skip to main content
10.1145/3324989.3325715acmconferencesArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Numerical Simulation of the Quantum Cascade Laser Dynamics on Parallel Architectures

Authors Info & Claims
Published:12 June 2019Publication History

ABSTRACT

Over the last decades, quantum cascade lasers (QCLs) have become established sources of mid-infrared and terahertz light. For their anticipated applications, e.g., in spectroscopy, their dynamical behavior is particularly interesting. Numerical simulations constitute an essential tool for investigating the QCL dynamics but exhibit considerable computational workload. In order to accelerate the simulations and thereby aid the design process of QCLs, we present efficient parallel implementations of an established numerical method using OpenMP. Performance measurements on a 28-core CPU confirm their efficiency.

References

  1. Brigitte Bidégaray. 2003. Time discretizations for Maxwell-Bloch equations. Numer. Methods Partial Differ. Equ. 19, 3 (2003), 284--300.Google ScholarGoogle ScholarCross RefCross Ref
  2. Alfredo Bismuto, Romain Terazzi, Borislav Hinkov, Mattias Beck, and Jérôme Faist. 2012. Fully automatized quantum cascade laser design by genetic optimization. Appl. Phys. Lett. 101, 2 (2012), 021103.Google ScholarGoogle ScholarCross RefCross Ref
  3. William Cartar, Jesper Mørk, and Stephen Hughes. 2017. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers. Phys. Rev. A 96, 2 (2017), 023859.Google ScholarGoogle ScholarCross RefCross Ref
  4. Alexei Deinega and Tamar Seideman. 2014. Self-interaction-free approaches for self-consistent solution of the Maxwell-Liouville equations. Phys. Rev. A 89, 2 (2014), 022501.Google ScholarGoogle ScholarCross RefCross Ref
  5. Gábor Demeter. 2013. Solving the Maxwell-Bloch equations for resonant nonlinear optics using GPUs. Comput. Phys. Commun. 184, 4 (2013), 1203--1210.Google ScholarGoogle ScholarCross RefCross Ref
  6. Jérôme Faist, Federico Capasso, Deborah L. Sivco, Carlo Sirtori, Albert L. Hutchinson, and Alfred Y. Cho. 1994. Quantum cascade laser. Science 264, 5158 (1994), 553--556.Google ScholarGoogle Scholar
  7. Joshua R. Freeman, Jean Maysonnave, Suraj Khanna, Edmund H. Linfield, A. Giles Davies, Sukhdeep Dhillon, and Jérôme Tignon. 2013. Laser-seeding dynamics with few-cycle pulses: Maxwell-Bloch finite-difference time-domain simulations of terahertz quantum cascade lasers. Phys. Rev. A 87, 6 (2013), 063817.Google ScholarGoogle ScholarCross RefCross Ref
  8. Jean Gallier and Dianna Xu. 2003. Computing exponentials of skew symmetric matrices and logarithms of orthogonal matrices. Int. J. Robot. Autom. 18, 1 (2003), 10--20.Google ScholarGoogle Scholar
  9. Vasileios-Marios Gkortsas, Christine Y. Wang, Lyuba Kuznetsova, Laurent Diehl, Ariel Gordon, Christian Jirauschek, Mikhail A. Belkin, Alexey Belyanin, Federico Capasso, and Franz X. Kärtner. 2010. Dynamics of actively mode-locked quantum cascade lasers. Opt. Express 18, 13 (2010), 13616--13630.Google ScholarGoogle ScholarCross RefCross Ref
  10. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  11. Christian Jirauschek and Tillmann Kubis. 2014. Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 1 (2014), 011307.Google ScholarGoogle ScholarCross RefCross Ref
  12. Rudolf F. Kazarinov and Robert A. Suris. 1971. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov. Phys. Semicond. 5, 4 (1971), 797--800.Google ScholarGoogle Scholar
  13. Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, Jagannathan Ramanujam, Atanas Rountev, and Ponnuswamy Sadayappan. 2007. Effective automatic parallelization of stencil computations. SIGPLAN Not. 42, 6 (2007), 235--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Qing H. Liu. 1997. The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 15, 3 (1997), 158--165.Google ScholarGoogle ScholarCross RefCross Ref
  15. Robert Marskar and Ulf Österberg. 2011. Multilevel Maxwell-Bloch simulations in inhomogeneously broadened media. Opt. Express 19, 18 (2011), 16784--16796.Google ScholarGoogle ScholarCross RefCross Ref
  16. David Mueller and Gregory Triplett. 2016. Development of a multi-objective evolutionary algorithm for strain-enhanced quantum cascade lasers. Photonics 3, 3 (2016), 44.Google ScholarGoogle ScholarCross RefCross Ref
  17. Ardavan F. Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, John D. Joannopoulos, and Steven G. Johnson. 2010. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 3 (2010), 687--702.Google ScholarGoogle ScholarCross RefCross Ref
  18. Michael Riesch. 2019. qclsip: The Quantum Cascade Laser Stock Image Project.Google ScholarGoogle Scholar
  19. Michael Riesch and Christian Jirauschek. 2017. mbsolve: An open-source solver tool for the Maxwell-Bloch equations. https://github.com/mriesch-tum/mbsolve.Google ScholarGoogle Scholar
  20. Michael Riesch and Christian Jirauschek. 2017. Numerical method for the Maxwell-Liouville-von Neumann equations using efficient matrix exponential computations. (2017). arxiv:1710.09799. Retrieved from https://arxiv.org/abs/1710.09799.Google ScholarGoogle Scholar
  21. Michael Riesch and Christian Jirauschek. 2019. Analyzing the positivity preservation of numerical methods for the Liouville-von Neumann equation. J. Comput. Phys. 390 (2019), 290--296.Google ScholarGoogle ScholarCross RefCross Ref
  22. Michael Riesch, Nikola Tchipev, Sebastian Senninger, Hans-Joachim Bungartz, and Christian Jirauschek. 2018. Performance evaluation of numerical methods for the Maxwell--Liouville--von Neumann equations. Opt. Quant. Electron. 50, 2 (13 2 2018), 112.Google ScholarGoogle Scholar
  23. Gabriela Slavcheva, John M. Arnold, Iain Wallace, and Richard W. Ziolkowski. 2002. Coupled Maxwell-pseudospin equations for investigation of self-induced transparency effects in a degenerate three-level quantum system in two dimensions: Finite-difference time-domain study. Phys. Rev. A 66, 6 (2002), 63418.Google ScholarGoogle ScholarCross RefCross Ref
  24. Xiaohong Song, Shangqing Gong, and Zhizhan Xu. 2005. Propagation of a few-cycle laser pulse in a V-type three-level system. Opt. Spectrosc. 99, 4 (2005), 517--521.Google ScholarGoogle ScholarCross RefCross Ref
  25. Maxim Sukharev and Abraham Nitzan. 2011. Numerical studies of the interaction of an atomic sample with the electromagnetic field in two dimensions. Phys. Rev. A 84, 4 (2011), 043802.Google ScholarGoogle ScholarCross RefCross Ref
  26. Allen Taflove and Susan C. Hagness. 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House.Google ScholarGoogle Scholar
  27. Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A lightweight performance-oriented tool suite for x86 multicore environments. In Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool Infrastructures. San Diego CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Petar Tzenov, Ihar Babushkin, Rostislav Arkhipov, Mikhail Arkhipov, Nikolay N. Rosanov, Uwe Morgner, and Christian Jirauschek. 2018. Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers. New J. Phys. 20, 5 (2018), 053055.Google ScholarGoogle ScholarCross RefCross Ref
  29. Petar Tzenov, David Burghoff, Qing Hu, and Christian Jirauschek. 2016. Time domain modeling of terahertz quantum cascade lasers for frequency comb generation. Opt. Express 24, 20 (2016), 23232--23247.Google ScholarGoogle ScholarCross RefCross Ref
  30. Gustavo Villares, Andreas Hugi, Stéphane Blaser, and Jérôme Faist. 2014. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5 (2014), 5192.Google ScholarGoogle ScholarCross RefCross Ref
  31. Christine Y. Wang, Laurent Diehl, Ariel Gordon, Christian Jirauschek, Franz X. Kärtner, Alexey Belyanin, David Bour, Scott Corzine, Gloria Höfler, Mariano Troccoli, Jérôme Faist, and Federico Capasso. 2007. Coherent instabilities in a semiconductor laser with fast gain recovery. Phys. Rev. A 75, 3 (2007), 031802.Google ScholarGoogle ScholarCross RefCross Ref
  32. Kane Yee. 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas. Propag. 14, 3 (1966), 302--307.Google ScholarGoogle ScholarCross RefCross Ref
  33. Richard W. Ziolkowski, John M. Arnold, and Daniel M. Gogny. 1995. Ultrafast pulse interactions with two-level atoms. Phys. Rev. A 52, 4 (1995), 3082--3094.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    PASC '19: Proceedings of the Platform for Advanced Scientific Computing Conference
    June 2019
    177 pages
    ISBN:9781450367707
    DOI:10.1145/3324989

    Copyright © 2019 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 12 June 2019

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader