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ABSTRACT

We present an automated performance evaluation framework that
enables an automated workflow for testing and performance eval-
uation of software libraries. Integrating this component into an
ecosystem enables sustainable software development, as a commu-
nity effort, via a web application for interactively evaluating the
performance of individual software components. The performance
evaluation tool is based exclusively on web technologies, which
removes the burden of downloading performance data or installing
additional software. We employ this framework for the Ginkgo
software ecosystem, but the framework can be used with essentially
any software project, including the comparison between different
software libraries. The Continuous Integration (CI) framework of
Ginkgo is also extended to automatically run a benchmark suite on
predetermined HPC systems, store the state of the machine and the
environment along with the compiled binaries, and collect results
in a publicly accessible performance data repository based on Git.
The Ginkgo performance explorer (GPE) can be used to retrieve
the performance data from the repository, and visualizes it in a
web browser. GPE also implements an interface that allows users
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to write scripts, archived in a Git repository, to extract particu-
lar data, compute particular metrics, and visualize them in many
different formats (as specified by the script). The combination of
these approaches creates a workflow which enables performance
reproducibility and software sustainability of scientific software. In
this paper, we present example scripts that extract and visualize
performance data for Ginkgo’s SpMV kernels that allow users to
identify the optimal kernel for specific problem characteristics.
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1 INTRODUCTION

Over the years, high-performance computing (HPC) systems changed
dramatically, and gradually became more complex. Current super-
computers typically consist of multiple layers of parallelism, het-
erogeneous compute nodes, and a complex cache hierarchy within
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every single processing unit. To effectively use these systems, high-
performance libraries have to reflect the complexity and hetero-
geneity of the architectures not only by providing backends for
various hardware components, but also by integrating different
programming models and algorithms that are suitable for the dis-
tinct hardware characteristics. In addition, the rapidly changing
HPC landscape requires the software libraries to be amenable to
modification and extension. These challenges increase the burden
on the software developers. The growing size of developer teams
can result in integration conflicts and increased complexity of the
software stack.

To increase productivity and software quality, tools for integra-
tion, testing, and code reviewing are constantly being improved.
While the use of such tools has become the de-facto standard in
industry, they are barely adopted by academic community. The
primary reason is that academic software projects often arise as the
by-product of a self-contained and limited research effort. At the
same time, the lifespan of academic software regularly exceeds the
duration of the specific research project, as the software gets ex-
tended beyond the original purpose. These extensions, however, are
often workarounds to add functionality, or utilize existing software
components that are not necessarily optimized for runtime perfor-
mance. Thus, integrating gradually-extended software libraries into
complex application codes can introduce performance bottlenecks
that are difficult to track down. Therefore, it is important to provide
the users a library with easy access to performance analysis of the
distinct software components.

In this work we design and deploy an interactive performance
evaluation tool that propagates performance results via a web ap-
plication. The data is automatically collected on HPC systems and
archived in a remote repository — a strategy that allows for revisit-
ing “old” data. The performance evaluation framework builds upon
open-source projects, and allows fine-grained analysis of perfor-
mance data with respect to parameters and performance metrics
customized by the user. The main contributions of the paper are:

• The design of a software development cycle featuring auto-
matic performance evaluation on HPC systems and remote
performance data archiving.

• The design and deployment of an automated performance
evaluation tool that automatically retrieves performance
data from a remote repository and allows for customizing
the analysis according to user requests.

• The design and deployment of a web application that builds
onweb technology only, efficiently realizing the performance
analysis as web service and removing the burden of down-
loading performance data to local disk or installing additional
software.

This work does not aim at developing an automated benchmark
generator, which is a highly application-specific task requiring in-
put from domain experts. Instead, the framework enables automatic
scheduling of benchmark runs, as well as result data processing and
its visualization. Themotivation for such an automated / continuous
benchmarking system is:

• Reproducibility. Reproducibility is a central pillar of natu-
ral science that is often left out in high-performance bench-
mark studies. An automated performance evaluation system

archiving all performance data along with execution param-
eters, plot scripts, machine settings and produced binary
code would enable us to reproduce benchmark results at any
point in the future.

• Consistency. Archiving performance results over the life-
time of a software library can also detect performance degra-
dations and track down the modifications that triggered a
performance loss. Coupling this with the Git Workflow and
applying continuous benchmarking to all merged requests
allows us to tie every code change and feature addition to
performance results. This is an important consideration in
the development process of high-performance software.

• Usability. An automated performance evaluation workflow
allows launching benchmark tests with a few clicks in the
web interface.

On top of a continuous benchmarking system, an open-source,
web-based performance analysis framework like the Ginkgo per-
formance explorer (GPE) offers additional benefits:

• The design as a web service removes the need for download-
ing performance data to local disk or installing additional
software.

• External software developers without access to HPC systems
can contribute their code to the software library, invoke
performance tests on an HPC platform, and retrieve and
analyze the benchmark results via the web service.

• A web-based performance explorer accessing open-source
repositories like the GPE enables easy comparison of the per-
formance results from different software libraries by adapt-
ing the data access paths, since GPE relies on the JSON data
format both for data storage and the JSONata transformation
language for scripts.

In this work, we employ automated benchmarking framework and
the interactive performance visualization for the Ginkgo open-
source software ecosystem, but the framework can be easily adopted
by other software projects that employ a healthy software develop-
ment cycle, similar to the one we present in Section 2.

2 SOFTWARE DEVELOPMENT ECOSYSTEM

In the past, software development was often a one-man show or in-
cluded only a small team of programmers. Nowadays, the increased
hardware complexity and the demand for versatile software features
requires software products to be developed as a team effort. The
collaborative development of software is a challenge that requires
the consideration of aspects such as sustainability, productivity,
code readability and functionality, correctness, integration, and the
synchronization of the distinct development efforts. Therefore, a
healthy software life cycle employs an ecosystem where different
tools used by developers are complemented with automatic fea-
tures, all of them helping the development team to produce high
quality software. Such ecosystems include code formatting tools,
software versioning systems, automated compatibility and correct-
ness checks, and community interaction tools. The Better Scientific
Software (BSSw) initiative [12] aims to propagate measures and
strategies to the scientific community that facilitate such a healthy
software lifecycle. With a focus on high-performance computing,

https://ginkgo-project.github.io/gpe/
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Figure 1: The software development ecosystem of the Ginkgo library.

resources like workshops, blogs, tutorials, and online learning mate-
rials are offered with the goal of improving the quality of scientific
software, and simplifying its integration and interoperability. Soft-
ware interoperability is also the main target of the xSDK [11] effort
that aims to bundle existing software libraries into a coherent soft-
ware stack. Its ultimate goal is to enable easy cross-compilation
of different libraries, and to facilitate the combination of features
taken from distinct software packages. For this purpose, the xSDK
community has agreed on a set of policies that must be adhered to
by all software packages part of the effort [11]. These policies, along
with the sustainability measures propagated in the BSSw initiative,
serve as guidelines for the development cycle that we employ for
the Ginkgo linear operator library. We provide an overview about
Ginkgo’s software development cycle in Figure 1.

We note that Ginkgo is distributed as open-source software
under the BSD 3-clause license, and that the complete software
development ecosystem builds upon open-source tools. The library
itself has no external dependencies, and the extra components used
for testing and benchmarking are licensed under either the MIT or
BSD 3-clause license. However, these additional components can be
manually deactivated, without removing any of the library’s core
functionalities.

Ginkgo’s source code is version-controlled using Git. Git has
established itself as the de-facto standard version control system
for tracking changes in computer files and coordinating work on
those files among multiple developers [5]. As a distributed revision
control system, it focuses particularly on data integrity and speed.
While Git does support decentralized management of collaborative
software efforts, most modern workflows, like Gitflow1 used by

1 https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Ginkgo, assume a central repository available at all times. These
workflows are supported by web services which provide hosting of
Git repositories. Among the most popular ones are GitHub [6], Git-
Lab [7] and Bitbucket [2]. All of them offer hosting of open-source
projects free of charge. These services also integrate community
features facilitating collaborative development, such as pull/merge
requests incorporating code review, issue and bug tracking, wiki
pages and project website hosting. The Ginkgo project uses both
GitHub and GitLab to host its repositories. A public repository avail-
able to the wider community is hosted on GitHub,2 while a private
version used for ongoing, unpublished research is hosted on Git-
Lab. In both cases, Ginkgo relies heavily on the above mentioned
community features to organize the development effort.

Recent software development trends pursue the automation of
an increased number of housekeeping tasks associated with soft-
ware development, and bundle them in Continuous Integration (CI)
systems[16]. They provide non-trivial computational capabilities to
the otherwise static repository hosting, and can either be integrated
in the hosting service (e.g., GitLab CI/CD), or realized as a separate
service that communicates with repository hosting (e.g., Jenkins,
Travis CI, AppVeyor). Usually, CIs are used to verify the integrity
of the software after each change in the source code by compiling
the software on a set of supported architectures and using different
configurations. CIs can also be employed for testing the software’s
functionality using the utilities bundled with the source repository.
At the same time, CI systems can also be used for other functional-
ities. Ginkgo employs the GitLab CI/CD service for building the
library, to run its unit tests, to synchronize between the public and
the private repository, and to automatically generate and publish

2https://github.com/ginkgo-project

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://github.com/ginkgo-project
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the user documentation. In this work we extend the CI pipelines to
automatically run Ginkgo’s benchmark suite on predefined HPC
systems and publish the collected results in a publicly available
performance data repository; see Figure 1.

Software developers that want to add their components to the
Ginkgo software stack can create a fork of the public repository on
GitHub, and submit a pull request with their changes. The CI system
then selects a variety of compiler/hardware configurations, and tries
to compile the source code in these environments, using Ginkgo’s
CMake-based build system[19]. This automated workflow ensures
a conflict-free compilation across a variety of supported platforms.
All functionalities in Ginkgo are covered by unit tests. Unit tests
check the correctness of the smallest software entities and can
quickly track down software bugs [20]. If the CI system succeeds
in compiling on a specific hardware/compiler configuration, the
unit tests are invoked to check correctness. Writing the unit tests
is facilitated via the Google Test framework [8]. Once all tests
have passed, a member of the Ginkgo core development team
performs a manual code review. The reviewer ensures that all code
is correct, follows Ginkgo’s code style guide, is well documented
using Doxygen [21], adds useful functionality, and fits the scope of
the software effort. In addition to reviewers’ comments, a significant
portion of Ginkgo’s code style is enforced by the clang-format [4]
tool, which is integrated into Ginkgo’s build system.

The reviewer also has an important role as a gatekeeper: after the
code is merged into the Ginkgo software stack, benchmark tests
on an HPC cluster are invoked to evaluate the code’s performance.
Running externally contributed code on an HPC system poses a
high security risk, and the reviewer approving the merge request
has to carefully check the code for malware. Therefore, the trusted
reviewer is someone with access privileges to the HPC system, and
by approving the merge, he takes the responsibility for the code’s
integrity. Once the merge is approved, the continuous integration
system inserts the benchmark tests into the cluster’s scheduling
system, and (once the tests have completed), collects the perfor-
mance results. Those are archived in a distinct Git repository that
is designed as a comprehensive collection of performance charac-
teristics. Archiving the performance results allows for monitoring
the performance of individual functionalities over the software’s
lifetime and the detection of possible performance degradations.

3 PERFORMANCE EVALUATION IN THE

CONTINUOUS INTEGRATIONWORKFLOW

The performance evaluation on a specific HPC system is automated
via a series of jobs defined in Ginkgo’s CI system configuration
file (.gitlab-ci.yml by default). These performance benchmark
jobs are defined as “scheduled,” which means they are not invoked
automatically at every repository update, but can be set to execute
at fixed intervals via GitLab’s web interface.3

Once the benchmark runs are invoked, the CI server establishes
an SSH connection to the target HPC system. The Ginkgo repos-
itory is cloned to the server, and the library is compiled using its
build system. Next, a set of benchmark tests is submitted to the
HPC system’s job scheduler. The exact sequence of commands to
facilitate this depends on the scheduler employed by the system,

3 https://docs.gitlab.com/ee/user/project/pipelines/schedules.html

and is fully configurable in the CI configuration file. Finally, once
all benchmarks are completed, the CI job collects the results and
uploads them into the performance data repository.

There exist different strategies to detect the completion of the
performance tests. A first strategy keeps the SSH connection to the
HPC system for the duration of the benchmark execution. This is
an adequate solution if the network is guaranteed to be stable, e.g.,
if the CI server and the HPC system are located on the same local
network. When connecting to a remote system, the assumption of
a stable network connection may not be realistic. An alternative
strategy closes the connection to the HPC system as soon as the
benchmarks are submitted to the server’s job scheduling system,
and a separate job is used to collect the benchmark results and
upload them into the performance data repository. This job can be
triggered from the script running on the HPC cluster via a GitLab
trigger4 by sending a POST message to the GitLab web API. In
case the HPC system does not allow web access, the job can be
configured to check the completion status at regular intervals. This
last strategy is the one we currently use.

In our setting we currently employ the strategy based on regu-
larly checking the completion status as this workflow is adaptable
to most HPC systems.

The output format in which the performance data is stored has
to allow for easy interaction between the benchmark runners, the
web application, and third-party applications. To that end, the data
exchange format should be chosen carefully with respect to sup-
port for low-level programming languages as well as scripting lan-
guages used for web development. In our ecosystem, we choose the
JSON[14] data format as it has become the de-facto standard for web
applications and has native support in most higher-level languages
(Python, MATLAB, Javascript). Furthermore, libraries providing
JSON interfaces are available for low-level programming languages
such as C and C++. In Ginkgo, we employ RapidJSON[22] to gen-
erate JSON files in the benchmark suite.

4 PERFORMANCE VISUALIZATION

While the previous steps of the performance benchmarking work-
flowwere assembled by using existing open-source components, we
were unable to identify a suitable tool to enable rapid performance
visualization. Such a tool has to quickly provide library developers
with insight about the behavior of their algorithms. In addition, it
should offer useful information about the library’s performance
to existing and prospective users. Ideally, the users do not have to
install any additional software or manually download performance
results.

To fulfill these requirements, we developed the “Ginkgo per-
formance explorer”5 (GPE). This web application automatically
retrieves the data from the performance data repository, and visu-
alizes it in a web browser. This implies that a web browser alone
is sufficient to access and analyze the performance results: the
web-based performance analysis framework does not require the
installation of additional software or downloading performance
data. GPE works on all major operating systems (Linux, Mac and

4 https://docs.gitlab.com/ee/ci/triggers/
5 https://ginkgo-project.github.io/gpe

https://docs.gitlab.com/ee/user/project/pipelines/schedules.html
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https://ginkgo-project.github.io/gpe
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Figure 2:Ginkgo Performance Explorer layout. Red box: dataset selection dialog; Green box: transformation script editor; Blue
box: data and plot viewer.

Windows) and we tested the correct functionality using current
versions of the Firefox, Chrome, and Safari browsers.

We employed the Angular framework[13] to implement the ap-
plication logic as well as the interaction among the distinct com-
ponents and the communication with the rest of the web (e.g., to
download performance data). We used Angular’s Material user
interface (UI) components for the application’s layout and form
controls. We also provide a component that visualizes the data re-
trieved from the JSON performance files, using the Chart.js plotting
library[3].

Library developers likely need the flexibility to customize perfor-
mance graphs to focus on a specific aspect. To enable this flexibility,
we decided to embed a powerful domain-specific scripting lan-
guage which can be used to extract subsets of the raw data and
to transform them into a format that can be used as input for the
visualization. JSONata[9] is a scripting language designed for act-
ing on JSON data. A JSONata open-source compiler in the form
of a web component is also available. We adopted both: the JSON
scripting language along with the compiler in GPE to provide the
required scripting capabilities. For convenience, GPE also features
the open-source Monaco editor web component[10], which allows
for developing JSONata scripts directly inside the web interface.
Interconnecting it with the JSONata compiler enables “as-you-type”
syntax checking, result transformation, and plotting.

While providing additional convenience, a downside of “as-you-
type” is a noticeable performance degradation when working with
large datasets, as the compilation and execution of the script is cur-
rently handled by the thread in charge of the UI and the visualization
process. A temporary workaround is to deliberately introduce a
syntax error when writing the script. This will cause the low-cost
compilation process to terminate, and the costly dataset transforma-
tion will not be invoked. Once the script is finished, the syntax error
should be removed, and the whole compilation and the JSON trans-
formation process will take place. Additionally, the tool currently
requires an active web connection to obtain the datasets from the
repository. However, once the datasets are retrieved, the connection
is no longer required. Both problems described can be solved via
Service Workers.6 These are implemented as separate processes
from the UI thread, and can be used to offload computation, which
solves performance degradation problems. Service Workers can
also intercept network requests, and serve a cached version of the
data as response to data requests, which allows the use of Ginkgo
without web access. We are currently adopting Service Workers in
the GPE framework.

By combining the features described in this section,GPE provides
the flexibility of tools like MATLAB or Python, while efficiently
decreasing the effort required for library users and developers:

6 https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API

https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
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Figure 3: The performance result selection pop-up dialog.

[{ "name": "A", "file": "path/to/A.json" },

{ "name": "B", "file": "path/to/B.json" }]

Figure 4: Example list.json file.

(1) No additional software has to be installed;
(2) No performance data has to be downloaded to local disk;
(3) The raw performance data is automatically retrieved from

the repository;
(4) Using a language specifically designed to transform JSON

files, the data extraction scripts are simpler than their MAT-
LAB / Python counterparts; and

(5) The visualization of the converted data is automated in the
web application.

5 OVERVIEW OF GINKGO PERFORMANCE

EXPLORER

This section provides a step-by-step user tutorial of GPE. Hands-
on experience is enabled by accessing GPE on Ginkgo’s GitHub
pages.7 For those interested in extending the capabilities of the web
application, the source code is also available on GitHub8 under the
MIT license.

The web application is divided into three components, as shown
in Figure 2. On the top left (and marked in red) is the data selection
dialog. The dialog is used to retrieve the raw performance data
from the performance repository. Clicking on the “Select result
files” control opens a multiple select pop-up dialog listing available
performance data. By default, the application uses Ginkgo’s perfor-
mance data repository9 to populate the list of available performance
result files. However, an alternative performance database location
(e.g., containing performance data for a different library) can be
provided via the “Performance root URL.” The value of this control
can be changed, and after clicking the download button on the right
of the control, GPE will try to read the list.json file from the
provided URL. This file lists the names and locations of the perfor-
mance results. For example, if a database contains two data files
located at “http://example.com/data/path/to/A.json” and
7 https://ginkgo-project.github.io/gpe/
8 https://github.com/ginkgo-project/gpe
9 github.com/ginkgo-project/ginkgo-data

Figure 5: Raw performance results viewer.

content .{

"sparsity": problem .( nonzeros / rows),

"performance": 2 * problem.nonzeros /

spmv.csr.time

}

Figure 6: JSONata script that computes the performance of

the CSR SpMV kernel and the nonzero-per-row average.

“http://example.com/data/path/to/B.json,” then a “list.json”
file with content as shown in Figure 4 has to be available at
“http://example.com/data/list.json”. Afterwards, the “Perfor-
mance root URL” inGPE is changed to http://example.com/data,
and the application will retrieve the data from the chosen location.
Once the performance results are loaded, they can be viewed in the
“Results” tab of the data and plot viewer (the blue box on the right-
hand side in Figure 2). An example of raw data that is retrieved by
GPE is shown in Figure 5. All accessed result files are combined into
one single JSON array of objects. Each object consists of properties
such as the name and relative path to the result file, as well as its
content.

Collecting useful insights from raw performance data is usually
difficult, and distinct values need to be combined or aggregated
before drawing conclusions. This is enabled by providing a script

https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://github.com/ginkgo-project/gpe
github.com/ginkgo-project/ginkgo-data
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
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Figure 7: Transformed data viewer.

($transformed := content .{

"sparsity": problem .( nonzeros / rows),

"performance": 2* problem.nonzeros /

spmv.csr.time

}; {

"type": "scatter",

"data" : {

"datasets": [{

"label": "CSR",

"data": $transformed .{

"x": sparsity ,

"y": performance

},

"backgroundColor": "hsl (38 ,93% ,54%)"

}]

}

})

Figure 8: JSONata example script that plots the performance

of the CSR SpMV kernel in relation to the nonzero-per-row

average.

in the transformation script editor, marked with a green box on the
left bottom in Figure 2. For example, the data in Figure 5 shows raw
performance data of various sparse matrix-vector multiplication
(SpMV) kernels on a set of matrices from the SuiteSparse matrix
collection. It may be interesting to analyze how the performance
of the CSR-based SpMV kernel depends on the average number of
nonzeros per row. Neither of these quantities is available in the
raw performance data. However, by following the tree of properties
“content > problem > nonzeros”, “content > problem > rows”
and “content > spmv > csr > time”, the total number of nonzeros
in a matrix, the number of rows in a matrix, and the runtime of the
CSR SpMV kernel can be derived. Since these are the only quantities
needed to generate the comparison of interest, the transformation
script editor can be used to write a suitable JSONata script10; see
Figure 6. The script is applied in real time to the input data, and
the result is immediately available in the “Transformed” tab of the
data and plot viewer, as shown on Figure 7.

The missing step is the visualization of the performance data. For
that purpose, the data has to be transformed into a format that is
readable for Chart.js, i.e., it has to be a Chart.js configuration object
10Full JSONata user guide describing the syntax in detail is available at https://docs.
jsonata.org

Figure 9: Plot generated by the example script given in Fig-

ure 8.

(as described in the Chart.js documentation11). Figure 8 provides a
minimal extension of the script to generate a Chart.js configuration
object. The visualized data is then available in the “Plot” tab of the
data and plot viewer ; see Figure 9.

For first-time users, or to get a quick glance of the library’s per-
formance, we provide a set of predefined JSONata scripts which can
be used to obtain some performance visualizations without learning
the language. These can be accessed from the “Select an example”
dropdown menu of the transformation script editor. By default, the
example scripts are retrieved from the Ginkgo performance data
repository. However, the script location can be modified in the same
way like the dataset location.

6 EXAMPLES

To conclude the presentation of GPE, we present an end-to-end
usage example that demonstrates the capabilities of GPE in analyz-
ing performance data. The scenario we consider involves a user of
the Ginkgo library that is interested in finding out which of the
SpMV kernels has the best overall performance for a wide range
of problems. To that end, we look at the performance of Ginkgo’s
SpMV kernels on the entire Suite Sparse matrix collection [1]. Even
though the whole dataset contains results for various architectures,
we exclusively focus on the performance of Ginkgo’s CUDA ex-
ecutor on a V100 GPU. Thus, as a first step, the results are filtered
to include only this architecture:

$data := content[dataset .(

system = "V100_SXM2" and executor = "cuda")]

In the following visualization examples we particularly focus on
how to realize the data transformations needed to extract interesting
data. The specific visualization configurations to generate appealing
plots (including the labeling of the axes, the color selection, etc.),
are well-documented and easy to integrate [3]. The full JSONata
scripts used to generate the graphs in this section are available as
templates in the example script selector of GPE.

11 https://www.chartjs.org/docs/latest/getting-started/usage.html

https://docs.jsonata.org
https://docs.jsonata.org
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
https://www.chartjs.org/docs/latest/getting-started/usage.html
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$formats := $data.spmv~>$keys ();

$counts := $formats~>$map(function ($v) {

$data.optimal[spmv = $v]~>$count ()

});

{

"type": "bar",

"data": {

"labels": $formats ,

"datasets": [{ "data": $counts }]

},

"options": { "scales": { "yAxes": [{

"ticks": { "beginAtZero": true }

}]}}

}

Figure 10: Left: JSONata script for creating a bar plot visualizing the number of problems for which an SpMV kernel is the

fastest. Right: The graph generated by the script (after adding some visualization options).

$getColor := function($n, $id) {

"hsl(" & $floor (360 * $id / $n)

& " ,40%,55%)"

};

$formats := $data.spmv~>$keys ();

$plot_data := $formats~>$map(function($v, $i) {{

"label": $v,

"data": $data.{

"x": problem.nonzeros ,

"y": 2 * problem.nonzeros /

(spmv~>$lookup($v)). time

},

"backgroundColor":

$formats~>$count ()~> $getColor($i)

}});

{

"type": "scatter",

"data": { "datasets": $plot_data },

"options": { "scales": { "xAxes": [{

"type": "logarithmic"

}]}}

}

Figure 11: Left: JSONata script crating a performance vs. nonzeros graph for different SpMV kernels. Right: The graph gener-

ated by the script (after adding visualization options).

6.1 Fastest Matrix Format

In a first example, we identify the “best” SpMV kernel by inspecting
the number of problems for which that particular kernel is the
fastest. To that end, we first extract the list of available kernels.
Then, we split the list of matrices into sublists, where every sublist
contains the matrices for which one of the kernels is the fastest.
From this information, the numbers can be accumulated and ar-
ranged in a Chart.js configuration object. The JSONata script and
the resulting plots are given in Figure 10.

6.2 A More Detailed Analysis

The results in Figure 10 provide a summery, but no details about
the generality of the kernels. Each kernel “wins” for a portion
of matrices, but it is impossible to say which kernel to choose
for a specific matrix. Since the SpMV kernel performance usually
depends on the number of nonzeros in the matrix, we next visualize
the performance of the distinct SpMV kernels depending on the
nonzero count. From the technical point of view, different SpMV
kernels have to be identified in the set, and the relevant data has to

be extracted from the dataset as shown on the left side in Figure 11.
To distinguish the performance of the distinct SpMV kernels data in
the scatter plot, we encode the kernels using different colors. This
is realized via a script that defines a helper $getColor function
which selects a set of color codes that are equally distant in the
color wheel.

Figure 11 reveals more details about the performance of the
distinct SpMV kernels. Inside the GPE application, the points repre-
senting distinct kernels can be activated and deactivated by clicking
on the appropriate label in the legend. We note that this plot con-
tains about 15,000 individual data points (> 3, 000 test matrices, 5
SpMV kernels), which makes the interactive analysis very resource-
demanding. Figure 11 indicates that the COO, the CSR, and the
hybrid kernels achieve good performance for a wide range of prob-
lems. Omitting the hybrid kernel for a moment, we investigate the
performance ratio between the CSR and the COO kernel.

https://ginkgo-project.github.io/gpe/
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$plot_data := $data[problem.nonzeros > 100000].{

"x": problem.row_distribution .(

$sqrt(variance) / median),

"y": spmv.(csr.time / coo.time)

};

{

"type": "scatter",

"data": { "datasets": [{

"label": "COO is faster",

"data": $plot_data[y >= 1],

"backgroundColor": "hsl (0 ,40% ,55%)"

}, {

"label": "CSR is faster",

"data": $plot_data[y < 1],

"backgroundColor": "hsl (120 ,40% ,55%)"

}]},

"options": { "scales": {

"xAxes": [{ "type": "logarithmic" }],

"yAxes": [{ "type": "logarithmic" }]

}}

}

Figure 12: Left: JSONata script for a visualizing the speedup of the COOkernel over the CSRkernel. Right: The graph generated

by the script (after adding visualization options).

6.3 Comparison of CSR and COO formats

From comparing the performance of the CSR and the COO kernel
in Figure 11, we conclude that the CSR format achieves better peak
performance than COO. However, the COO performance seems
more consistent as (for large enough matrices), it never drops below
5 gigaFLOP/s. This suggests that there exist matrices for which the
CSR kernel is not suitable. We may assume that load balancing
plays a role, and the regularity of matrices having a strong impact
on the performance of the CSR kernel. Indeed, the CSR kernel
distributes the matrix rows to the distinct threads, which can result
in significant load imbalance for irregular matrices. The COO kernel
efficiently adapts to irregular sparsity patterns by balancing the
nonzeros among the threads [15].

To analyze this aspect, we create a scatter plot that relates the
speedup of COO over CSR to the “sparsity imbalance of the ma-
trices.” We derive this metric as the ratio between the standard
deviation and the arithmetic mean of the nonzero-per-row distri-
bution. We expect to see a slowdown (speedup smaller than one)
for problems with low irregularity, and a speedup (larger than one)
for problems with higher irregularity. The previous analysis in
Figure 11 included problems that are too small to generate useful
performance data. In response, we restrict the analysis to problems
containing at least 100, 000 nonzeros. The script for realizing the
performance comparison and the resulting graph indicating the
validity of the assumption are given in Figure 12.

6.4 The Performance Profile of Different

Formats

Before concluding that the COO format is the most general format
in terms of cross-problem performance, Figure 13 visualizes which
strategy renders the best performance in terms of the “performance
profile” [17]. The performance profile is a visualization ideal for
comparing the performance of algorithms on problem sets that are
otherwise difficult to illustrate (e.g., they are too large, or there is no
reasonable metric to determine how difficult each of the problems

is). Each algorithm A from the set A of all algorithms being com-
pared on a problem set Φ is represented via its performance function
fA = fA,A,Φ. The value fA(t) in point t of the performance function
is defined as the percentage of problems ϕ ∈ Φ where the perfor-
mance of A is not more than t times worse than the performance
of the best algorithm in A. Formally, if p(A,ϕ) is the performance
of the algorithm A ∈ A on the problem ϕ ∈ Φ, the performance
function is defined as:

fA(t) :=
|{ϕ ∈ Φ | t · p(A,ϕ) ≥ maxB∈A p(B,ϕ)}|

|Φ|
. (1)

The performance profile is a set PA,Φ := { fA | A ∈ A} of all perfor-
mance functions of A, and is usually visualized by sampling the
performance functions at fixed intervals and plotting them as lines
in a line plot. See the book of D. Higham and N. Higham [18] for
more details about performance profiles. To increase the signifi-
cance of the performance profile, we consider only test matrices
with at least 100, 000 nonzero elements. The script for visualizing
the performance profile is available as an example in the GPE web
application, but omitted in this paper for brevity. In Figure 13 we
identify the COO and the hybrid kernels as the overall winners in
generality. The other kernels win fewer cases (have a lower leftmost
value f (t) for t = 1) and are less general (exhibit a milder slope).
Ginkgo’s ELL and SELLP formats have very similar performance
profiles, with small advantages on the SELLP side.

7 USING THE FRAMEWORK IN OTHER

PROJECTS

The entire workflow is designed to allow for easy adoption by
other software projects. Since the majority of components are
open-source tools, the adoption of GPE mostly consists of con-
figuring these components. The setup described here assumes that
the project adopting the workflow is hosted in a publicly available
Git repository (e.g., on GitHub, GitLab or Bitbucket).

First, a public repository used to store the performance database
has to be created on a web-accessible server. The only requirement

https://ginkgo-project.github.io/gpe/
https://ginkgo-project.github.io/gpe/
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Figure 13: Performance profile comparing a list of SpMV kernels.

is that the raw files stored in the repository can be accessed over
the http/https protocol, which is true for all repository hosting
services mentioned above. Then, a new “CI/CD project for an ex-
ternal repository” has to be set up on GitLab.12 This project will be
used to run the automated CI jobs. Most likely, projects want to set
up a custom account for the performance data repository that will
be used by the CI system to publish new results. Then, Ginkgo’s
CI configuration file13 should be copied into the project source
repository and customized to fit the project’s needs. This includes
changing the URLs to connected repositories (e.g., the performance
data repository), and the sequence of commands used to build the
project, to run the unit tests, to connect to the HPC system, and
to run the benchmarks. If some of the steps are not needed, they
can either be deleted or commented out. For security reasons, the
authentication details should not be stored directly in the publicly
available CI configuration file, but as protected variables in the Git-
Lab CI system. This way, they are only available when running the
jobs in a protected branch, which can only be modified by trusted
developers. For example, The frequency of benchmark runs can be
configured on the GitLab CI/CD schedules menu.14 After this setup
is complete, GitLab will automatically mirror the repository, run
the configured build and unit tests at every commit, and schedule
the benchmarks on the HPC system at regular intervals.

Interactive performance visualization via GPE can be enabled
in two ways. The simplest approach is to just use the version of
GPE hosted on Ginkgo’s GitHub pages, and change the data and
the plot URLs to appropriate values for the project’s performance
data repository, as explained in Section 5. However, if more cus-
tomization and improved user experience is needed, the GPE repos-
itory on GitHub can be fork and a custom version of the applica-
tion built for the adopting project. The default database location
can be changed in src/app/default-form-values.ts. The color
scheme of the web application can be modified to match the sig-
nature colors of the project by updating the color definitions in
src/ginkgo-theme.scss, and the logo can be replaced with the

12 https://docs.gitlab.com/ee/ci/ci_cd_for_external_repos
13 https://github.com/ginkgo-project/ginkgo/blob/develop/.gitlab-ci.yml
14 https://docs.gitlab.com/ce/user/project/pipelines/schedules.html

project’s logo by providing another src/assets/logo.png file.
Once the customization is completed, the application can be com-
piled using the script scripts/build.sh. To complete this step,
angular-cli, node and npm have to be installed on the system.15
Finally, the application can be hosted on the GitHub page of the
fork by invoking the scr/deploy.sh script.

8 SUMMARY AND OUTLOOK

We have presented a framework for the automatic performance
evaluation of the Ginkgo linear operator library. The integrated
Ginkgo performance explorer (GPE) allows users to retrieve and in-
teractively analyze data from a repository containing performance
results collected on HPC platforms. Designing GPE as a web ap-
plication removes the burden of installing additional software or
downloading performance results. The framework is amenable to
extension to other software efforts. Consequently, we hope other
software libraries will adopt the framework, and we envision the es-
tablishment of a global performance database. Such a database will
allow the quick and painless performance comparison of distinct
libraries and software components.
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