transform.

Applying the Fourier transform to a grid point field produces
the Fourier amplitudes at each latitude, Fpm (µ). The direct Legendre
transform then completes the transform into spectral space:

ψ
p
m,n =

∫ 1

−1
F
p
m (µ)Pm,n (µ)dµ . (3)

Equation 3 is evaluated numerically using Gaussian quadrature:∫ 1

−1
F
p
m (µ)Pm,n (µ)dµ =

N+1∑
i=1

wiF
p
m (µi )Pm,n (µi ), (4)

where the index i iterates over the Gaussian N + 1 latitudes, wi
are the Gaussian weights and µi is the location of the ith Gaussian
latitude. The inverse Legendre transform is defined by

F
p
m (µ) =

N∑
n= |m |

ψ
p
m,nPm,n (µ). (5)

In the IFS, equations 4 and 5 are computed as a series of matrix-
matrix multiplications parallelised over each m. In practice, the
exact operations differ from those presented so far due to several
complications. Firstly, the spectral amplitudes are complex and so
the above transforms must be performed separately for the real
and imaginary components. Secondly, the cost of both the direct
and inverse transforms can be reduced by a factor of two by taking
advantage of the symmetry properties of the associated Legendre
polynomials. Finally, because the meteorological variables are all
real, only the modes with a positive zonal wavenumber m must
be stored (the negativem spectral coefficients must be the exact
complex conjugate of the corresponding positivem coefficients).

3 REDUCING PRECISION IN THE LEGENDRE
TRANSFORMS

When reducing the precision of a floating-point operation, two
effects can be anticipated. The first is an increase in the rounding
error that occurs. According to the “standard model” of floating-
point arithmetic [8], the result of the floating-point equivalent of
an arithmetical operation is the exact result with a multiplicative
error, (1+δ ), where δ is the rounding error bounded by |δ | ≤ ϵ and
ϵ is the machine epsilon. For example, the floating point equivalent
of x + y is

fl(x + y) = (x + y)(1 + δ ). (6)
The machine epsilon is defined by ϵ = 2−p−1 where p is the number
of significand (also known as the mantissa) bits. For each signifi-
cand bit that is removed, ϵ doubles and therefore larger rounding
errors become possible. The overall error of a particular model, con-
sisting of many millions of floating-point operations, will therefore
also increase. However, this error increase must always be consid-
ered with comparison to the margin of uncertainty provided by
the inherent uncertainties in the modelling formulation. Increased

rounding-errors from a precision-reduction will not necessarily be
noticeable, in the presence of model error.

The second effect comes from a reduction in the exponent width.
The exponent determines the range of representable numbers. For
example, the maximum double-precision number (11 exponent bits)
is around 10308 whereas the maximum half-precision number (5
exponent bits) is only 65504. If a number larger than this maximum
is stored in a floating-point variable, or results from a floating-point
operation, an overflow occurs and the number is rounded to infinity
which typically results in the model crashing. Similarly, any num-
bers smaller than the smallest possible floating-point number will
underflow and be rounded to zero. This will only crash the model if
the resulting number is used as a divisor leading to a divide-by-zero
error. Here, we focus only on the matrix-matrix multiplications
used for the Legendre transforms, so we prioritise the avoidance of
overflow errors instead of underflow errors, because no division
operations are used.

Naively using half-precision arithmetic to perform the Legendre
transforms will lead almost instantly to a crash of the model. This
is because numbers larger than the maximum half-precision value
occur, are rounded to infinity and then infect every calculation that
they occur in eventually causing a floating-point exception. How-
ever, a simple procedure can secure the Legendre transforms from
overflow errors. Given that equations 4 and 5 are linear operations,
by multiplying the field-to-be-transformed by a scalar and dividing
the transformed-field by the same scalar we recover the correct
result had we applied no rescaling. This technique was used by
Micikevicius et al. [11] in order to allow mixed-precision training
of a neural net. We propose to use this simple procedure to enable
half-precision computations for the Legendre transforms.

For both the forward and inverse transforms, we first compute
the maximum of the incoming field. We then multiply the entire
field by a rescaling factor such that this maximum is equal to a
prescribed value a. We then apply the transform using either a half-
precision matrix-matrix multiplication (half_trans) or the Tensor
Core (tensor_core) and divide the result by the rescaling factor.

We performed tuning experiments to determine the optimal
value for a by computing the day 5 root-mean-square error of 500
hPa geopotential height with respect to a fully double-precision
simulation for different values of a between 0.1 and 1000 (values
outside this range gave significantly larger errors or crashed en-
tirely, likely due to overflows and underflows). We found no change
in the error within this range. This is not surprising given that
floating-point numbers have a constant relative precision — within
the range of representable numbers there is no “optimal rescaling”
that will minimise the error. We decided to use a = 100 as this
happened to give a slightly lower error than other values, but we
do not consider this choice significant. Note that it is technically
possible (but unlikely) for overflows to occur when a = 100 for
high resolutions. This is because the longest sum for a resolution
of spectral truncation N is N + 1 elements long, and therefore if all
elements of this sum happen to be close to a then the result of the
sum will be larger than 65504.

To test the use of mixed-precision with IFS without porting
the model code to GPUs we use a software emulator to emulate
half-precision arithmetic, specifically the Reduced Precision Em-
ulator [3]. As a consequence we are not able to directly measure
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Figure 1:A visualisation of the two core experimental setups:
(a) half_trans and (b) tensor_core.

the speed-up that would be obtained from running the code on the
actual target hardware. Nevertheless, it is important to assess the
impact of the proposed hardware changes on the forecast skill of
the model, and software emulation allows us to do this on standard
hardware with minimal modifications to the code.

We investigate the difference between thematrix-matrixmultipli-
cation in two reduced-precision setups, half_trans and tensor_core,
that are illustrated in Figure 1. For both setups, the double-precision
inputs A and B are first rescaled and then placed into half-precision
containers. Then, the matrix-matrix multiplication is performed
at half-precision for half_trans (HGEMM) and single-precision for
tensor_core (SGEMM). This is a realistic emulation of the Tensor
Core on an NVIDIA V100 GPU that takes half-precision inputs
but produces a single-precision output. We verified this emulation
procedure against a real Tensor Core on an NVIDIA V100 GPU. We
computed a matrix-matrix multiplication both using the emulator
and using an actual Tensor Core and found that the difference be-
tween the two matrices was consistent with standard matrix-matrix
multiplication error bounds [8]. Finally, for both setups, the out-
put is then “unrescaled” and placed into a double-precision output
container.

When we applied the aforementioned scaling technique to the
Legendre transforms, we encountered a further problem arising
from the spectral modes with a zonal wavenumber (m) of zero. The
spectral coefficientψp0,0 is by definition the global mean of the field
p and so, for certain fields such as temperature, this has a much
greater amplitude than the remaining coefficients. Therefore, when
the F0(µ) term is formed from the sum in Equation 5 (the inverse Le-
gendre transform) rounding errors can lead to a loss of precision and
spurious zonally-symmetric patterns in the transformed fields. A
similar effect is observed for the direct Legendre transform, though
the exact reason why is not clear to us. The direct transform consists
of a sum over latitude and it is not obvious that one of the terms in
this sum should dominate the others in magnitude in a similar way
to the inverse transform. In any case, we can eliminate this problem
simply by using double-precision arithmetic for them = 0 direct
and inverse transforms. The remaining zonal wavenumbers are
still computed using half-precision and so this fix has a negligible

impact on the total cost of the transforms. Additionally, the model
initialisation was still performed with double-precision arithmetic,
even if the Legendre transforms used half-precision arithmetic. Sev-
eral transforms are performed before the main integration begins
which we reason should be performed with a high-precision.

4 FORECAST TESTS
At ECMWF, two different kinds of weather forecasts are generated.
For “deterministic forecasts” a single model simulation is started at
the highest resolution possible to generate a forecast that provides
the most likely state of the weather in the future. However, it is
often very important to also provide probability distributions for
predictions. Therefore, a “probabilistic forecast” is performed that
uses an ensemble of fifty simulations that are slightly perturbed
so that the variability of the different predictions can be used as a
measure of forecast uncertainty (a large spread between ensemble
members indicates that a prediction is not reliable). In the following,
we will study both kinds of predictions.

A reduction of numerical precision will inevitably reduce fore-
cast quality. However, weather and climate forecasts are perturbed
by several sources of errors (imperfect initial conditions, errors in
the formulation of the model, limited resolution that is insufficient
to represent all important processes of the Earth System etc.). It is
therefore possible that errors due to reducing precision will be in-
significant in comparison to other errors. To test whether rounding
errors are significant in our mixed-precision simulations, we com-
pare the results with simulations that use a stochastic parametri-
sation scheme. These schemes are designed to generate spread
between different simulations of an ensemble forecast by adding a
stochastic forcing into the model configuration. Since this spread
was adjusted to fit the average error of weather forecasts, the differ-
ence between model simulations with and without the stochastic
parametrisation scheme enabled can serve as an estimate of the
magnitude of model error. For our tests we used the stochastically
perturbed parametrisation tendencies (SPPT) scheme which applies
a multiplicative stochastic forcing to the total tendencies provided
by the physics parametrisations [14]. As long as the impact from
reducing precision is smaller than the impact of SPPT, reducing
precision is likely to not noticeably affect the probabilistic skill of
the model.

4.1 Deterministic forecast skill
As a first test we performed a double-precision 10 day simulation
and compared it with several setups. For the experiments in this
section we used the open-source variant of the IFS, OpenIFS, at
cycle 38r1. This cycle was introduced in 2012 and used a linear grid.
For each setup we computed the global mean root-mean-square
error of the 500 hPa geopotential height field (Z500 RMSE) of the
setup with respect to the double-precision control. We used the
exact same initial conditions for all forecasts in this section so
that only model error with respect to the double-precision control
would cause two forecasts to diverge. For the first setup we used
half-precision Legendre transforms (half_trans) and for the second
setup we used the emulated Tensor Core (tensor_core), as discussed
in Section 3. Our third setup consisted of a model with entirely
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Figure 2: The root-mean-square error of the 500 hPa geopotential height field for various experimental setups with respect to
a double-precision control experiment at (a) TL159 resolution and (b) TL255 resolution. The grey shaded area shows the error
from a double-precision simulation with SPPT.

single-precision Legendre transforms (single_trans). Our final setup
consisted of an entirely double-precision model with SPPT.

The results of this experiment for resolutions of TL159 and TL255
are shown in Figure 2. In this case we performed simulations for
four different start dates and averaged the results. The lowest error
occurred for single_trans, followed by tensor_core, half_trans and
finally SPPT. The latter is displayed as a grey shaded area. For both
resolutions, the error introduced by using half-precision or Tensor
Core Legendre transforms was lower than that introduced by using
stochastic physics.

We also performed experiments with the same setups but at
TL511 resolution and for only one date. However, we found that
the error when using half-precision Legendre transforms was sub-
stantially higher even than the SPPT setup. To remedy this, it was
necessary to keep the computation of several more zonal wavenum-
bers at double-precision, instead of just the first as in the previous
half-precision experiments. Figure 3 shows the effect of computing
the first c wavenumbers using double-precision, with c ranging
from 1 (as in the previous experiments) up to 20. Here we only
simulated one hour. Evidently, c is a parameter that can be tuned
to reduce the error to any desired level. However, the larger the
value of c , the fewer operations are performed at half-precision and
therefore the lower the cost saving. We chose to keep c = 10 more
zonal wavenumbers at double-precision as the error for this setup
is of the same order of magnitude as the error of SPPT (at least over
the first hour, over which the impact of SPPT is known to be very
small). When c = 10, only around 5% of the total number of floating-
point operations are computed at double-precision. Keeping low
wavenumbers, which represent large-scale atmospheric motions, at
a high-precision is similar to the scale-selective approach advocated
by Chantry et al. [2], though they did not consider the Legendre
transform.
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Figure 3: The root-mean-square error of the 500 hPa geopo-
tential height field for different choices of the cutoff param-
eter c when using half-precision Legendre transforms and
for a double-precision simulation with SPPT enabled.

Figure 4 shows results from the 10 day TL511 simulations. The
effect of performing the first 10 zonal wavenumber computations at
double-precision (half_trans_10) instead of just the first (half_trans)
is immediately noticeable. Note that, as of July 2018, the resolu-
tion of the operational ensemble prediction system of ECMWF is
TCo639 (our version of OpenIFS is not strictly comparable with the
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Figure 4: The root-mean-square error of the 500 hPa geopo-
tential height field for various experimental setups with re-
spect to a double-precision control experiment at TL511 res-
olution.

operational IFS as the latter uses a cubic grid whereas ours uses a
linear grid). In the next section, we will evaluate the performance
of the half_trans_10 and tensor_core setups in an operational-like
context.

4.2 Probabilistic forecast skill
We performed a series of ensemble forecasts over 2017 with 12 start
dates each separated by 30 days, beginning on January 1st. For the
experiments in this section we used the IFS at cycle 43r3 and used a
cubic octahedral grid. This cycle was used operationally at ECMWF
from July 2017 until June 2018. We used 11 ensemble members for
each forecast: 1 control member and 10 members with perturbed
initial conditions and SPPT enabled. We performed the forecasts at
TCo399 resolution which is roughly 50 km resolution at the Equator.
To verify these forecasts, we used the so-called ECMWF “analysis”
as a reference. The analysis is produced by combining observations
with the IFS through data assimilation and therefore represents the
best guess of the actual atmospheric conditions that occurred at the
verification time. Unlike the observations, the analysis is defined
on the same grid as the forecast and is therefore a convenient ref-
erence for computing error scores. We verified the forecasts using
the continuous ranked probability score (CRPS) corrected for the
limited ensemble size [10] and averaged this score over all forecasts.
CRPS is a standard diagnostic to measure the quality of ensemble
predictions. A low CRPS is desirable as it indicates an ensemble
with a low spread and accurate mean. We considered three setups:
double-precision (double), half-precision Legendre transforms for
wavenumbers 10 up to 399 (half_trans_10) and Tensor Core Le-
gendre transforms (tensor_core).

The results are illustrated in Figure 5 for three latitude bands,
the northern and southern extratropics and the tropics, and for the
500 hPa geopotential height and temperature fields. For all latitude
bands and both fields, the half-precision setup was competitive with
the double-precision setup. The Tensor Core setup, on the other
hand, demonstrated a slight average increase in the forecast error.
This possibly indicates that the first 10 zonal wavenumbers are also
important for tensor_core and should therefore be promoted to
double-precision, as they are for half_trans_10.

As shown in Figures 2 and 4, reducing precision in the Legendre
transforms has a clear impact on the model. However, this differ-
ence is hidden when considering the skill of probabilistic forecasts
that are perturbed by both errors in the initial condition and model
formulation. This demonstrates that, whenever assessing a model
change, it is not sufficient to consider only deterministic forecast
verification metrics in a perfect model context. This is also con-
sistent with the findings of Hatfield et al. [6], who considered a
precision reduction within a data assimilation model.

4.3 Operational resolution deterministic
forecast skill

We also performed high-resolution deterministic forecasts for the
same three setups as in Figure 5. Again, we used the IFS at cycle
43r3. We used 6 dates for the double and tensor_core setups but
only 3 dates for the half_trans setup, due to computational budget
limitations. We ran these experiments at the same resolution as the
operational deterministic forecast at ECMWF at the time of writing,
TCo1279. This is approximately 9 km resolution at the Equator. As
in Section 4.2 we verified with respect to analysis and therefore,
unlike in Section 4.1, these forecasts did include initial condition
and model error. The deterministic forecast tests in this section
are therefore a more realistic assessment of our proposed model
change. For the half_trans setup we decided to secure the first 25
zonal wavenumbers with double-precision arithmetic, instead of
10 for the TL511 and TCo399 experiments. We reasoned that the
optimal ratio of wavenumbers computed at double-precision to
those computed at half-precision (2:100 for TL511) is not likely
to change as resolution is increased. Accordingly, we computed
c = 25 out of 1280 wavenumbers using double-precision with half-
precision for the remainder so this setup is labelled half_trans_25.
However, we did not have sufficient computational resources to
tune this value so we do not claim that it is optimal.

Figure 6 shows the results from these forecasts for the 500 hPa
geopotential height and temperature fields, averaged across all
available dates for each setup. There were no problems with numer-
ical stability for the tensor_core and half_trans_25 setups and the
forecast skill is competitive with double-precision. In the extratrop-
ics there doesn’t appear to be a significant difference between the
three setups (the differences for half_trans_25 are probably due to
using fewer start dates). However, the error for half_trans_25 and
tensor_core seems to be slightly increased for Z500 in the tropics.
This indicates that we should perform tests with tensor_core that
also compute the leading zonal wavenumbers in double-precision.

As a final test we performed a forecast of Hurricane Irma which
caused significant damage in the Caribbean and the southeastern
United States in September 2017. For computational budget reasons
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Figure 5: The continuous ranked probability score (CRPS) of the 500 hPa geopotential height and temperature fields for various
experimental setups verified with respect to analysis at TCo399 resolution. The CRPSwas averaged over 12 forecasts and there
were 11 ensemble members for each forecast.

we only compared the double and tensor_core setups.We performed
this forecast at TCo1279 resolution beginning on the 5th September
2017 at 12:00 pm. Note that the hurricane is already present in
the initial conditions, having begun forming 5 days earlier. We
simply wish to assess the ability of the tensor_core setup to match

the trajectory forecasted by the state-of-the-art double-precision
model.

The results from this experiment are given in Figure 7. The mean
sea-level pressure at day 5 (12:00 pm on September 10th) is shown
along with the simulated hurricane tracks for the analysis and the
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Figure 6: The root-mean-square error of the 500 hPa geopotential height field for various experimental setups verified with
respect to analysis at TCo1279 resolution. Error metrics are averaged across multiple dates. Six dates were used for double and
tensor_core whereas three dates were used for half_trans_25.

double and tensor_core setups. The tensor_core setup gives almost
exactly the same forecast as the double setup. It is reassuring that
there is minimal difference in the forecast skill of the double and
tensor_core setups for specific extreme weather events as well as
for large-scale spatially averaged verification metrics.

5 COMPUTATIONAL COST ESTIMATES
The computational cost savings of the half_trans and tensor_core
setups with respect to the double-precision reference are difficult
to estimate. The exact cost saving will depend on how the target
architecture is configured, including the CPU-GPU connection and
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Figure 7: Forecasts of Hurricane Irma compared with analysis at TCo1279 resolution. Panes (a) and (b) show themean sea-level
pressure forecasts produced with the double and tensor_core setups, respectively, at 5 days lead time and pane (c) shows the
corresponding analysis (actual conditions). Pane (d) compares the hurricane tracks up to day 7.

the node-node interconnect. However, we can provide a simple
cost saving estimate from a computational complexity argument,
which should apply to a single-node system. We present results
for the symmetric part of the inverse Legendre transform, since
the complexity is almost identical for the direct and antisymmetric
parts.

We first consider the half_trans setup. By computing the total
number of floating-point operations (FLOPs) performed at half- and
double-precision, weighting the half-precision FLOPs appropriately,
then dividing by the total number of FLOPs, we can obtain the
cost of half_trans with respect to the fully double-precision setup.
The number of FLOPs performed for a particular wavenumberm,
assuming the standard “schoolbook” matrix-matrix multiplication
algorithm, is given to a good approximation by

NFLOPs(m) = Nfields(m)×Ntotal wavenumbers(m)×Nlatitudes(m), (7)

where Nfields(m), Ntotal wavenumbers(m) and Nlatitudes(m) are the
number of fields, total wavenumbers and latitudes that the trans-
form is evaluated over for thism, respectively. The number of fields
is the same for all m and so can be factored out, apart from the
factor of 2 that it introduces for allm , 0 wavenumbers (which
have real and imaginary components, unlike them = 0 wavenum-
ber). The number of total wavenumbers decreases linearly as we
increasem according to the triangular truncation paradigm. Finally,
the number of latitudes also decreases as we increase m, as the
number of longitudes decreases as we move from equator to pole
for the cubic octahedral grid. The highm waves therefore cannot
be represented at these high latitudes.

To compute the cost of the half_trans setup with respect to the
double-precision reference, for a particular cutoff wavenumber c ,
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Figure 8: The cost of the half_trans setup with respect
to the double-precision reference, as a function of the
cutoff wavenumber c. Transforms use double-precision
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precision floating-point operations (FLOPs) are assumed to
be four times cheaper than double-precision FLOPs.

we use the following formula:

Chalf_trans(c) =

∑c
m=0 NFLOPs(m) +

∑N
m=c ShalfNFLOPs(m)∑N

m=0 NFLOPs(m)
, (8)

where Shalf is the cost of a half-precision FLOP relative to a double-
precision FLOP. We show this result as a function of the cutoff
wavenumber c in Figure 8 for simulations with TCo1279 resolution.
In this result, we assumed that a half-precision FLOP is four times
cheaper than a double-precision FLOP, i.e. Shalf = 0.25. If the cutoff
wavenumber is N then all wavenumbers are computed at double-
precision and there is no cost saving. If the cutoff wavenumber is 0
then all wavenumbers are computed at half-precision and the cost
is 25% that of the double-precision reference. However, even when
the cutoff wavenumber is 25 so that the first 25 wavenumbers are
computed with double-precision (as in the previous experiments)
the cost only increases to 29%.

A similar argument can be applied to the tensor_core setup,
although in this case the cutoff wavenumber is just 1. Taking the
quoted speed-up factor of 16 times from NVIDIA, the tensor_core
setup should cost around 7% that of the double-precision setup.
We stress again that this result will likely change for a multi-node
system, and that there may be issues with load balancing if the
compution of different zonal wavenumbers is spread across multiple
nodes.

6 CONCLUSION
Here we have assessed the impact of reduced-precision floating-
point arithmetic within an expensive portion of an atmospheric
model by emulating hardware designed for deep-learning. Specifi-
cally, we considered the use of half-precision matrix-matrix multi-
plication and the NVIDIA Tensor Core for accelerating the Legendre
transforms of the operational global weather forecasting model of
ECMWF. Firstly, we have found that half-precision arithmetic can
be used without causing model instabilities or crashes by using a
simple rescaling technique, as long as the most sensitive 5% of the
calculations are kept at double-precision. Secondly we have shown
that the use of half-precision or the Tensor Core does degrade the

forecast skill. However, the degradation is not significant when
compared with other error sources that are present in real weather
forecasts. We have shown that, in a probabilistic forecasting con-
text with initial condition and model error, using half-precision
or the Tensor Core gives a forecast competitive or equivalent to
using double-precision. We have also demonstrated this result in a
high-resolution, deterministic forecasting context. Finally, we have
presented a simple cost estimate for the half-precision and Tensor
Core Legendre transforms, though the exact numbers depend on
the as-yet-unknown target architecture.

By 2025, ECMWF plan to increase the horizontal resolution of
their ensemble forecasting system from TCo639 (roughly 18 km) to
TCo1999 (roughly 5 km). To what extent can the positive results
shown here be extended to higher resolutions? As horizontal res-
olution increases, the summing dimension of the matrix-matrix
multiplication in both the direct and inverse Legendre transforms
also increases. Therefore, the accumulated rounding error in this
operation should grow also, more so when using half-precision
than when using single-precision. However, it is extremely difficult
to say a priori how this will impact a forecast product like the 10
day probabilistic forecast skill of 500 hPa geopotential height, given
how errors feed back and interact in a nonlinear fashion within
the model. Nevertheless, we are confident that a scale-selective
approach, whereby larger scales (in our case represented by lower
zonal wavenumbers) are kept at a higher precision than smaller
scales, will enable the use of low-precision Legendre transforms at
least up to TCo1999 and potentially beyond.
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