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ABSTRACT
When the molecules of a gaseous system are far apart, say in
microscale gas flows where the surface to volume ratio is high
and hence the surface forces dominant, the molecule-surface inter-
actions lead to the formation of a local thermodynamically non-
equilibrium region extending few mean free paths from the surface.
The dynamics of such systems is accurately described by Boltz-
mann equation. However, the multi-dimensional nature of Boltz-
mann equation presents a huge computational challenge. With
the recent mathematical developments and the advent of petas-
cale, the dynamics of full Boltzmann equation is now tractable. We
present an implementation of the recently introduced multi-species
discontinuous Galerkin fast spectral (DGFS) method for solving
full Boltzmann on streaming multi-processors. The present imple-
mentation solves the inhomogeneous Boltzmann equation in span
of few minutes, making it at least two order-of-magnitude faster
than the present state-of-art stochastic method—direct simulation
Monte Carlo—widely used for solving Boltzmann equation. Vari-
ous performance metrics, such as weak/strong scaling have been
presented. A parallel efficiency of 0.96–0.99 is demonstrated on 36
Nvidia Tesla-P100 GPUs.
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• Applied computing → Mathematics and statistics; • Com-
putingmethodologies→Massively parallel and high-performance
simulations.
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1 INTRODUCTION
From the fundamental mass/momentum conservation principles, it
can be inferred that, in the presence of external forces, say, pressure
and temperature gradients, the heavier species moves slower and
the lighter species moves faster giving rise to a phenomena termed
as diffusion, and effects thereof. Diffusion processes are critical in
many applications, for instance, the measurement of the neutrino
mass using a windowless gaseous tritium source in the ongoing
KATRIN experiment [3]. The dynamics of such systems (and others)
are governed by the Boltzmann equation—an integro-differential
equation describing the evolution of the distribution function in
six-dimensional phase space—which models the dilute gas behav-
ior at the molecular level to accurately describe a wide range of
non-continuum flow phenomena, for instance, shocks, expansions
into vacuum [11] as well as velocity and thermal slip at gas-solid
interfaces [12, 13]. Most rarefied flows of technological interest in-
volve gas mixtures with species diffusion playing a decisive role in
turbulent, chemically reacting flows, and evaporation/condensation
processes [15].

The approaches for numerical solution of the Boltzmann equa-
tion date back to as early as 1940s [5] using, for example, the now
widely used direct simulation Monte Carlo (DSMC) method [2]. The
DSMC method, based on the kinetic theory of dilute gases, models
the binary interactions between particles stochastically. However, it
is this stochastic nature, that makes the method unsuitable for flows
involving species in trace concentration, for instance, to analyze
the spectrum of beta electrons emitted by tritium source which
can be substantially different in the presence of the impurities in
KATRIN experiment [3, 14].

The main difficulty of numerically solving the full Boltzmann
equation lies in its complicated collision term. Recently, a fast
Fourier spectral method for the multi-species Boltzmann collision
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operator was introduced in [7]. The complexity for a single eval-
uation of the collision operator is reduced from O(N 6) (direct cal-
culation) toO(MNρN

3 logN ) (based on a low-rank decomposition
strategy), where N is the number of discretization points in each
velocity dimension, Nρ ∼ O(N ) is the number of discretization
points in the radial direction needed for low-rank decomposition,
andM ≪ N 2 is the number of discretization points on the sphere.
Based on [6], a discontinuous Galerkin fast spectral (DGFS) method
was also proposed in [7] for solving the full multi-species Boltz-
mann equation. DGFS can produce high order spatially and tem-
porally accurate solutions for low-speed and unsteady flows in
micro-systems, and is amenable to excellent nearly-linear scaling
characteristics on massively parallel architectures. This paper fo-
cuses on implementation aspects of multi-species DGFS with an
emphasis on establishing the algorithmic behavior of such numeri-
cal schemes. More specifically, here, we are concerned about the
scaling characteristics of DGFS on multi-GPU/multi-CPU systems.

In the section that follows, we describe the multi-species Boltz-
mann in brief, followed by a description of the collision operator
algorithm. Various performance metrics such as weak/strong scal-
ing, and micro benchmarks involving, static adaptivity of cell-size
and polynomial order approximation for rarefied gas-flows have
been discussed in section 3. Concluding remarks are given in sec-
tion 4.

2 THE MULTI-SPECIES BOLTZMANN
EQUATION

The non-dimensional Boltzmann equation for multi-species, mono-
atomic gas without external forces can be written as (cf. [7])

∂ f (p)

∂t
+ c · ∇x̂ f (p) =

∑
q

1
Knpq

Q(pq), p = 1, 2, . . . ,n, (1)

where n denotes number of species in the mixture – each of them
represented by a number distribution function f (p)(t , x, c) of time
t , position x, and particle velocity c. The collision operator Q(pq)
takes into account interactions between species p and q, which acts
only in the velocity space:

Q(pq)(f (p), f (q))(c) =
∫
R3

∫
S2

Bpq (|c − c∗ |,σ ·�(c − c∗))[
f (p)(c′)f (q)(c′∗) − f (p)(c)f (q)(c∗)

]
dσ dc∗,

(2)

where (c, c∗) and (c′, c′∗) denote the pre and post collision velocity
pairs, which are related through momentum and energy conserva-
tion as

c′ =
c + c∗
2
+
(1 −mq/mp )
2(1 +mq/mp )

(c − c∗) +
1

(mp/mq + 1)
|c − c∗ |σ ,

c′∗ =
c + c∗
2
+
(1 −mq/mp )
2(1 +mq/mp )

(c − c∗) −
1

(mq/mp + 1)
|c − c∗ |σ ,

(3)

wheremp ,mq denote the mass of particles of species p and q re-
spectively. Here, the vector σ varies over the unit sphere S2. The
quantity Bpq (≥ 0) is the collision kernel depending only on |c−c∗ |
and the scattering angle χ (angle between c − c∗ and c′ − c′∗). In

the present work, we consider the variable soft sphere (VSS) [9]
scattering model. It is worth emphasizing that although the VSS
collision kernel is adopted in the present work for easy comparison
with DSMC solutions, the fast spectral method we use for the colli-
sion operator applies straightforwardly to general collision kernels
(see [4, 6, 7]).

For Variable Soft-Spheremodel [2] in particular, the non-dimensional
collision-kernel B(pq), and the Knudsen number Knpq are given as

B(pq) =
1√

1 +mp/mq

1(
mpmq
mp+mq

)(ωpq−0.5)
αpq

21+αpq Γ(2.5 − ωpq )π
|c − c∗ |2(1−ωpq ) (1 + cos χ )αpq−1, (4)

Knpq =
1√

1 +mp/mq π n0 d2(ref,pq) (Tref,pq/T0)
ωpq−0.5 H0

. (5)

Here Γ denotes the usual Gamma function, d(ref,pq), T(ref,pq), ωpq ,
and αpq are, respectively, the reference diameter, the reference tem-
perature, the viscosity index, and the scattering parameter. The di-
ameter d(ref,pq) and exponent αpq are determined so that the trans-
port (viscosity and diffusion) coefficients of VSS are consistent with
experimental data. Additionally H0, T0, n0, and m0, respectively,
denote the characteristic length, characteristic temperature, char-
acteristic number density, and characteristic massm0. Based upon
these, we define the characteristic velocity as u0 =

√
2kBT0/m0

where kB refers to Boltzmann constant; and characteristic time as
t0 = H0/u0. For convenience, we define a pre-factor β (pq) as

β (pq) =
1

Knpq
1√

1 +mp/mq

1(
mpmq
mp+mq

)(ωpq−0.5) αpq

21+αpq Γ(2.5 − ωpq )π

(6)

Henceforth, we will always refer to the non-dimensional Boltzmann
equation (1) in our presentation.

2.1 The collision operator
First, note that Q(pq)(f (p), f (q)) does not depend on spatial coordi-
nate x. Given distribution functions f (p) and f (q) of species p and q,
dependent only on the velocity coordinate c: discretized uniformly
using N 3 points, the method produces Q(pq)(f (p), f (q)) at the same
grid with O(MNρN

3 logN ) complexity, where Nρ ∼ O(N ) is the
number of Gauss-Legendre quadrature/discretization points in the
radial direction needed for low-rank decomposition , M ≪ N 2 is
the number of discretization points on the sphere. The steps (based
on [7]) for evaluating Q(pq) can be summarized as:

• Change the variable c∗ to u = c − c∗:

Q(pq)(f (p), f (q))(c) =
∫
R3

∫
S2

Bpq (|u|,σ · û)[
f (p)(c′)f (q)(c′∗) − f (p)(c)f (q)(c − u)

]
dσdu,

(7)
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where û is the unit vector along u, and
c′ = c −

mq

mp +mq
u +

mq

mp +mq
|u|σ ,

c′∗ = c −
mq

mp +mq
u −

mp

mp +mq
|u|σ .

(8)

• Determine the extent of velocity domain DL = [−L,L]3, and
periodically extend f , д to R3.
• Truncate the integral in u to a ball BR with

R =
4

1 +max(4mq/(mp +mq ), 2) +
√
1 +mq/mp

L (9)

• Approximate f (p), f (q) by truncated Fourier series

f (p)(c) =
N /2−1∑
k=−N /2

f̂
(p)
k ei

π
L k ·c, f (q)(c) =

N /2−1∑
k=−N /2

f̂
(q)
k ei

π
L k ·c.

(10)
Note here k is a three-dimensional index.
• Substitute f (p), f (q) into (7), and perform the standardGalerkin
projection

Q̂(pq)k : =
1
(2L)3

∫
DL

Q(pq)(f (p), f (q))(c)e−i
π
L k ·cdc

=

N /2−1∑
l,m=−N /2
l+m=k

[
G(pq)+(l ,m) −G(pq)−(m,m)

]
f̂
(p)
l f̂

(q)
m ,

(11)

where k = −N /2, . . . ,N /2− 1, and the kernel modesG(pq)+
and G(pq)− are given by

G(pq)+(l ,m) =
∫
BR

∫
S2

Bpq (|u|,σ · û)[
e
−i πL

mq
mp+mq

(l+m)·u+i πL |u |
(

mq
mp+mq

l− mp
mp+mq

m
)
·σ

]
dσ du

G(pq)−(m,m) =
∫
BR

∫
S2

Bpq (|u|,σ · û)
[
e−i

π
Lm ·u

]
dσ du. (12)

It is clear that the direct evaluation of Q̂(pq)k (for all k) would
requireO(N 6) complexity. But if we can find a low-rank, separated
expansion of G(pq)+(l ,m) as

G(pq)+(l ,m) ≈
Nρ∑
r=1

αr (l +m) βr (l) γr (m), (13)

then the gain term (positive part) of Q̂(pq)k can be rearranged as

Q̂(pq)+k =

Nρ∑
r=1

αr (k)
N /2−1∑

l, m=−N /2
l+m=k

(
βr (l) f̂ (p)l

) (
γr (m) f̂ (q)m

)
, (14)

which is a convolution of two functions βr (l) f̂ (p)l and γr (m) f̂ (q)m ,
hence can be computed via fast Fourier transform (FFT) inO(NρN

3 logN )
operations. Note that the loss term (negative part) of Q̂(pq)−k is read-
ily a convolution and can be computed via FFT in O(N 3 logN )
operations.

In order to find the approximation in (13), we simplify (12) as

G(pq)+(l ,m) =
∫
BR

∫
S2

Bpq (|u|,σ · û)

e
−i πL

mq
mp+mq

(l+m)·u+i πL |u |
(

mq
mp+mq

l− mp
mp+mq

m
)
·σ dσ du

=

∫ R

0

∫
Sd−1

F (pq)(l +m, ρ,σ )ei
π
L ρ

(
mq

mp+mq
l− mp

mp+mq
m

)
·σ dσ dρ,

(15)

where

F (pq)(l +m, ρ,σ ) = ρ2
∫
S2

Bpq (ρ,σ · û)e
−i πL ρ

mq
mp+mq

(l+m)·û dû,

(16)

while for the loss term,

G(pq)−(m) =
∫
BR

∫
S2

Bpq (|u|,σ · û) e−i
π
Lm ·u dσ du

=

∫ R

0

∫
S2

∫
S2

ρ2 Bpq (ρ,σ · û) e−i
π
L ρ m ·û dσ dû dρ .

(17)

For details on the error introduced from the Fourier-spectral
approximation, the reader is referred to [7]. This discussion has
been omitted in the present work for brevity.

2.2 The collision operator algorithm
The collision operator procedure described above is applicable for
general collision kernels for n-species mixture. However, for a con-
cise description of the algorithmic ideas from an implementation
viewpoint, we restrict our discussion to Variable Soft Sphere colli-
sion kernel (4). The ideas, however, can certainly be carried over to
other collision kernels.

In multi-species implementation, with the high amount of in-
volved computation, our motive is to avoid spurious computation
for every timestep.We first outline the procedure for pre-computing
variables that can be stored and reused during the course of the
simulation.

• First, we precompute (π/L ρ l · σ ). We use Gauss-Legendre-
Quadrature (GLQ) for integration. So ρ, the GLQ zeros, is
an array of size Nρ (since the integrand oscillates on the
scale of O(N), the total number of quadrature points needed
should be ∼ O(N )). Additionally, we use spherical design
[18] quadrature on sphere. So, σ , the spherical-quadrature
zeros, is an array of sizeM . l as previously defined is the 3-D
velocity-space index, and is therefore an array of size N 3.
Based upon these (π/L ρ l · σ ) is precomputed and stored
as a Nρ ×M × N 3 flattened row-major array axyz . This is
described in steps 1–9 of Algo. (1).
• Second, we compute F (l +m, ρ,σ ) as per Eq. (16). Note that
k = l +m is velocity-space index of size N 3. Since l +m, ρ,
and σ do not change with time, the term F (l +m, ρ,σ ) is pre-
computed and stored as a Nρ ×M ×N 3 flattened row-major
array b(pq)xyz for every collision pair (p,q). This is described
in step 13 of Algo. (1).
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• Third, we perform precomputation needed for loss-term
G(pq)−(m) as per Eq. (17). The output is stored as a N 3 flat-
tened row-major array c(pq)z for every collision pair (p,q).
This is described in step 14 of Algo. (1).

Algorithm 1: Pre-computation for Collision-Algorithm

Input: Number of points in each-direction of velocity mesh N ,
number of quadrature points for low-rank decomposition Nρ ,
number of points on half-sphereM , number of points on
pre-computation sphereM(pre), spherical quadrature weight
wσ , spherical quadrature-points σ (vector-field size:M),
pre-computation spherical quadrature weightw(pre)σ ,
pre-computation spherical quadrature-points σ (pre)

(vector-field size:M(pre)), Gauss quadrature-weightswρ (size:
Nρ ), Gauss quadrature-points ρ (size: Nρ ), first collision
parameter γpq = 2(ωpq − 1), second collision parameter
ηpq = (αpq − 1), size of velocity mesh L, normalized mass
mp ,mq of species-pair (p,q)

Output: a,b,c
Declare:
a (size:MNρN

3), b(pq) (size:MNρN
3), c(pq) (size: N 3)

l (vector-field size: N 3), v (size: N )
1: for x = 0 to N − 1 do
2: vx = x - (x ≥ N/2) × N
3: end for

// See octave function: [lx,ly,lz]=ndgrid(v)

4: l ← ndgrid(v)
// Subscript x,y,z on symbols denote array-index

5: for x = 1 to Nρ do
6: for y = 1 toM do
7: for z = 1 to N 3 do
8: axyz ← π /L × ρx × (lz · σy )

// ( · ) denotes vector dot-product

9: end for
10: for ŷ = 1 toM(pre) do
11: Bpq ←

(
1 + σy · σ (pre)ŷ

)ηpq
12: for z = 1 to N 3 do
13: b(pq)xyz ← b(pq)xyz + Bpq × w

(pre)
σ × ργpq+2x × exp(-1i ×

mq/(mp +mq ) × π /L × ρx × (lz · σ (pre)ŷ ))

14: c(pq)z ← c(pq)z + (wρ )x ×wσ ×
Bpq × w

(pre)
σ × ργpq+2x × exp(-1i × π /L × ρx ×

(lz · σ (pre)ŷ ))
// The variables b

(pq)
xyz, c

(pq)
z needs to be computed for

every (p, q) collision pair

15: end for
16: end for
17: end for
18: end for
19: return a,b(pq),c(pq)

Next we outline the procedure for computing Q(pq). Recall that
our motive is to compute (11)

• First, we compute the forward Fourier transform of F (p)i, l1
, and

F (q)i, l2
to obtain f̂

(p)
l and f̂

(q)
m respectively. This is described

in step 1 of Algo. (2).
• Second, we compute G(pq)+(l ,m) as per Eq. (15). Recall that
(π/L ρ l · σ ) has been already precomputed and stored as
axyz . Also recall that F (l +m, ρ,σ ) has been precomputed
and stored as b(pq)xyz . These can be reused to compute G(l ,m).
This is described in step 2–8 of Algo. (2). In our implemen-
tation, we explicitly unroll the nested loops using Mako [1]
templating engine, such that variables t1, t2 in steps 4 and
5 are computed in a single kernel call (thereby requiring a
space ofMNρN

3 each), and the FFT transforms in the step
6 are ratherMNρ batched FFT transforms, each of size N 3.
• Third, in order to perform convolution for the loss-term
G(pq)−(l ,m), we prepare the variable QG in step 7 of Algo. (2).
• Fourth, we perform convolutions to compute Q̂(pq)k as in
Eq. (11). Recall thatG(pq)−(m) has now been precomputed
and stored as QG, and can be reused here. An inverse Fourier
transform is then performed to obtain final Q(pq). This is
described in step 10 of Algo. (2).

Algorithm 2: Collision-Algorithm Pseudo-code

Input: Number of points in each-direction of velocity mesh N ,
Distribution-functions F (p)i, l1

and F (q)i, l2
(size: N 3), number of

points on half-sphereM , spherical quadrature weightwσ ,
Gauss quadrature-weightswρ (size: Nρ ), precomputed
variable a (size:MNρ × N 3), precomputed variable b(pq) (size:
MNρ × N 3), precomputed variable c(pq) (size: N 3), the kernel
prefactor β (pq), normalized massmp ,mq of species-pair (p,q)

Output: Q
Declare:

{t1,. . . ,t3} (each size: N 3); Q, QG (each size: N 3)
1: Compute forward FFT:

FTf← fft(F (p)i, l1
)

FTg← fft(F (q)i, l2
)

// Subscript x,y on symbols denote array-index

// Inner-most loop r ∈ {1, . . . , N 3 } has been ignored

2: for x = 1 to Nρ do
3: for y = 1 toM do
4: t1← exp(1i ×mq/(mp +mq ) × axy ) × FTf

// Note: These are array-operations over N 3 (z index)

// 1i denotes the complex number
√
−1

5: t2← exp(-1i ×mp/(mq +mp ) × axy ) × FTg
// ifft denotes inverse FFT

6: t3← fft(ifft(t1)× ifft(t2))
7: QG← QG + (wρ )x ×wσ × b(pq)xy × t3
8: end for
9: end for

// real returns real part of complex number

10: Q = β (pq) × real( ifft(QGs) - F (p)i, l1
× ifft(c(pq) × FTg) )

11: return Q
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3 MICRO-BENCHMARKS
Verification for standard rarefied gas flows can be found in [7]. In
the present work, we focus on the evaluation of the algorithmic
behavior.

3.1 Hardware Configuration
Serial and parallel implementations of multi-species DGFS solver
are run on 15-node Brown-GPU RCAC cluster at Purdue University.
Each node is equipped with two 12-core Intel Xeon Gold 6126 CPU,
and three Tesla-P100 GPU. The operating system used is 64-bit
CentOS 7.4.1708 (Core) with NVIDIA Tesla-P100 GPU accompany-
ing CUDA driver 8.0 and CUDA runtime 8.0. The GPU has 10752
CUDA cores, 16GB device memory, and compute capability of 6.0.
The solver has been written in Python/PyCUDA and is compiled
using OpenMPI 2.1.0, g++ 5.2.0, and nvcc 8.0.61 compiler with third
level optimization flag. All the simulations are done with double
precision floating point values.

3.2 Spatially homogeneous case: Krook-Wu
exact solution

For constant collision kernel, an exact solution to the spatially ho-
mogeneous multi-species Boltzmann equation can be constructed
(see [10]). We use this solution to verify the accuracy of the pro-
posed fast spectral method for approximating the collision operator.
Considering a binary mixture (n = 2; p = 1, 2), the equation simpli-
fies to

∂t f
(p) =

2∑
q=1

∫
R3

∫
S2

Bpq
[
f (p)(v ′)f (q)(v ′∗) − f (p)(v)f (q)(v∗)

]
dσ dv∗,

(18)

where Bpq = Bqp := λqp
4πn(q) and λpq is some positive constant. The

exact solution is given by

f (p)(t ,v) = n(p)
(
mp

2πK

)3/2
exp

(
−
mpv

2

2K

) (
(1 − 3Qp ) +

mp

K
Qpv

2
)
,

(19)

where

µ =
4m1m2
(m1 +m2)2

, τ1 = λ22 − λ21µ(3 − 2µ), τ2 = λ11 − λ12µ(3 − 2µ),

A =
1
6

(
λ11 + λ21µ

(
3 − 2µ τ2

τ1

) )
, B =

1
3

(
λ11τ1 + λ21µ(3 − 2µ)τ2

)
,

Q(t) = A

A exp(At) − B , Qp (t) = τpQ(t),

K(t) = n(1) + n(2)

(n(1) + n(2)) + 2(n(1)τ1 + n(2)τ2)Q(t)
. (20)

Furthermore, the following condition needs to be satisfied

(τ1 − τ2)
(
2µ2

(
λ21
τ1
− λ12

τ2

)
− 1

)
= 0. (21)

For simplicity, we choose n(1) = n(2) = 1, λ11 = λ22 = 1, λ12 =
λ21 = 1/2 but vary the mass ratiom1/m2 in the following tests.

It is also helpful to take the derivative of eqn. (19), which yields

∂t f
(p) = f (p)

(
− 3
2K

K ′ +
mp v2

2K2 K ′
)

+ n(p)
(
mp

2πK

)3/2
exp

(
−
mpv

2

2K

) (
− 3Q ′p +

mp

K
Q ′pv

2 −
mp

K2 K
′Qpv

2
)

:=
2∑

q=1
Q(pq)(f p , f q ), (22)

where

Q ′(t) = − A3 exp(At)
(A exp(At) − B)2

, Q ′p (t) = τpQ ′(t),

K ′(t) = − 2(n(1) + n(2))(n(1)τ1 + n(2)τ2)
[(n(1) + n(2)) + 2(n(1)τ1 + n(2)τ2)Q(t)]2

Q ′(t). (23)

This allows us to check the accuracy of the collision solver without
introducing time discretization error.

Table 1 shows the L∞ norm between the numerical and analytical
∂ f (p)/∂t . For different mass ratios, we have considered the cases
withN = {16, 24, 32, 40, 48, 56} points in each velocity dimension;
andM = 6, 12 spherical design quadrature points on the full sphere.
A good agreement between analytical and numerical solutions is
evident from the table. At a fixed N , with increase in mass ratio,
the error norm increases. In particular, increase in M does not
considerably affect the solution due to the isotropic nature of the
distribution function. Note that, in the fast spectral decomposition,
since the integral oscillates roughly on O(N ), the total number of
GaussâĂŞLegendre quadrature points Nρ in the radial direction
should be on order of O(N ). As per [4], a more precise estimate is
≈ 0.8N . However, there is no good rule to select optimal Nρ . We
observe that the error is relatively unaffected upon reducing Nρ
from N to N /2. However, we note that Nρ = N is a safer choice.

From a computational viewpoint, the simulation time is indepen-
dent of the mass ratio. On increasing the number of discretization
points on the sphere M , the computational cost approximately
doubles–however, we do observe the effect of loop unrolling for
smaller N . Likewise, the computational cost approximately doubles
on increasing the number of quadrature points Nρ . This establishes
that the algorithm is linear in bothM and Nρ .

3.3 Spatially in-homogeneous case: Couette
flow

The aforementioned methodology allows us to compute the colli-
sion operator efficiently. To solve the fully spatial in-homogeneous
equation (1), we also need an accurate and efficient spatial and time
discretization. Here, we adopt the the Runge-Kutta discontinuous
Galerkin (RKDG) approach–widely used for hyperbolic systems–as
adapted in [6, 7] for Boltzmann equation. The details of the dis-
cretization can be found in [6, 7]. We mention that evaluation of
collision operator consumes > 98% of computation time, and hence,
in the present work, we focus on the collision operator behavior.
More details on spatial-temporal RKDG discretization on GPU can
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N Nρ

mq/mp = 1 mq/mp = 4
M = 6 M = 12 M = 6 M = 12

time (s) E(1) E(2) time (s) E(1) E(2) time (s) E(1) E(2) time (s) E(1) E(2)

16 4 0.00039 3.27e-03 3.27e-03 0.00050 1.77e-03 1.77e-03 0.00039 4.80e-03 1.22e-03 0.00050 3.63e-03 2.47e-04
8 0.00056 3.73e-03 3.73e-03 0.00085 2.00e-03 2.00e-03 0.00050 4.96e-03 1.33e-03 0.00093 3.62e-03 2.42e-04
16 0.00084 3.73e-03 3.73e-03 0.00147 2.00e-03 2.00e-03 0.00084 4.96e-03 1.33e-03 0.00148 3.62e-03 2.42e-04

24 6 0.00068 1.37e-04 1.37e-04 0.00114 1.01e-04 1.01e-04 0.00068 1.81e-03 2.06e-02 0.00114 1.79e-03 5.15e-03
12 0.00117 1.49e-04 1.49e-04 0.00209 9.64e-05 9.64e-05 0.00114 2.12e-03 1.87e-02 0.00210 2.13e-03 6.01e-03
24 0.00210 1.49e-04 1.49e-04 0.00401 9.64e-05 9.64e-05 0.00210 2.12e-03 1.87e-02 0.00401 2.13e-03 6.01e-03

32 8 0.00159 3.04e-05 3.04e-05 0.00287 2.51e-05 2.51e-05 0.00157 1.54e-04 1.62e-02 0.00286 1.52e-04 1.13e-02
16 0.00286 3.17e-05 3.17e-05 0.00541 2.45e-05 2.45e-05 0.00286 5.91e-05 1.69e-02 0.00542 5.87e-05 1.03e-02
32 0.00543 3.17e-05 3.17e-05 0.01057 2.45e-05 2.45e-05 0.00542 5.91e-05 1.69e-02 0.01059 5.87e-05 1.03e-02

40 10 0.00328 1.38e-06 1.38e-06 0.00626 1.26e-06 1.26e-06 0.00326 5.53e-05 4.31e-03 0.00626 5.56e-05 4.35e-03
20 0.00625 9.35e-07 9.35e-07 0.01226 8.10e-07 8.10e-07 0.00626 5.01e-05 4.29e-03 0.01222 4.97e-05 4.54e-03
40 0.01227 9.35e-07 9.35e-07 0.02446 8.10e-07 8.10e-07 0.01219 5.01e-05 4.29e-03 0.02431 4.97e-05 4.54e-03

48 12 0.00656 1.04e-07 1.04e-07 0.01289 9.99e-08 9.99e-08 0.00658 8.46e-06 5.76e-04 0.01291 8.45e-06 5.93e-04
24 0.01290 1.05e-07 1.05e-07 0.02556 9.95e-08 9.95e-08 0.01291 7.17e-06 5.80e-04 0.02561 7.51e-06 6.09e-04
48 0.02545 1.05e-07 1.05e-07 0.05169 9.95e-08 9.95e-08 0.02550 7.17e-06 5.80e-04 0.05215 7.51e-06 6.09e-04

56 14 0.01204 9.80e-08 9.80e-08 0.02350 9.79e-08 9.79e-08 0.01202 5.22e-06 2.32e-04 0.02352 4.08e-06 1.88e-04
28 0.02354 9.80e-08 9.80e-08 0.04667 9.79e-08 9.79e-08 0.02353 5.09e-06 2.24e-04 0.04662 3.97e-06 1.87e-04
56 0.04664 9.80e-08 9.80e-08 0.09303 9.79e-08 9.79e-08 0.04674 5.09e-06 2.24e-04 0.09313 3.97e-06 1.87e-04

Table 1: Efficiency and accuracy L∞ error E(p) = ∥∂t f (p)analytical − ∂t f
(p)
numer ical ∥, p = {1, 2} for spatially homogeneous Krook-

Wu solution at t = 5.5 for different mass-ratios. N , Nρ , and M respectively, denote the number of discretization points in the
velocity space, number of Gauss quadrature points in the radial direction, and number of discretization points on full sphere.
A fixed velocity domain [−12, 12]3 has been used for all the mass-ratios.

be found in [8, 17]. We restrict our discussion and benchmarks to
1-D flow problems for brevity1.

3.3.1 Verification. For general Boltzmann equation (1), analyti-
cal solutions do not exist. Therefore, we compare our results with
widely accepted direct simulation Monte Carlo (DSMC) [2] method.
We want to emphasize that DSMC is a stochastic method for solu-
tion of the N-particle master kinetic equation which converges to
the Boltzmann equation in the limit of infinite number of particles
[16].

In the current test case, we consider the effect of velocity gradi-
ent on the solution. The coordinates are chosen such that the walls
are parallel to they direction and x is the direction perpendicular to
the walls. The geometry as well as boundary conditions are shown
in Figure 1. Figure 2 illustrates the velocity and temperature along
the domain length for both species, wherein we observe an excel-
lent agreement between DGFS and DSMC. The small discrepancies,
however, are primarily due to: a) statistical fluctuations inherent to
the Monte Carlo methods, b) practical limitations on number of par-
ticles used in DSMC simulations. From a computational viewpoint,
the present DGFS simulations on a single GPU took 138 seconds to
acquire the steady state, in contrast to 26086.45 sec on 24 processors
for DSMC simulations as reported in [7], for achieving comparable
accuracy.

1Discussion and benchmarks for higher 2D/3D spatial dimension shall be presented in
the extended version of this manuscript.

ul , Tl ur , Tr
x

y

Figure 1: Numerical setup for 1D Couette flow.

3.3.2 Scaling Behavior. The simulations are carried out for differ-
ent test-cases by varying element-count (Ne ), polynomial approxi-
mation order (Np = K −1), and velocity-space sizes (N ). The spatial
elements are distributed to p processors using the well-known lin-
ear domain-decomposition strategy requiring sharing of O(pN 3)
floating-point duringMPI communication phase. Speed up obtained
with multi-GPU solver is presented in Table (3). As evident from
the table, the acceleration due to GPU parallelization increases with
increase in the size of computational grid. More specifically, the
increase in Ne and K have small-effect on overall speedup which
suggests that DG-operators (for instance derivative, time-evolution)
are rather computationally inexpensive operations. On the other
hand, increase in velocity-grid improves the observed speedup. The
weak/strong scaling behavior is also evident from the table.

3.3.3 Flat profile. Recall that the fast Fourier spectral collision
operator algorithm 2 is split into multiple parts. It is therefore
interesting to see what performance level is attained by each part
of the operator. Fig (3) presents the percentage of time spent in
various parts of Algo. 2 vs. order of DG scheme (K). First, we note
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Parameter Case C-01

Molecular mass: {m1, m2} (×1027 kд) {66.3, 139.1}
Non-dim physical space [0, 1]
Non-dim velocity space [−7, 7]3
{N 3, Nρ , M} {323, 8, 12}
Spatial elements 4
DG order 3
Time stepping Euler
Viscosity index: ω{11, 12, 21, 22} {0.81, 0.805, 0.805, 0.8}
Scattering parameter: α {11, 12, 21, 22} {1.4, 1.36, 1.36, 1.32}
Ref. diameter: dref,pq (×1010m) {4.11, 4.405, 4.405, 4.7}
Ref. temperature: Tref,pq (K ) {273}
Characteristic mass:m0 (×1027 kд) 66.3
Characteristic length: H0 (mm) 1
Characteristic velocity: u0 (m/s) 337.2
Characteristic temperature: T0 (K ) 273
Characteristic number density: n0 (m−3) 1.680 × 1021

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K ) 273
Number density: n(1) (m−3) 1.680 × 1021
Number density: n(2) (m−3) 8.009 × 1020
Knudsen number: (Kn11, Kn22) (0.793, 0.606)
Knudsen number: (Kn12, Kn21) (0.803, 0.555)
Left wall (purely diffuse) boundary conditions (subscript l )

Velocity: ul (m/s) (0, −50, 0)
Temperature: Tl (K ) 273

Right wall (purely diffuse) boundary conditions (subscript r )
Velocity: ur (m/s) (0, +50, 0)
Temperature: Tr (K ) 273
Table 2: Numerical parameters for Couette flow [7]. Based
upon our observations from Table 1, we have used Nρ = 8,
in contrast to Nρ = 32 used in [7]. This does not affect the
recovered bulk properties as illustrated in Fig. 1, however, it
speeds up the computation by a factor of 4.

that the DG operators denoted in yellow, requires 1% of the total
simulation time. The collision operator, however, consumes nearly
> 98% of the total time for both N 3 = 203 and N 3 = 323.

4 CONCLUSIONS
We have presented an implementation of the multi-species Dis-
continuous Galerkin Fast Spectral (DGFS) method for solution
of multi-species monoatomic full Boltzmann equation on multi-
GPU/multi-CPU architectures. The DG-type formulation employed
in the present work has advantage of having high-order accuracy
at the element-level, and its element-local compact nature (and that
of our collision algorithm) enables effective parallelization on mas-
sively parallel architectures. For verification and benchmarks, we
carry out simulations for spatially homogeneous BKW, and Couette
flow problems. Parallel efficiency close to 0.95 is observed on a
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Figure 2: Variation of normalized y-velocity, and temper-
ature along the domain for Couette flow (Case C-01) ob-
tained with DSMC and DGFS using VSS collision kernel for
Argon-Krypton mixture. Symbols denote DSMC solutions,
and lines denote DGFS solutions.

36 GPU multi-node/multi-GPU system. An important key obser-
vation is that the efficiency can be maintained provided we have
enough work on each processor. It is this speedup that now allows
researchers to solve problems within a day that would otherwise
take months on traditional CPUs. Future work directions include,
assessment of the implementation beyond thousand cores. Extend-
ing the implementation to general 2D/3D mixed grids coupled with
adaptivity in physical and velocity spaces, is an interesting direction
as well.
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Table 3: Performance of the solver for Couette flow test cases. The phase-space is defined using a convenient triplet notation Ne /K/N3,
which corresponds to Ne elements in physical space, K order DG (equivalently Np = K − 1 order polynomial for 1-D domain), and N3 points
in velocity space. nG (n > 1) denotes GPU/CUDA/MPI/parallel execution on n GPUs shared equally across (n/3) nodes. Work units represent
the total simulation time for first 52 timesteps. Efficiency is defined as ratio (1G/nG)/n, where 1G and nG are execution-times on one GPU
and n GPU respectively.M = 12 and Nρ = 8 is used for all cases.

Phase space Work Units (s) Efficiency

1G 3G 6G 9G 12G 24G 36G 1G/3G 1G/6G 1G/9G 1G/12G 1G/24G 1G/36G

72/3/203 47.580 16.155 8.339 5.698 4.392 2.423 1.774 0.98 0.95 0.93 0.90 0.82 0.84
72/3/323 126.601 42.616 21.551 14.563 11.038 5.784 4.030 0.99 0.98 0.97 0.96 0.91 0.98
72/3/483 391.943 131.081 65.913 44.218 33.513 17.224 11.621 1.00 0.99 0.98 0.97 0.95 1.05
72/6/203 94.682 31.957 16.197 10.944 8.331 4.392 3.079 0.99 0.97 0.96 0.95 0.90 0.96
72/6/323 253.016 84.834 42.741 28.697 21.703 11.158 7.693 0.99 0.99 0.98 0.97 0.94 1.03
72/6/483 782.343 261.601 131.217 87.755 66.009 33.520 22.509 1.00 0.99 0.99 0.99 0.97 1.09

216/3/203 141.754 47.641 24.033 16.182 12.326 6.356 4.388 0.99 0.98 0.97 0.96 0.93 1.01
216/3/323 378.956 126.853 63.676 42.636 32.066 16.295 11.041 1.00 0.99 0.99 0.98 0.97 1.07
216/3/483 1172.907 391.916 196.439 131.153 98.538 49.652 33.471 1.00 1.00 0.99 0.99 0.98 1.10
216/6/203 283.091 94.737 47.679 31.903 24.060 12.262 8.320 1.00 0.99 0.99 0.98 0.96 1.06
216/6/323 759.149 253.498 127.004 84.932 63.780 32.212 21.672 1.00 1.00 0.99 0.99 0.98 1.09
216/6/483 2347.099 783.642 392.470 261.817 196.552 98.680 66.018 1.00 1.00 1.00 1.00 0.99 1.11
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Figure 3: Percentage of time spent in various parts of Algo. 2 vs. order of DG scheme (K). For both N 3 = 203 and N 3 = 323, the
collision operator consumes > 98% of the simulation time.
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